MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FROJECT MAC

Computation Structures Group Memo 69

The Design and Construction of Software Systems
by

Jack B. Dennis

Notea Prepared for an Advanced Course on Scoftware Engineering,
Technical Universfity of Munich, February 1972

This research was done at Project MAC, MIT, and was supported in
part by the Advanced Research Projects Agency, Department of Defense,
under Office of Naval Research Contract Nopr NOOO14-70-4-0362, and
In part by the Naticnal Secience Foundation under grant GI-432.

__ . Boftwire engineering,

The Degign and Comstruction of Software Systems

1. INTRODUCTION

Software Engineering ia the application of principles, skills and art
to the design and conatruction of programa and systems of programs. It is
often asserted that software engineering is largely art and based very
little on sound principle, Yet trends are visible and new ideas are devel-
oping that promise to substantially increase the role of theory and princi-

ple in the design and construction of software systems. In this lecture,

I wish to present a frame of reference for relating the material o be presented

An thia course.” In addition, T shall Etry to asgess the limitations of known

principles for the practical needs of software engineering, and the prospects

"Furthéfqﬁéﬁélaﬁmgﬁimof-Eﬁ;miﬂigfefiaziwfﬁﬁndéziaﬂmféfmﬁrogfhmming language

for broad future application of principle to the design and construction of
software. This sketch will certainly be a very personal view of the field,
for there 1s little published material that attempts to characterize _

———— . ———

The theme of this talk is that behind the absenee of a satisfactory set
of principles for the Practice of software engineering lfas the lack of
adequate means for repregenting software and hardware system designs,

semantice and system representation is required to overcome the limitations
of contemporary software engineering,

2, TERMINOLOGY

In presenting a framework for discussing principles of software en~
gineering we immediately encounter problems of terminclogy: What is
"software"? What do we mean by "computer system™y

DENNIS A

2.1 COMPUTER SYSTEMS

We shall use the term computer system o mean a combination of hard-

ware and software components that provides a definite form of service to a
group of "users'. A particular computer installation appears as many

different computer systems depending on the group of users considered. For
example, in a general purpose computer installation that offers the ability
te edit and interpret programs expressed in the language Basic [1], we can

ldentify at least three distinct computer gystems and corresponding user

ETOouUps:
SysEem user ou

L. the computer hardware operating system implementers

2. hardware plus operating system subsystem implementers

3. hardware, operating aystem and ugers of Basic

Basic language gubsystem

Any computer system defines a language in terms of which 2ll software
run on the computer system is expressed., I mean this in a very exact sense:
A computer gystem provides representations.for certain data types and infor-
mation structures, and implements a set of primicive operations on these
data types and structures. Let us conslder the three cases mentioped above,

Suppose the computer system consigts ouly of hardware (a processing
unit and main memory, say). Then the data types correspond to the interpretations
of memory words that aere melicit in the buflt-in operations of the'ﬁggééssot -
usually fixed and floating point representations for mumerical quantities.

In the absence of bage registers in the processor, the information structuras
of this computer system Aare simply all possible contents of the main memary,
selection of a desired component of a structure being accomplished through
indexing or address computation. The effect of the interrupt feature of

the computer must alsc he modelied in the language. The possibility of
asynchronous interrupts makes the language defined by a hardware computer
System nondeterministic; that is, there may be many successor states possible

for a given state of the system.

DENNIS A

When the central hardware is augmented by peripheral devices and an
operating system, additional data types and classes of information strue-
tures are represented, new primitive operations are defined, and some fea-
tures of the hardware are made inaccessible. One fmportant addition is
the availability of files as a representation for information structures --
data and programs. Separate address spaces are provided for each concurrent
computation and a generalized means of referencing data items and pProgramsa
is implemented. The absolute addressing mechanism of the hardware is often
not available to the uaer. Similarly, the hardware facilities for process
awitching and interrupt procesaing are replaced by software primitives for
interprocess communication, which are implemented by the acheduling modules
of the operating system.

The operations and data structures of the language defined by hardware
and operating system m&y be complex. For example, in this view, the action
of a program linking loader must be congidered as a primitive operation.
that transforms one information structure (representing a set of program
modules generated by compilers) into a new information struecture {a sec of
procedurea linked together and assigned to the address space of a computation),

The inclusion of peripheral devices may alter the view the user has
of the language of the computer system. In the absence of peripherals,
the machine appears as a device into which one puts programs for execution,
The language of the computer aysatem is.then the set of programe that can
be repfesented in memory according to the computer system's inatruction
code. If users interact with & computer system from peripheral terminals,
the system behaves as a device having a set of internal configurations
and vhich reaponds to megsages with answers depending on 1ts extant con-
figuration. The language of the system now appears to the user as a get
of meaningful messages together with corresponding state transitions and

conditioned responses. —

—_—— e

Adding a software gubgystem for the Basic programming language yields a
third computer system. The language defined by it iz a model for the commands
and responses by which one interacts with the Bagic gubgystem from a user's
terminal. Tn this language, the primitive data types and operations are those
of Basic. Users have access to the language of the operating system
only through use of the subsystem.

DENNIS A

2.2 SOFTWARE SYSTEMS

The environment for a program comsists of the computer system on which
the program runs, together with any hardware components, other than those
of the computer systenm, required by the program. By the term software
System we mean the software and hardware components that must be added
to a specific computer system, called the host system, in order to
realize some desired function.

We may illustrate in terms of the examples cited above: For an op-
erating system the host system may be the proceasing units and main MEMOTY
hardware. The operating system is then a software system having many soft-
ware modules and appropriate mass storage deviced to hold files. This com-
puter system may then serve as the host system for a software system that implements

the language Basic. This software aystem consists of an editor, an 1nterpreter,

‘and a4 command processor. If the hoet system does not include a communications

line contraller, the implementer of Basic would find it necessary to add one to

"EEE'H 8T as part 6f the new computer 8ystem,

2.3 HIERARCHY

Hierarchical relationships occur in many forms in computer systems.
Here, we will discuss just ome form of hierarchy: the hierarchy of linguistic
levels defined by successive layers of goftware. Each level of this
hierarchy 1s a computer system characterized by the data types and primitive
operations of its language. Each level 1ig (or, is potentially) the host
system for the definition of new linguistic levels through the addition
of further software systems.

Hierarchy is a tool of software engineering which, if properly used,
permits the _components of geveral levels to be designed and developed separately.
Of course, separate development of system levels is only poseible if the languages
corresponding to the boundaries between layers of software have been precisely

epecified and agreed to. For guccess, tha implementers of a software system

 should not find it necessary to alter any component of the host eystem.

DENNIS A

...Such need would expose incompleteness or inefficiency of the host language for

the cbjectives of the software system. This principle is often violated in
practice, for example, when an inmer layer of an operating system is modi-
fied so an accounting procedure may be implemented within an outer
goftware layer.

We distinguigh three techniques used to define a new lingulstic level
by a software system: extension, tramslation and interpretation. Often

combinations of the three techniques are used.

1. Extenaion: In defining a new linguistic level by procedural
extension, the software system added to the host system is aimply a collection
of procedures that express the primitive operations of the new level in terms
of the primitive aperations of the host syetem. New data typesg or structure
classes are implemented in this way and made available to users of the ex-
tended system in addition to the primitivés and data types of the host sys-
tem. In using extension the internal representations for procedures at

both_}efgls, host and new, are identical, syntactically and semantically.

2. Tranglatjon: Defining a new linguistic level by translation

consists of writing a compiler to run on the host system that translates
programs at the new linguistic level into programs in the language of the
host system. The necessity of compilation as a step in running a program

is characterigtic of this technique. Representations of programs expressed
in the language of the new level are not directly executed. |

3. Interpretation: Defining a new lingulstic level by interpreta-

tion comsists of writing an interpretér for the language of the new level
in terms of the data types and primitive operations of the host system.

Programs at the new linguistic level are represented in directly executable
form.

DENNIS A

A software system may be designed so thar all users of the host system
are requirad to do so at the linguistlce level of the software system. An
example is a computer run under a specific operating system which all users
of the computer must use. Alternatively, several software systems may
share the same host, as in the case that several programming language sys-
tems operate under the same executive control program., Further, the defi-
nition of a new level may or may not deny the user access to part or all
af the'linguistic features of the host. The difference between use of
extension and interpretation is that in extension the primitives of the
host system remain available at the new level whereaa this is usually
not the case when Interpretation is usged,

It would geem that procedural extension ought not be considered as
defining a new linguistic level unless the added pracedures are grouped
in a way rhat hierarchical relations are defined. Examples are the use
of the technique for application packages and in the implementation of
command langusges of operating systems. In these cases, a collection of
procedures defines the new linguistic level. Ugers of the new level are
often prevented from using procedures ocutside the collection, and then
the collection of procedures is esgsentially an interpreter for the new
linguistic level.

Trens lation and inée;E;EEation ere'Eﬁ;aeﬁeEE;ily different in the fol-
lowing respect: Two compllers for different source languages, if implemented
for the same host system, produce compiled procedures in the language of the
host, If standard procedure interfacing conventions of rhe host are hon-
ored by both compilers, then programs expreased in the two source languages
may be operated together succesafully. 1In contrast, interpretation is
usually done because of a need to utilize a fundamentally different form of
data organization from the host, or to obtain program monitoring and control
features not possible at the host level. That i3, the host level is
incomplete for the objectives of the software syatem. If Iinterpreters for

“two source languages are writtem in the language of the host, then
commmication between procedutres expressed in the two languages will be
difficult if not impossible, unless carefully coordinated planning is done
by the implementers. Each interpreter will likely use entirely different

representationg for equivalent date types, hence each call on a procedure

DENNIS A

2.4 SYSTEM AND APPLICATION SOFTWARE

Traditionally "'system program" refers to the layers of software that
"belang" to a computer installation and are available to all clients of the
installation; “appliecsation goftware' refers to the software brought to an
installation by a client for performing his desired computation. This dig-
tinction between system and application software has lost meaning with the
evolution of more sophisticated ugses of computef Systems. For example,
one client of an installation may implement a new programming language and
make it available to other clients of. the installation. Or an installation
may be devoted entirely to a particular application as in the case of
real—time-systems such as reservation and inventory systems,

Nevertheless, by using the concepts and terminology discupaed above, we may
list certain distinguishing characteristics that will serve to crudely classify
software as gystem goftware or application software For the purposes of sub-

sequent discussion,

Bystem software: A collaction of system programs usually forms a hierarchy
of software systems having these propertieg:
l. The collection of pPrograms are implemenced under one authority,
2, The hierarchy of software systems defines a single linguistic
level which applies to all ugers of the collection of programs,
3. Inner lingulstic levels of the hierarchy are hidden from the user.
4. The outer linguistic level of the hierarchy is "complete" for
the goals of the implementing authority.
5. The primary means of defining new linguistic levele is partial

interpretation.

DENNIS A

9

applicetion software: An application program or goftware syatem usually has

these properl::les ! .

1. The programs sre expressed in terms of a "complete' linguistic
level.

2. The programs define a new linguistic level by extension,
translation, interpretation, or by some combination of these
techniques, _

3. The linguistic level defined by the program or software system
is inadequate for defining further linguistic levels.

4. A variety of such programs or software systems are available
to clients of an installation, and are often implemented
under different authorities.

3. DESCRIPTION OF SOFTWARE SYSTEMS

The design and construction of a software system is, fundamentally, the

creat10n of a complate and precise description of the system. The description

of a software system is a collection of deseriptions of its software and

hardware components.

The complete and precise description of a software compoﬁent ig in
reality a program expressed in a well-dafined programming language. If
this language is the language of the host system, or the translation
of the program to the linguistic level defined by the host is strictly a
clerical operation, then preparing the program completes the process of
constructing the system component. Otherwise implementation of the component
is incomplete until a correct representation of the component is prepared at
the linguistic level of the host system,

In the case of a hardware component, a description is adequate only 1f
it permits the designer of the software Bystem to determine exactly the rele-
vant behavior of the component for all gituations that may occur during
operation of the software aystem. Statements of interfacing conventions are
Ingufficient, for these do not describe the function performed by the hard-
ware component. Usually, an adequate description must take the form of a
model of the internal opération 6f the component. o

DENNIS A

10

Besides descriptions of its hardware and software components, two
further descriptions are required: A description of the hoak system, and
a deaeription of the linguistic level the software system is intended to
realize, The semantics of the linguistic level of the host aystem must
be known before the components of outer software layers can have exact
representations. Of course, the objectives of the .system must be known
before final designs of all of its components can be specified,

4. ..____m comcmss P._E.P@____MDM_M

The designer of a software system wishes to achiave certain goals, The

goals are expressed in terms af four kinds of properties desired of the
completed software system: function, correctness, performance, and reli-
ability. Let us consider the state-of-the-art in each of these four
aspectd of goftware systems and the directions in which further develop-

ment of principle 19 needed.

4.1 FUNCTION

The function of a software syétem is the correspondence desired of
output with input.’ Input 15 all information absorbed by the software system
from ocutside the host system; output is all information delivered outside
the host system. Information held by a software system between inter-
actions with the outside is covered by this view, since such information
either is the result of Procedsing information received as input, or should
be considered part of the software aystem, its effect then being incor-
porated in the mapping of inputs to outputs,

In the case of application software, the funetion of a doftware sys-
tem depends on what one takes as the host gystem. For example, the data
base for an eppliecation may be internal if the host system provides a data
management facility, or it may be external if the data bage is on a set of
tapes not part of the host Eyatem.

In the case of system programs, the function of a collection of Bysten

programs is to implement a specified linguistic level. A linguistic level

DENNIS A

11

is adequately defined only by a model of a class of system states, and a
state-transition function which, together, give the equivalent of a formal
interpreter for the level, _
There is a rapidly'érﬁﬁiﬁg body of formal knowledge appliceble to
many aspectz of the representation of programs and systems. Some of this
material is listed below:
1. Semantic models for programming languages.

the lambda caleulus [2]

the contour model [3, 4]

Yienna definition method [5, &]

program acheman [7,18]

2, ConcePté“felating Eo interacting concurrent activities
Petri nets [9]
processes, semaphores, determinacy [10]

modularity [11)

3. TFundamentals of classes of algorithms
numerical methods
symbolic algorithms (e.g. sorting, theorem proving)
parsing methods

Although the theoretical foundation for programg and systems is fast
develaping, there is as yet no generally accepted representation scheme
that has a precisely known aemanticsuénd ig sufficiently general to meet
the descriptive needs of software system designers. Areas in which the
theoretical development has not yet provided an accepted synthesis of
concepts are:

1. Representation of concurrent activities and their interaction.

2. The sharing of procedures and data among computations.

3. Representation of data structures which change in content and
extent during computation.

4. The notions of ownership, protection, and monitoring,

-"Iifﬁ desa DENNIS A

12

The consequence of this atate of -affairs is that designers of computer
systems adopt different sets of primitive data types and operations as the
basis for the design of the inner iayers of hardware and software. Then,
in realizing a standardized linguistic level such as a Fortran progranming
System the system designer employs these primitives to implement the stand-
ardized aspects of the language. .Nevertheless, the implementer is usually
forced to implement extension of the languagé 80 application programmers
may make use of wnstandardized linguistic features of the host. Since the
primitives in terms of which these extensfons are defined are different for
different computer systems, the extensions are unlikely to be compatible,
and portability of the application software is lost.

This discussion underscores the need for better ﬁnderstanding of the
semantic issues listed above.

Suppose a computer syetem ig develqped a8 a hlerarchy of several
linguiatic levelg., Then the data types and primitive operation used at
each linguistic lewel are restricted to those implemented at deeper levels, Often

. & single language (a 8ystem programming languege) s advocated for representing

software components at all levels within the system. In thig casge, either
the language can include only the linguistic features implemented at the
innermost level (the hardware), or restrictions mugt be placed on use of
linguistic features depending on the level for which software is being

_written. Certain essential hardware features such as interrupt mechanisms,

. Processor faults, and Protection features are not usually incorporatced

a8 linguistic features of the system programming langunage, and recourse must
be made to machine language procedures. In this way, the system programming
language is extended to encompass the primitives required to implement itsg
higher level features, and linguistic features of the computaer system that
are not directly encompassed by the system programming language,

Thus a gystem programming language provides primarily a syntactic
structure permitting easy use of linguistic features common to all linguistic
levels at which it is used. The degree to which a system programming lan-
guage aids in $implifying the design and programming of gystem software

DENNIS A

linguistic features ndt found {in - Establighed” programilng languages, ~

13

depends critically on the generality of the set of linguistic features

common to all software levels.

4.2 CORRECTNESS

Correctness of a software gyatem means correctness of itg description
with respect to the objective of the software system as specified by the
semantic description of the linguistic level it defines. Repgardless of
the approach adopted to favor correctneas of a goftware 8ystem, it is al-
ways the respongibility of the designer of the system or system component
to convince himself of the correctness of some description of the system
or component. One would like this description to be ag simple as poasible,
for example, a gimple relation of output to input,

Iwo approaches to the correctness of systems have been Suggested:

1. Structured programming [IF}q The use of g programming style that
nmakes the correctness of a program gelf-svident to the author.,

Greater use of structured programming 18 limited by the need For

Use of structured programiing may be encouraged by use of langusges that dis-
&110;"troubigséaﬁ‘Eiééuisiiéﬁi;;zgies_;;éh—;s Zoto statements and side effects,
2. Proof of correctness [13]: To prove correctness of a goftware system
~ ©Or component, one éstabl{shes by Togical deduction Bhat aoiie deserip-
tion of the gystem or component asserted to be correct by the designer
le equivalent to the description of the Syatem or component expressed

TTTTar the host level;— —-) T B

In the case that the host level descriﬁtion is the result of automatically

translating the designer's description, Proving the correctness of the trang-

lator suffices. In other cases mechanically generated proofs or man-machine

proof generating systems are required for this approach to be effective,
and the semantics of the host language must be correctly axiomatized for the

DENNIS A

14

proof generator. This approach is begiuning to be used experimentally.
Although it is queationable whether establishing correctness by proof wiil
become & practical technique, the research is yielding useful knowledge for

_improving the _design of programs and languages

4.3 PERFORMANCE

Performance of a software syotem is the effectiveness with thCh re-
sources of the hoat system are utilized toward meeting the objectiva of the
goftware system.

The demands on a contemporary software system usually cannot be
modelled exactly, and statistical characterizations must be employed. The
theoretical foundation for performance studies is Markov Processes and
queuing models,.for these models of stochastic service systema are amenable
to analysis. 1In software systems where the demands can be reasonably well
determined by obgervation, for example, in real-time trangaction systems,
statistical analysis has provided valuable predictions of performance to
system degigners.

On the other hand, performance analysis has so far failed to provide
adequate methods for predicting the performance of software gystems where
the applications to be lmplemented at the new linguistic level are unknown.
This state of affaire is due to two difficulties, hoth stemming from the
lack of generally accepted representation schemes for goftware. One dif-
ficulty is the absence of a satisfactory model of resource ugage for
application programs repreaented at the new linguistic level. For each
design of a software syatem, a new model of program behavior has to be
formulated and validgted before it can be used to extrapolate performance
datz. These models have ﬁot bean useful for predicting peffurmance of a
tentative system design. The other. -difficulty is that the software 8ystem
itself i3 not represented in a generally accapted notation, and no standard
techniquas of performance analysis are availgble for direct epplication to
the description of goftware systems.

DENNIS A

15

The main point of these remarks 1s that our ability to analyze and
predict performance of software systems is limited by the inadequacies
of available description schemes rather than by the inadequacy of
statistical methods. After all, approximate answers to performance ques-
tions are often satisfactary, but there is no such thing as a satisfactory

approximste description of function.

4.4 RELIABILITY

Reliability is the ability of a software system to perform its function
correctly in spite of failures of computer system components. By failure
of a component we mean a Lemporary or permanent change in its charécteristics
that alters its function. Software does not fail., What is often referred
to as "software failure" is a matter of correctness.

Neverrheless, one must recognize the high likelihood of incorrect soft-
ware being present in a complex software Bystem. The design of a system ag
2 set of minimally Interacting modules using prineciples of structured pro-
gramming can limit effects of software bugs to the modules and data struc-
tures that depend on correctness of the module in error. The possibllity
of realizing practical systems constructed according to this principle de~

pends on new fundamental knowledge of structured Programming and modular systems,

If a software system has no hardware components, then component failures can

only occur within the hardware components of the host computer System.

In the ideal host system, failures of its hardware would not be observable at the

linguistic level defined. Some eurremt work [14] on fault-tolerant and self-
testing and repair computer architecture is directed toward reslizing this
ideal, but is sti1l far from solving the problem in the context of general
purpose computer systems, Most reported work on reliability is concerned
with the detection of failures and does not attempt to cope with the loss

of informaticon that lnevitably dccompanies hérdware'failure. We need
concepts of computer organization that will permit the construction of

computer systems in which single internal failures do not produce ob-
setvable effects,

DENNIS A

16

Since the ideal host system is not now available, some hardware
failures will affect operation of software gystems implemented at the
linguistic level of the hoat. Then a description of the host system is
not complete without a specification of the possible modes of failura,
and the reéulting effects observed at the host linguistic level. A
software system to be implemented on such a host 15 not completely de-
scribed unless the action to be taken for each failure mode of the host is

specified,

At present we must be ;atisfiganﬁizh aoEtwa;e syatems aven 1f they
occasionally fail with irrecoverable loss of information. For it is not
known how to construct an infallible software system using a fallible
computer system as host. Although there are gystems (such as the American
Airlines Sabre gystem and the Bell System's Electronic Switching System No. 1
ESS) that come close to providing complete protection against all single
failures, the techniques used do not generalize easily to computer systems
intended for general applicatfion.

5. SOFIWARE PROJECTS

Large projectas for the design and construction of software systems are
notaorious for their delaya in meeting specified objectives. A large project
1s one in which two or more levels of management are required, and hence the
key pergonnel of the project are not in eontinuous communication with one
another. 1Ip a large project it is necessary to divide the work to be done into
units for assignment to project teams. Any unit of work which in itself amounts
to a large project must he further subdivided.

The best division of work into units is the divieion that minimizes the
interaction between units. Two kinds of structure may be used as = basis for
the subdivigion of work: hierarchy and modularity.

DENNIS A

17

Suppose a project team is assigned the construction of some module
of a software system. The team's task is completely defined by & precise

specification of:

The function of the module,
2. The linguistic level of the host system.
3. The performance required of the module.

4. The performance capability of the host.

In practice this information is at best only partially known by a project

team at the time it is expected to begin work. It is often still untknown

even at the time the team is expected to have a usable version af the modulae

ready for integration with other system components.
Elé&fly;"EEE_EEQE“EEEEiaI“EEfé?EEEi&E’§E§EI?EEhE}“E”}rajéEc_EEhm is

a preclse definition of the linguistic level of the host system: for it

is impossible for the team to produce a correct description of any part

of the module unless the semantics of the host system are known.

Iteé#tiun of design is fréaaently found to be neceésary in lérge
software projects. TIteration occurs when it is found that decisions
already made prevent realization of overall system objectives. The most
serious design iteration is where more than omne linguistic level ig affected,
as the description of all modules in outer software layers may be invalidated
by a change to a host system. The need for iteration arises in several ways :
Sometimes it is discovered that certain linguistic features needed to imple-
ment a goftware system are impogsible to realize in terms of the primitive
constructs of the host level. Then the semantics of the host level must he
revised to meet the nead., In other cases, it 1s. found that the performance
objectives of a software system cannot be achieved without altering the

These observations bring out the importance of having a precise specification of
the hogt system hefore beginning construction of components of a gsoftware system. For
eack additional layer included in a software system, either the project must be

DENNIS A

18

. extended to allaw time for the precise formulation of the new linguiatic

. level, or work on several levels must overlap, raising the risk that design
iteration will be required. The need to implement several linguistic levels
within one preject would be circumvented if a host computer system were
available that realized a complete and satisfactory linguistfc level for
the objectives of the project.

These arguments reinforce the need for better understanding of funda-
mental linguistic constructs for bpilding goftware systems and the develop-
ment of corresponding principles of computer system architecture. When this
undcriilnding has been gained, perhaps there will no.longer_be any need for
laxrge software projects.

6. ACKNOWLEDGEMENT

The author wishes to express his thanks to Professor Jerome Saltzer,
whose incisive comments on an early draft have been valuable in the preparation

of these notes,

7. REFERENCES

1. J. G. Kemeny and T. E. Kurtz, BASIC Programming. John Wiley and
Sons, Inc., New York 1957,

2. P. J. Landin, A correspondence between ALGOL 60 and Church's lambda-
notation, Part I: Comm. of the ACM, Vol. 8, No, 2 (February 1963),
pp 89-101. ’

Part II: Comm. of the ACM, Vol. 8, No. 3 (March 1965), pp 158-169.

3. J. B, Johnston, The contour model of block structured processes.

Proceedings of a Symposium oo Data Structures in Programming Languagesg,
Sigplan Notices, Vol. 6, No. 2 (February 1971), pp 55-82.

4. D. M. Berry, Block structure: retention or deletion?

Praceedings of the 3rd Annual ACM Symposium on Theary of Computing,
May 1971, pp 86-100.

DENNIS A

10.

11,

12,

13.

14.

19

F. Lucas and K. Walk, On the formal deacription of PL/I. Annual Review
in Automatic Programming, Vol. 6, Part 3, Pergamon Press,.l1969,.

P, Lucas, P. Lauer, and H. Stigleitner, Method and Notation for the
Formal Definition of Programming Languages. Technical Report TR 25.087,
IBM Laboratory Vienna, June 1968,

M. §. Paterson, Decision problems in computational models, Proceedings of
an ACM Conference on Proving Assertions About Programs, SIGPLAN Notices,
Yol. 7, No. 1 (January 1972), pp 74-82.

A. P. Ershov, Survey paper on Program schemata, presented at the IFIP
Congress, Ljubljana, 1971,

A. Holt, F. Commoner, S, Even, and A. Pnueli, Marked directed graphs.
J- of Computer and System Sciences, Vol. 5, No. , (1971), pp 511-523.

E. W, Dijkstra, Co-operating =zequential processes. Programming Languages,
F. Genuys, Ed., Academic Preag, New York 1968. {First published as

Report EWD 123, Department of Mathematics, Technological University,
Eindhoven, The Netherlands, 1965.]

S. 8. Patil, Closure properties of interconnections of determinate systems.
Record of the Project MAC Conference on Concurrent Systems and Parallel
Computation, ACM, New York 1970, pp 107-116,

E. W. Dujkstra, A constructive appfoach te the problem of progrem
<orrectness, BIT (Nordisk Tidskrift for Infurmations-behandling),
Yol. 8, No. 3, 1968, pp 174-186.

Z., Manna and R. J. Waldinger, Toward automatic program synthesis,
Comm. of the ACM, Vol. 14, No. 3 (March 1971), pp 151-1¢5.

A, Avizienis, G. €. Gilley, F. P. Mathur, D, A. Rennels, J. A. Rohr,
and D. K, Rubin, The STAR (Self-Testing and Repairing) computer: An
investigation of the theory ﬁnd Practice of fault~-tolerant computer design,
IEEE Trans. on Cémputers, VYol. C-20, No. 11 (Novemher 1971), pp 1312-1321,

DENNIS A

