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1. | INTRODUCTOMY CONCEPTS

The word "modular' means 'constructed with standardized units or_dimensions._
for flexibility and variety in usae." Appliad to softwara engineering,
modularity refers. to the building of software systems by putting together
parts called program modules.

The dictionary meaning applies very well in, for example, the con-
struction materials trade: In the United States floor tile comes in nine-
inch squares (the modulez) which may be conveniently adjoined to £ill up
any shape of floor area with juat a bit of trimming at the boundary., A
great variety of patterns may be produced by using wmodules of differing
color and texture.

In modular software, clearly the '"standardized units or dimemsions"
should be standards guch that software modules meeting the standards may be
conveniently fitted together (without "trimming') teo realize large software
systema. The reference to 'varlety of use" should mean that the range of
module types available should be sufficient for the construction of a
usefully large claas of programa.

In July 1968 a twe-day symposium was held in Boston on the subject of
Modular Programming [1]. The preprints of papers for thias meeting probably
form the only collection of materfal representing a significant range of
viewpolnts on the nature and purpose of modular programming. In this col-
lection of papers various concepts of program modularity are described
ranging from vaguely defined principles to definitive formal concepts.

Yet there is an important cbjective common to all. It stems from recogni-
tion of the high cost of producing correctly functioning software systems;
it is to realize the benefits promised by the saying: '"divide et impera.”

To many people in software practice, modular programming means the
divigion of the whole of a program into parts 8o ''the interactions between
parts are minimlzed" or so "the parts have functional independence,” Fre-
quently, the assumption is made that in modular programming the program
and 1ts parts are designed at the same time and under the same authority.

Therae is little appreciation that the objective of simplifying program
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construction by dividing the task into parts has definite implications
regarding the atructure of programs and the characteristics of computer
syatems.

Nevertheless, several thoughtful and precise notions were also expressed
at the symposium. The designers of the Integrated Civil Engineering System
(ICES) [2] emphasized the importance of being able to use together independ-
ently written program modules. Boebert [3] alsc recognized that the succa@ss

" of modular programming depends on characteristics of the linguistie level
at which the modules are expressed. He points out that modularity should
be regarded as a property of a computgi gyatem or linguistic level rather

possgeade
than a property possessed or nol:hby some progrem. E, W. Dijkstra's con-
cern [4] with principles of "structured programming' 1s closely ralated.
in these lectures

Cur goa.lF is to develop further understanding of these notions of

modulay programming, and to derive their implications for the design of

programming languages and computer systems.

— g ™ ul
1. 1. DEFINITION OF MODULARTTY )

. mama m A oM. W ea e . &

o We take the following statements to be the objectives of modular pro-
gramming ;

1. One must be able to convince himselF of the correctnesa of a
program module, independently of the context of its use in

building larger units of software,

2, One must be able to conveniently put together program modules
written under different authorities without knowledge of their

inner workings.

These statements embody the concept of "context-independence' discussed by
Boebert [3], and the concept of non-interference stated by Dijkstra [4].
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We conaider modularity toc be a property of computer systems:

A computer system has modularity if the linguistic level defined
by the computer system meets theae conditions: Assoclated with
the linguistic level ia a class of objects that are the units of
program representation. Theae objects are program modules,

The linguistic level must provide a2 means of combining program
modules into larger program modules without requiring changea to
any of the component modules. Further, the meaning of a program

module must be independent of the context in which it is used,

in previous publications [5,6] I have applied the term "programming
generality" to computer systems that have this property of modularity.
Two relatively precise concepts regarding the form of a program module
occur in the literature on modular programming, On one hand, a module is
viewed as a procedure: At any point during the progreas of a computation,
one module (procedure) may initiate an activation of another procedure by
specifying a set of input data. The new procedure activation 1s carried
on, possibly making use of additional procedures, until it terminates,
1eaving_a get of output data for use by the procedure from which it was
activated. In this concept, a modular program is a collection of non-
interferring procedures. Characteristic of programs constructed as com-
binations of procedures 15 the flow of control in a pattern described

by a tree. The notion of procedure is a central feature of most modern

programming languages, Algol 60 being the classical model {7,8]. But,as we _ o

ghall see, the procedure in its usual form does not meet our requirements for
sereesreeraividsissdeinr nodular programming. _

On the other hand, a module may be conceived as an entity that is
joined to other maodules by communication links. Each module recelves
sesper: data over its input links, transforms it in some way, and sends It
on to other modules over its output links. In this picture, each module
is continuously active, processing data sc long as inputs are available.
9. Concurrency of operation is an inherent part of this notion of modu-

larity. The links connecting ome module to another are thought of as

- -
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channels through which data flow, First in-first out gueuves may be intro-
duced in the links as a means of improving the efficiency of an implemen-
tation without altering the semantics of a medular program. This form of
modular programﬁing is advocated [3,9] for data processing applications
where the linke are implemented as "buffer files." The concept is closely
related to Conway's coroutines [10] and Dijkstra's cooperating sequential
processes [1l]. The only programming languages having features suitable
for this form of wmodular programming are certain simmlation languages,

in particular Simula 67 [12].

In these lectures, we study the limitations on modular programming
found in the linguistic levels defined by certain computer systems. We con-
sider the well-known programming languages, Fortran and Algol 60, to under-
stand the issue of clashes of identifiers. We then consider the problems
of handling dynamic deta structures in modular programs and the prob lems
of combining program modules expressed in different representations. Multics
is studied as a system in which sharing of procedures and data is possible
with considerable generality. Finally, we consider the definitfon of a
hypothetical linguistic level within which a very general form of modular
programming is possible.

1.2, MODULARITY IN FORTRAN

Let us start by congidering the forms of modular programming possible
at the linguistic level defined hy the ANSI Fortran language standard. We
will not consider here the features of Fortran for input, output and trans-
fer of data between storage levels, and we assume that subprograms in other
languages are not permitted,

A Fortran program consista of a sequence of statements that make up a
main program and a collection of geparate sets of statements that represent
function subprograms and subroutine subprograms. Since there is no provis-

ion in the Fortran standard for combining separately written Fortran pro-
grams, a complete Fortran program censisting of main program and subpro-

grams cannof gerve a3 a program module at the linguistic level defined by
the standard.
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The obvious choice as & unit for modular programming is the Fortran
subprogram, We encounter one difficulty immediately: The only method
of combining several subprograms is to collect them together with a main
program, yielding an executable Fortran program. Alas, this is not a
program module, and therefore cannot ba further combined with other
units to form larger modules.

Thus Fortran fails by not permitting hierarchiecal structure in a
modular program. Nevertheless, let us disregard this defect and look for
other problems. It will be useful to have in mind & picture of the compu-
tation states occurring during execution of & Fortran program. The struc-
ture of a state is shown in Fig. 1 as an object of the variety used by the
IBM Vienna Group in thelr work on formal definition of programming lan-
guages, This object represents an execution gtate, and therefore the op-
eration of putting several modules together to form a program haa been per-
formed. The 'text'-component of the state iz an object having as its com-
ponents the compiled form of each source language subprogram, including ome
gubprogram idencified as 'main', and the remaining subprograms identified
by names chosen by their programmers. The 'private'-component of the state
has, as its leaf nodes, data entities and other values that are accessed
only during execution of the corresponding subprogram text (except , of course, when
these values are passed as arguments to other aubprograns). These values
are values of Fortran variables and arrays not mentioned In  COMMON state-
ments of the source language subprogram, and additional variablesa gen-
erated by the compiler.

The 'common'-component of the state contains several vectors of data
items that are accessed during execution of statements in several aubpro-
grams. The computation state of a Fortran program has a fixed structure
during executlon of the program, only wvalues at the leaf nodes are changed
(two exceptions: adjustable arrays and extension of COMMON).

Limitations on the generality of modular programming in a linguistic
level arise from points of interaction between program modules. For Fortran
subprograms these points of interaction are: calling & function or sub-

routine; the naming of subprograms; and the use and naming of COMMON.
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Figure 1. State of a Fortran program.
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If two authors have chosen the same name for their independently
written subprograms, a clash of names occurs when these subprograms are used
together.' Similarly, two authors may choose to use blank COMMON for differ-
ent purposes, OTr m#y uge the same names for labelled COMMON storage. These
are violations of our definition of modularity since alteratiom of the
repregentation of a module may be required before it can be correctly com-
bined with other modules.

These names clashes may be removed by changing the names of subprograms
and choosing new labelas for COMMON storage areas. Matters would be more
difficult if a program module were to consist of geveral gubprograms,
possibly independently written, working together. The problems introduced
by attempting to remove claghea through substitution are discussed below.

1.3 MIDULARITY IN ALGOL 60

In Algol 60 the procedure is clearly the candidate for consideration as the
form for program modules, Since procedures may be combined without modifi-
cation to form larger procedured, a modular program in Algol 60 may be a
hierarchy of modules having an arbitrary depth of nesting. The modules
are represeunted as Algol 60 source text. Compiled Algol programs are not
program modules of the Algol-defined linguistic level and cannot be com-
bined.

The instances of the identifier y in the Algol procedure

real procedure f(x); real x;

begin If =X + ¥;
y =y + 1; end

are nonlocal references and thérefore y must be a local identifier in soma enclosing
procedura if the complete Algol program is to be meaningful., A person using
procedure f as a module muskt know about all auch external referencea oc-

curring in £ (including thoge arising within procedures enclosed by pro-

cedure f) dince external references are a form of interaction of a pro-

cedure with external ohjects. One may wish to uae two Algol procedures,

£ and g, in the construction of a modular program where each procedure makes

use of the identifier y to reference some external object. If both
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proceduraes are placed in the program es declarations within the same
enclosing procedure, there is a clash of named. Thua the use of nonlocal
references in an Algol 60 program module is a violation of our concept of
modularity.

Seyeral means are avallable tﬁ remove or avoid clashes of names between
procedures in Algol 60 programa:

1. Substitute an alternate identifier for each appearance of ¥
as an external reference in one of the procedures. For reasons
to be discussed shortly, the use of substitution has significant
disadvantages,

2. Enclose one of the procedures within an "interface procedure"”
‘that renames the external object by assigrment:

real procedure £1(x) real =x!
begin real y;

. real procédure £{(x); real x:
begin £ := x + y;

y =y +1; end

y i=yL;
£1 := f(x)
¥yl ==y
end

This would be awkward to do for arrays, and impossible in

Algol 60 if the external object is a procedura. Moreover the choice of
identifier yl depends on the text of the procedure that encloses fl.
3. Enclose one of the procedures in a procedure declaration in

which y 1s a local identifier and formal parameter:

real procedure fl(x,v); realy '
begin '
real procadure f(x): Egél x;
begin £ = x +y;
y i=y +1; end
£l := £(x)

end
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as one of the formal parameters of procedures f and g.

10

This has the effesct of substitution for y, but takes effect

at procedure entry,

4. Organize the modular program that uses procedure £ and g
so that the scopes of v do not overlap, by placing the
declarations of f and g within distinet procedures or
blocks of the program,

The need for any of these schemes would be avoided if y were included

The mechanism of non-local reference in Algol 60 was inapired by the evaluatian

rules of the lambda calculus, and reduces the number of required formal parameters

in procedure application. At the interface between independently written
program modules, the need to discover and resolve name conflicts makes
external references from pr:ﬁ:f? modules an unattractive form of inter-
action. For this reescn, weAadopt as a principle of modular programming,
that the only means of commnicating data to and from a procedure module
is by its formal parameters {(and resulting value, if any). Note that this
principle rules out '"side effects' of the kind observable in Algol 60:

Operation of a module can only affect information explicitly passed to it.

1.4, SUBSTITUTION

The names {identifiers) that occur in a representation of a program

module can be divided into two groups -- bound and free. By definition, if

a name has & free occurrence in the module, it refers to some object bound
to the name outside the module, Hence substitution of an alternate name
for all instances of the name within the module without rebinding names
outside will change the effect of the module. All names that identify
primitive operations, constants, etc, of the linguistic level at which the
module is expressed are free and have permanently fixed meaning.

Names that are bound in a program module may be uniformly replaced

throughout the module without altering its meaning.
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If name conflicts occur when two program modules are combined, it is because
the same identiffer occurs free in both modules, and with different intended
meanings. ‘We have seen how such couflicts can arise from function names, sub-
program names, apd labels for COMMDR in Fortran, and ffcm noalocal identifiers

in Algol 60. We have noted that name conflicts may be removed by substituting an
alternate name for a free name at sach appearance as an external reference

within a program module, This substitution must be made before the modules
to be combined have lost their separate identity, for example before an
Algol program is compiled or before Fortran subprograms are linked.

There are several difficulties with name substitution aa a means of
resolving name conflicte. Firstly, performing the substitutiocn may involve
considerable information processing. A program module may itaelf be a
combination of many simpler modules and the substituted name must be chosen
so that no new conflicts are generated either inside or outside the program
module,

The most important consequence of name substitution is that the pos-
sibility of sharing a representation of a program module among ugers of
the module 1s foreclosed. A substitution required to remove a conflick
cannot be made in a representation of a module already in use as part of
another modular program. A copy of the module must be made first.

~ The lmportance of being able to share representations of program mo-

dules is gradually becoming recognized. In th:icsrfiB, 14], the idea has been g Y
carried furthest: Every procedure writtggefor opgration in the system may

0
be shared by all authorized users withoutﬁmakinghcopiea. We expect sharing

to be increasingly important in future computer systems. Therefore, -

as a requirement of our comcapt aof program modularity, we adopt the rule that
names occurring free in a program module may refer only to fundamental entities
 of the linguiatic laval,
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2. DATA STRUCTURES IN MODULAR PROGRAMMING

_The achievement of program modularity becomes increasingly difficult as_the
linguistic Tequirwments for representing program modules move further from the linguistic
level dafinad by the computar systam on which the modules are to be run, In :his lec-

ture, we explore issues arising in the construction of program modules that require the
ability to create, extend, and modify structured data. We conclude that; to achieve
rmodularity, a computar systam must deEine a linguistic level that provideas a suitable

base representation for structured data, a requirement not satisfhcborily met by conven-

tional computer systems or by implementations of eontemporary programming languages.

2.1. _ADDRESS SPACE AND MODULARITY

Firat we note that conventional - computer memories and addressing
schemes imposa a limitation on modular programming. When a program is run on
a contemporary computer system, all procedures and data involved in the
computation must be assigned positions within the address apace provided for
the computation by the computer system, If more than a single object -- whether
procedure or data -- is assigned to some area of the address space, the meanings
of addresses must . change during the computation. Thia viclates our
principles of modular programming because some program modules will require
knowledge of the internal construction of others in order to determine which
objects should occupy the shared areas of address space. Thus the finiteness
of address space limits the size of modular programs. To support modular
programming a computer system must provide an address space of size sufficient
to hold all procedures and data structures required for the execution of any
modular program. A more complete presentatiom of this argument may be found
in [1].

The addreasing limitations of finite main memories have been reduced through
the brute force 2ﬁgﬁﬂ§ent of uaing larger and larger main memorles. Yet practical
main memories are,small in comparison to the extent of data bases and program
libraries we wish to use in constructing modular programs. A more sophisticated
approach to overcoming the finiteness ¢f main memory is to arrange a computer
gystem to provide a large virtual address space for each user. In effect, a

procesgs is given a large address space without tylng up a correaponding amount
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of main memory. As it is currently implemented, the virtual memoary idea
also has limitations, for chunks of address space are reassigned from one
physical storage device to another im relatively large unita (512-word pages,
for example)ﬁ?tt is difficulc for the programmers of a module to map his

data structures into the address space in such a way that related items will
be moved togather between physical storage levels.

2.2. REPRESENTATION OF PROGRAM MODULES

Other implications of modularity concern lim:.istic features of the
linguiatic level a€ which madules are represented for combination into
larger units. We noted earlier that all identifiers occurring in a program
module must be bound within the module unless they refer to primitive
congtructs of the linguistic level. Otherwise identiffer clashes can occur
when independently prepared modules are used together. From this premise it
follows that any information to which a program module requires access to
perform its function must be part of the module itself, or must be passed
to the module by means of formal parametera of the calling statement. Any
information created or modified by the module and intended for use outside
must be passed to the caller through formal parameters.

S8ince the objective of modularity is that any program may be used as
a program module, it must be possible to treat any entity to which reference
may be made by a progr%ﬁ&?%ean actual input or output parameter 6f - the.
module. A program module that implements a certain algorithm should be
applicable to any input data to which the algorithm applieg. It is possible
to design algoritims that work effectively for a wide range of inputs as,
for example, a procedure for matrix inversion or one for constructing the
parse of a sentence according to a formal grammar. The representation of
such program modules requires linguistic primitives for building and

altering data structures of extent not known until the tims of execution.
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In summary, we have three requirements to be met by a linguistic level

intended as a foundation for modular programming:

1.

3.

The linguistic levels defined by conventi
have a linear address space as their fundamental notion of data structure,

Any data structure may occur ad a component of another data

struckure.

Any data structure may be paased (by reference) to or from

a program module as an actual paramerer.

A program mcdule may build data structures of arbitrary
complexity.

onally organized computer systems

aeir
and indexing as A fundamental means of data access. Such a level is not

an acceptable foundation for modular programming because the primitive

constructs do not provide for altering one data structure without inter-

fering with the representations of others. To enlarge one structures may

require rearrangement of other structures in address space and cannot be

done without knowledge of their scheme cof representationm.

There are three ways in which a satisfactory linguistic level for

modular programming can be realized starting from a host level H defined by

some compuber system:

1.

Use a "standard" programming language L with an available
translator to level H and having an adequate clasa of data

structures and primitive cperaticons.

Extend a programming language L' that does not offer an
adequate class of data structures, to realize a new linguistic
level L that is adequate.

L
Design and implement a new languageAby constructing either
a. A transletor from L to H.
b, An interpreter of L that runs at level H.
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Suppose the host level H is defined by a conventional computer which
provides the user with a linear address gpace. Whichever of the above
means is used to realize the desired linguiatic level L, the data structures
of L must be mapped into the linear address space of H in guch a way that
the primitive operations of L can be implemented effectively in terms of
the primitives of H. The difference between meang (l)above and means {2)
or (3) is that in (1) the language L 18 standard and the mapping of L into
H is uniform over all program modules expressed in L; in cases (2) and 3)
the mapping of structures in L into the linear address space of H is choaen
independently by the designer of each program module and the same choice is
unlikely to be made for any pair of modules.

To bé:?;Zcific, sdppose the deaigner of a program module is using the
second approach. Let the language L' be a language (Fortran or Algol 60,
for example) that does not provide adequate primitives for manipulating
structured data, To implement the program module, the designer must extend
L' by adding a memory. He does this by setting aside goma portion M of the
linear address apace of H to hold representations of the data structures of
L as they are created and operated upon during operation of the program
module. The memory may be viewed as a pair (M, C) where M 1s a one-dimensional
eray, and C is a collection of procedures that implement the primitive data
structure cperations of L, If L' ia Fortran, the memory array M may be allocated
within & block of COMMON atorage and the procedures of C may be realized as a
group of subprograms. If L' is Algol 60, the memory array and the procedures
of C would be declared within the outermost block of the program module.

There are serious problems with an approach in which the memory is separately
implemented in independent program modules. Suppose A and B are two such modules.
Then:

1. Either the base linguistic level H includes an allocakiom
mechanism for units of address space, or arbitrarily chosen
areae of address space must be set aside as the memory

arraya for modules A and B,

2, A structure creatdd by module A cannot be directly accessed
from within module B, for the primitives of A are not used
within B.
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Partitioning the address space into separate areas for each module
requirea that each area be large enough to hold any structure that could
be created. The idea of segmentation [1] is a way of meeting this
requirement. If the host level H provides a facility for management of
address space, then introducing a second layer of memory management
mechanism aggravatea the inefficiency of program execution.

The problem of communicating data structures between program modules
expressed in different representations may be discussed in terms of
Figure 2, Modules A and B are expressed in different extensions L, and L

A B

of a host linguistic level H. Sets 8, and Sy Tepresent the classes of

data structure representations in LA and LB' The mape EA andﬁfB (which may
be relations) relate representations in LA and LB to corresponding repre-
gentations at the hoat level H.

If the linguistic levels LA and LB are different, then a data structure
produced by module A cannot be directly accessed by module B. Nevertheless,
mpdules A and B may be used together if no data structures are exchangedbetween

e e e -1 A

them or if we Can prepare routines t and t

at the hust level H which convert

atructures from their represgentation in LA to their representations in LB

and vice versa. Of course, the need to write these routines is a violation
of modularity since knowledge of how the data structures of FA and LB ate
represented at H is required, and this knowledge concerns the internal
congtruction of modules A and B,

and We have discussed Figure 2 assuming modules A and B include the definitions of

hPB as internal campanants. The same picture holds if modules A and B are
expresgsed in "standard” languages L, and L, that define primitive operations

A
on data structures by two different extensiOns of a host level H. 1If LA and LB
are "standard” languages, then knowledge of the mappings fA and fB does not

involve internal knowledge of modules A and B. Thus the construction of the
conversion routines t and t:-1 depends on knowledge of the implementations of
FA and LB rather than the workings of the modules. However, now these routines

are subject to invalidation if the implementation of either LA or LB is changed.
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Figure 2. Exchange of data structures between program modules.
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If the host level H defines a linear address apace, construction of the
conversion routines can prove difficult. This ia because level H lacks
notioné that would save the programmer from the need for complete knowledge
of the data strﬁctures being transformed. A data structure represented
in a linear address space ia referenced by an address, but there is no
uniform rule for locating all items in the address space that are parts
of the data structure. Also there iz no uniform convention regarding how
individual data structures may be combined into a aingle object.

That two program modules are represented at the same linguistic level
L does not ensure that consistent representationa are uged for objects
dealt with by the algorithms of the modules. For example, there are many
ways in which a directed graph may be represented by a vector of integers.
If 2 community of users interested in sharing program modules that manipulate

"directed graphs can agree on a standard representation in L for directed

grapha, then programs contributed by the community may be used together
without difficulty. Otherwise converaion.routinea are requizgﬁ; Navertheless,
if the represantation of a directed graph 1s to be passed ash?rgument ar
regult of computation by a module, the scheme of representation in L must be
given as part of the functional specification of the module. The necesaary
';onversion routines can be written in L from the module specification.

Without adequate data structure primitives in the common language L, the
comveraion routine would be difficult, if not impossible, to write.
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2.3. LINGUISTIC LEVEES FOR MODULAR PROGRAMMING

We have argued that a satisfactory linguistic level for modular programming
mugt provide adequate primitive features for building and transforming data
structures, and that the linguistic levels defined by computer systems of
conventional organization are inadequate. WNext we examine the linguiatic
levels defined by'several well-known programming languages for their suitability
to modular programming, particularly in regard to their provisions for
building and transforming data structurez. The two most famjliar languages,
Fortran and Algol 60, are inadequate by defaulf, since arrays are the ouly
sort of data structure provided, the bounds of arrays are inflgxible once
storage has been allocated, and the dimensiomality of arrays is fixed by the
program text. The languages PL/I, Algel 68, and Lisp are considered in the
following paragraphs.

2.3.1. PL/I
[2}
In PL!IhFhe principal data kypas that may be used to represent and

manipulate structured data are arrays, structures, based variables and pointers.
Arrays in PL/I are subject to similar limitations as arrays in Fortran or

Algal 60: an array identifier may only name arrays of the declared
dimengionality; subscript bounds cannot be changad once atorage for an array

is allocated; all elements of an array must be of the seme data type. These
limitations are imposed ao that a permanent assigmnment of array eldements to a
contiguous portion of addrﬁigyspace is possible, and the efficlent indexing
access mechanism of presenthccmputers may be used.

In PL/I structures, components are accessed by means of a sequence of
symbolic names called selectors; the length of the selector sequence is the
depth of the component in the structure. Components of a structure may be
further structures, arrays, etc. So that each generation of a structure may be
permanently assigned to a contiguous portion of address space, each component
of a structure is restricted to a size stated in the gtructure declaration.
Structures (all satisfying the same declaration) may occur as elements of arrays.

Structures ag in PL/I do not meet the requirements of modular programming.
It iz not possible during a computation to make an arbitrary structure a
component of another structure -- the entire form of a structure must be specified

before any of its components may be given a value. Furthermore, since the depth
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of a structure 1s ifmplicit in the program text, there is no way of
representing data structures of arbitrary extent as PL/1 structures.

Use of PL/I pointer variables, the addr primitive, and variables,
arrays and structures declared based permits the constructicn of
arbitrarily complex addresa-linked storage structures. The only correct
interpretation of PL/I pointer values is as locations within a linear
addresa gspace. Pointer values R . may occur as elements of
arrays and as components of structures as well as values of simple variables
declared as pointer variables. A polnter value. is created either by applying
the primitive function addr to a name, or by explicitly allocating storage
for a variable declared to be baged,the pointer value returned being the
origin of the allocated region of address space.

Although PL/I pointers provide a very general facility for bullding
representations ¢f data structures, the needs of modular programming are not
met. A pointer value cannot be regarded as a reference to a data atructure
because PL/I provides no convention for identifying the set of elements
belonging to the structure referenced by a pointer value. There i3 no
built-in concept of omne linked structure being a component of another.

There is no guarantee that an elament pointed to has the data type intended
by the programmer. Further, deletion of elements muat be done by explicit
free statements; an element discomnected from a linked structure through
its storage is explicitly release
reassigmment of pointer values remains in existence untilh .

Each programmer is forced to adopt his own conventions regarding extent
of data structures, a notfon of component, and when storage may be reclaimed.
Hence the use of PL/I linked atructures for communication between independent
program modules offers no advantage over a bare machine having a linear address
space,

Unsuitability of the data structure facilities ias not the only prablem
PL/1 presents for modular programming. Since PL/I refers to "external"
procedures and data sets in the same manner as Fortran, and sinee procedures
may have nonlocal identifiers, name clashes are possible whether one choses
the PL/I program or the PL/I procedure as the form of program module. In
addition, the introduction of new language features such as tasking has not
considered the requirements of modularity.
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2.3.2 ALGOL 68

In an Algol &8 prugrga'?aach occurrence of an identifier has an associated
mode that determines the set of values permitted for the named variable. The
modea that provide representations for data structures are multiple values and
structures, Multiple values are similar to PL/I arrays and, in themselves,
do not provide an adequate foundation for modular programming.

A structure mode declaration in Algol 68 specifies that amy value of the
mode being declared is an object having a fixed number of component objects
identified by field selectors, each component being an objeck of specified

mode, Through use of several mode declarations one may define a class of
objeeta having graphs that are trees., Each node of:;?cree has an associated
mode and is the origin for a fized number of arcs, each bearing a field
selector as specified in the mode declaration.

Since recursive mode declarations are permitted, the objecta of a given
mode may be of unbounded depth, as for example, the class of binary trees,

Yet no Algol 68 structure mode permits values that range over =ll Algol 68

data structurea. Thua there is no means for substituting an arbitrary structure
for some component of an existing structure. Specifically, it La not possible
to write an Algol 68 procedure that obtaina a data structure from one program
module and givea it to another module without knowing enough about the data
structure to specify its mode. Alsc, a program module expressed in Algol 68
cannot build an arbitrary Algol 68 data structure because a finite set of

mode declarations is insufficient to describe the complete class of Algol 68
objects,

Since Algol 68 includes suitable conventions for delineating the extent
of data structures, and has satisfactory provisions for building and accessing
complex structures, the data struccure primitives of Algol 68 are superior to
those of PL/T as a foundation for modular programming. However, the requirement
that the mode of every variable be explicit is an unfortunate limitation.

Other limitations of Algol 68 for modular programming stem from the design
of the language primarily as a means for one programmer to write a complete pro-
gram for & computation of interest tc himself. A prime example is the concept
of coersions by which conversion of values from one data type to another is
implicit in many circumstances. A consequence of coersion isthat a gcan of
an entire Algol 68 program may be necessary to fix the meaning of statements

in a deeply nested procedure.
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2.3.3 LISsP

In Lis%;:%Lta structures are represented as lists. A region of a linear
addvess space (the memory) is reserved for cells from which lists are built to
;3 r:ﬁ;:: data structures. Each cell has two fields which may contain
mddoesac (called pointers) of other cellis in the memory. A list is specified
by the address of a cell and consists of all cells that can be reached by
tracing pointers from the starting cell. Thus a 11st is masentlally a rooted,
directed graph in which each node 1s the origin of at most two arcs that define
the left and right sublists for the corresponding cell, In moat applications,
liats containing directed cycles do not oeeur, and lista have the form of a
binary tree with shared subtrees.

Lisp includes primitive operations for building lists, for obtaining the
left or right component sublist of any list, for testing whether two liats are
equal or are the same list, and for making one list the new left or right
subligt of an existing list.

The leaf cells of lists are called atoms and have associated named values
called properties. A property of an atom may be an elementary object such as a2
character string, an integer or a real number, or may be an arbitrary list.
Lisp includea basic functioms for performing operations on property values. It
is easy to devise ways in which lists may be used to represent any of the
commonly uged data structures in programming practice.

Since any list may occur as an actual parameter of a Lisp function
application, and Lisp has primitives for building, disecting and rearranging
specified lists without distutbing the meaning of other lists sharing the memory,
Lisp meets our fundamental requirements for modular programming with reapect to
data structures., The principal weaknass of Lisp for modular programming ariges
from ite inability to exploit indexing as an efficient access mechanism for
arrays. For applications where an array ig a natural representation for a data
atructure, many representations as lists have been designed to yield efficient
operation for a wariety of different expected patterns of access. Because these
representations are generally in conflict, conversion of data structurea 1is
often required to combine independently written Lisp functions, where conversion
would not be required if the modules were expressed in a language effering
arrays asa a basic data type.
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Lisp also shares with the other lasguages we have diacussed the
failing of having a global level of nomenclature. Programmer defined
functions and constants are given names that are global in a Lisp program.
There i3 no provision for ensuring freedom from name conflicts when

independently written Lisp programs are combined.

2.3.4 DISCUSSION

O one hand, Lisp i3 superior to PL/I and Algol 68 as a foundation for
modular programming because PL/I and Algal 68 fail to provide an adequate
foundation for representing and manipulating data structures, The limitations
of PL/I and Algol 68 can be traced te the desire of the designers of these
languages to make efficient implementations posaible.for conventional com-
puters that implement a linear address space. Thus it was considered
essential that arrays be included as a fundamental data type and that arrays
be implemented using the indexing hardware of contemporary machines. On
the other hand, Lisp has achieved a more satiasfactory concept of data structure
by giving up the array as a fundamental notion and ignoring the use of
indexing. By making these concessions, the address space may be divided
uniformly into list cells so that the allocation and deallocation of ceilg
become trivial operations. In this way a powerful language for expressing
computations on symbolic data has: been realized.

Is there a way to combine the best aspects of chese three languages?
In the final section of these notes we explore the definition of a base
linguistie level for modular programming using a concept of data structure
that yields natural representations for a wide variety of dats structures
commonly applied in programming practice, including lists, arrays, and
gtructures. Altrhough this concept may prove imprectical to implement for
general use on computers of conventional organization, it should prove
valuable as a atandard of achievement, and as a guide for the deaign of
computer systems intended to advance the prospects for modular programming.
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3. MODULARITY IN MULTICS

We have seen that most contemporary computer systems and programming lan-
guages do not support a very general form of wodular programming. Yet one
advanced camputer sﬁatem comes significantly closer to defining a linguistic
level suitable for modular programming. A major objective of the development
of Multics at Project MAC [1] has been to create an enviromment within which
programs developed independently and expressed in different source languages
may be combined with minimum difficulty. In this lecture we shall atudy how
well thia objective has been achieved.

First, we present a model for those aspects of Multics that must be under-
stood to discuss modularity from the viewpoint of the Multics user. Then we
discuss the achievements a;d limitations of Multicas for modular programming
in terms of the model. The model consists of a repreaentation for the states
of Multics processes as an augmented clasa of objects, and an informal dis-
caigion of certain state transitions that occur during execution of pro-
cedures by Multics processes, We do not attempt to model the mechanfsms of

Multics for protection, acceas, control, and interprocess communication.
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3. 1. THE MODEL

3.1,1, THE FILE SYSTEM

The file system of Multica [2] retains the programs and data of all Multies
users in the form of a hierarchical structure of directories and segments. We
represent a directory by an object as in Figure 3. A directory has arbitrarily
many compcnents, each of which may be a directory entry, a gegment entry, or &
link — an example of each type is shown. The selectors for the entries and
links of a directory are called entry names, and are character strings. Each
entry name in a directory must be unique. A directory or segment entry has an
‘attr '-component that gives attributes such as access rights, date of last
change, ete. The gecond component is an object that represents either another
directory, or a segment. A link fs a pathname composed of a sequence of entry
names. The Multics file gsystem is an object that represents a particular
directory called the root directory. Each item (directory or segment) in the
file system is specified by the  unique sequence of entry names by which the
item may be reached from the root of the directory tree. The sequence of entry
names is a pathname of the directory orlsegment.

A gsegment in Multics is a linear address space of 218 addresses which may
hold either data or ome or more procedures. A segment is represented by an
object having elementary components selected by the integers O, 1, ...

.In the root directory of the file system, the entry names are user names

and the entries are user directories., A user is the owner of all directories

and gsegmenta that are entries in his user directory, and is the owner of
directories and segments that are entries in owned directorieas.

We will simplify the representation of the file system state by omitting
attribute components and omitting the branches labelled 'directory' or 'segment’.
This simplified form 14 1llustrated in Figure 4. Entry names of linka are dis-
tinguished by an asterisk. The link shown is to the item having pathname 'b.b.a’.
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Figure 3, Model for the Multics file system.
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3.1.2, PROCESSES AND ADDRESS SPACES

When a Multics user begins a console session, a process is created for
him. By typing commands at the console, the user causes the process to
execute procedures. The execution of commands results in changes in the
file sysfem state. Normally a user process ceases to exist when his conscle
session is termin#ted, and the. - changes to the file ayatem are the only
record retained in Multics of the user's ackivity.

Forvrour purposes a4 state of Multics may be represented as an object
having a component for tha file system, and one component for each process
in existence. In Figure 5 we have identified each process by a distinct
uger name,

The state of a process is an object having components as followa
(Figure 6):

1. ’'memory' proceas addresa space

2. 'stack' stack segment and pointer
3. 'kst! known segment table

4, 'ang' segment numbetr generator

5. 'link' linkage gegment and peinter
6. ‘'w.dir' working directory

In fact, components OF the process state are implemented as segments in the Multica
file system which are accessible to system procedures. We choose to model them as
separate objects for easa in discussing their function from the user's viawpoint.
‘The 'memory'-component of a process state is the address space implemented

by the hardware and software of Multics for each Multics process. The object

that models the address space of a proceds is shown in Figure 7. It is a
two=level tree. The selectors at the Ffirst level are integera called .
gegment numbers. Each segment number identifies a segment which may contain
up to 218 words. Since the segments of an dddress space are not distinct
from segments of the file gystem, the nodes selectad by segment numbers are,
in fact, identical with segment nodes of the file system state. The address
gpacea of Multics processes are lmplementdd by a complex arrangement of
hardware-accessed tables in core memory, a amall associative memory,and
auxiliary storage devieces (drum and disec) to hold pages of segments not
allocated space in the core memory (3, 4]. A two-component address conaisting
of a segment number and a word number that specifies a word in the address

space of a process 1s called a generalized address.
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Thém'stack'-component of a process state consists of a segment (for ocur
purposes not part of the file system) and a pointer variable. Varfablea
aggigned by the programmer to "automatic™ storage are accessed by addresses
relative to the atack pointer. On procedure entry the pointer is advanced
to the end of the stack area used by the calling procedure; on procedure
exit the stack pointer is returned to ita value before entry. In this way,
all Multics procedures that use the standard call and return conventions may

he used recursively.

3.1.3. MAKING A SEGMENT KNOWN TO A PROCESS

The assignment of a segment from the Multics file system to the address

space of a process is called making the segment known to the process. This
action occurs when the process, in executing a procedure, encounters a symbolic
reference to a segment. The symbolic name used in the code of the procedure
segment is called a reference name. The path name of the segment in the file

aystem to which a réference name refers is found by a system procedural

directéd by a set of search rules in a manner to be discussed later. A segment
known to a process has an assoclated segment number; segment numbers are as-
gigned to segments sequentially as they become known to ‘the process,

The assocfations between segment numbers, reference names and path names
for all segments known to a proceas are held in a data structure called the
known segment table which is the 'kst'-component of the process state. The

known segment table is modeiled as an object in Figure 8. For example, the
figure shows that segment number i of this process has the path name 'x.y.a'

and the reference names 'a' and 'b' have been used to refer to the segment during
operation of the process. The 'n'-component of the known segment table is the
highest integer Iin use as the segment number of a segment known to the process.

It iz given the initial value 0 when the process is created, and is Lncremented by
1 for each segment made known to the process.

An illustration of the state transition that occura when a segment is made

known to a process is shown in Figure 9. The value i of the "n'-component of the knowr
segment table e - * e =

. Ais incremented and used as the selector for a new entry in the known seg-
" ment table. The new entry contains the reference name 'a' used by the procedura
in execution and the path name 'x.y.a' obtained by system routines directed by the
search rules. Segment i+1 of the address space of the process is identified with

the segment having pathname 'x.y.a' in the File syatenm.
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3.1.4. DYNAMIC LINKING

For a segment 5 to be made known to a procesa, reference to 5 by meana of

& reference name must occur From within some procedure segment P. Once segment

8 iz known to the process, references to it should use the - e

hardware-implemented addressing mechanism provided for generalized addresses.
Tha Multics atate tramaition that realizes this objective iz called linking.
Linking a site of reference in segment P to segment S cannot invalve any
change in the content of segment P, because procedure segmenta in Multics

are shared among processes. The scheme used is to implement references to
other segments from segment P by indirect addressing through items called
links that make up a linkage gection for segment P. The linkage sections

for all procedure segments known to a process form the 'link' component of
the procesas state. When a procedure segment is made known, ita linkage
section is added to the 'link’-component, with each of its links set to cause
transfer of control to a syatem routine. The system routine reads the reference
name from the procedure segment and determines whether the refaerenced segment
is known., If not, this segment is made known as described above, Then the
link is replaced by the generalized address of the referenced segment. The
details of chis mechanism have been published [4].

3,1.5. SEARCH RULES AND THE WORKING DIRECTORY

A Multics user must specify an owned directory of the fille system as the
working directory for his process when he begins a computation. The working

directory of a process may be changed by a system command procedure which may.also

be called by the user's program. The pathname of the working directory is

the 'wdir'-component of the process state.

The search rules of Multice specify how reference names encountered during
procedure execution are to be converted into pathnames. The search rules are
stated as a list of data structures in the saquence they are to be gearched for
an entry named by the given reference name, The usual search rules
specify the following order of search:

1. koown segments

2. referencing directory

3. working directory

4, weystem libraries
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The search begine by testing whether the segment is represented by an
entry in the known segment table. This is done so that links to gegments
already known to the process may be complated without any directory searching,
which consumes significant processing time. If the reference
ig not to a segment -already known, & search is made of the "referencing

~directory" -- the directory from which acceas to the procedure éurrently
in execution was obtained. This search rule supposes that procedures that form
a subsystem are grouped together i{n directories, and gives preference to such
a related procedure over a procedure of the same name in the uger's working
- directory.
A program expreased in Fortran or PL/I for execution by Maltics normally
references its user owned procedure and data segments in the working directory,

and accesses library procedures in the system libraries directory.

3.2, ACCOMPLISHMENTS

Multics has realized a number of significant advances in computer system
design, and has made them available to a large community of users for the first
time, These unique characteristics of Multics include some features of major

impertance for modular programming.

1. A large virtual address space (approximately 230 elements) is
provided for each uaer.

2, All user information is accessed through his virtual addreas
space. No separate access mechanism is provided for particular
sorts of data such as files.

3. Any procedure activation can acquire an amount of working space
limited only by the number of free segments {n the user's

address aspace.

4. Any procedure may be shared by many processes without the need
of making copies.

5. Every procedure written in standard Multiecs user languages
(Fortran, PL/I and others) may be activated multiply through
recurgion or concutrrency.

6. A common target representstion is used by the compilers of two

ma jor source langusges -- PL/I and Fortran.
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toward simplifying the.
design and implementation of large poftware systems, They were made posaible

These achievements are -wajor-contributions

by building the Multics software on a machine expreasly organized for the
realization of a large virtual memory and shared access to data and
procedure segments: [5].

3.3. UNRESOLVED ISSUES

The ease of modular programming in Multics is limited by certain
design problems that remain unresolved issues. One problem Multics shares

_with all computer systems in which data structures

must be mapped into a linear address space. As obearved earlier in these
notes, each author of a program module must adopt his own private conventions
for introducing the concepts of "the extemt of a data structure” and
"compoment of a data structure", for no conventions are estabiished by the
Multics virtual machine nor by the standard user languages:of Multics. This
problem can be solved only through the adoption of a more suitable model for
structured data as the basis for computer system design. A model having the
egsential attributes 1s discussed in the final section of these notes.

3.3.1. TREATMENT OF REFERENCE NAMES

Another -7 problem for modular programming in Multics concerns the

treatment of reference names. Basically, reference names are identifiers that

occour free in the tedt of Multics procedures, Since reference names occur not
as

onlﬂ\identifiers of fixed elements of the Multics linguistic level,

“absence of name conflicts cannot be ensured when a user

attempts to combine independently written procedures. The following discusaion
"oFf this issue is based in part on a study by Clingen [5].

The set 6f search rules given earlier for determining the pathname of a
gegment specified by a reference mname is an attempt to avoid the undesired
consequences of name conflicta. To see how the set of search rules evolved
to this form, we first conalder the problems of modular programming with the
search rules

1. working directory
2. system libraries
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This combination of search rules is appropriate where a user has defined
a collection of procedure and data segments and entered them in an owned
directory. By makiné this direectory the working directory of hia proceas,
all reference names designating members of the user's collection of segments
will be asmsociated with the correct segment, and so will references to library
proceduresd so long as their reference names are not duplicated in the working
directory.

The possibility of clashes between reference names chosen by the user and
reference names of ‘library procedures is not the only difficulty with this
. choice of search rules. If two programming languages are implemented
independently for use in Multics, the sets of reference names used to access
the run-time procedure libraries for the two implementations may include duplicace
namee with conflicting meanings. These names should identify entries in separate
directories, but this is not provided for by the search rules. One could let the user
‘specify one of several library directoriee in the second search rule, but this

would not provide for programs that combined procedures expressed in the two

source languages. Alternatively one could use a set of search rules such as

1. Working directory
2. Run time library A
3. Run time library B

but duplicated names would be misinterpreted if they were intended to reference
segments in run time library B. .

Another difficulcy is that a mistake In use of a reference name may lead to
successful search and linking to a strange procedure in a library directory,
whereas one would prefer to have such mistakes produce an error response by the
system. .

In Multics, the natural form for a program medule i3 a collectien of
procedure and data segments entered in a common private directory of the file
system. If a user wishes to use two such modules together, some arrangement
mist be made soc that reference names occurring Iin either module will be ilnterpreted
correctly. One scheme is to arrange that the working directory is always the
directory containing the procedure in execution. This requires that the working
directory be changed whenever control passes from procedures in one module to
a procedure in the other module. Since changing the working directory of a
process is an expensive task, this solution is not attractive, especially if

control transfers between modules occur frequently. Also, this arrangement
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requires different call and return conventions {ths inclusion of a command
to change the working directory) for calls on procedures of other modules.
This requirement conflicts with the concept that one ahpuld be able to
apply a program module simply by uaing its name in a call statement.
The difficulty of making the working directory concept work satisfactorily
led to addition of the "referencing directory" search rule:
1, referencing directory
2. working directory
3. system libraries

The referencing directory rule directs search for a reference name to the
directory in which the procedure segment in execution was found. Thia is ac-
complished by using the segment miumber of the procedurs in execution to locate
its entry in the known segment table. The 'path’-component of the entry pro-
vides unambiguous ildentification of its directory. With this rule in effect,
calling any procedure of a program module automatically makes the directory

of that module the first directory to be searched for all reference namea
sncountered during execution of procedures that are part of the module,

The "known segmentsa' search rule was added to the set of search rules to
reduce the time spent performing searches in directories of the file system,
thereby improving system efficlency. This search is performed in such a way
that it has the same effect as the referencing directiory search rule.
An entry in the known segment table is located that has the given reference
name in its 'ref'-component, Then the 'path'-component of the entry is teated
to verlify that the entry is for a segment found in the same directory as the
segment in execution. If the test fails, the entry ia rejected and search for
other entries having the given reference name is continued,

Thus the search rules of Multics implement the correct context for ref-
erence names occurring in procedures of program modules. Yet several dif-
ficulties remain:

1. Mistakes in use of referenca names may lead to unsuspected linkage

to library or gystem procedures.

2. Implementers of programming language subsystems must avoid name

conflicts among their libraries.
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3. No suitable means is provided for representing referencea among
the data segments of a large data base. This is a problem because
no mechanism has been implemented for creating links from uses of
reference names in data segments.

In the final section of these notes, we present a conceptual basis for
a computer system in which these issues of modular programming are resolved
by providing the appropriate context for each uee of a name.
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4. A BASE LINGUISTIC LEVEL FOR MODULAR PROGRAMMING

In this lecture, we present informally the semantic concepts of a linguistic
level (a common base language) that could serve as a common representatiom for
progrem modules expressed in a variety of source programming languages. The
objective is to describe a linguistic level guch that the issues of modular
programming raised in the preceding preasentations have a satisfactory resolution,
It is hoped that this material will serve as a guide or standard of capability
for computer system designers so future computer systems will better serve as
foundations for modular programming.

Our work toward the specification of a common base language [1] uses
methods closely relatéd tco the formal methoda developed at the IBM Vienna
Laboratory [2, 3] and which derive from the ideas of McCarthy (4, 5] and
Landin [6, 7).

4.1. OBJECTS

For the formal semantica of programming languages a general model is
required for the data on which programs act. We regard data as consiszting
of elementary cbjects, and compound objects formed by combining elementary

objects into data structures.
Elementary objects are data items whose atructure in terms of simpler

objecta is not relevant to the description of algorithms. For the ﬁtééﬁﬁt

_diacussion, the clags E of elementary objects is

E=2URUVW

where
Z = the class of integers
= a set of representations for real numbers
W = the set of all strings on some alphebet



Data structures are often represented by directed graphs in which
elementary objects are associatdd with nodes, and each arc is labelled by 2

member of a gset S of selectors, In the class of objects used by the Vienna

group, the graphs are restricted to be trees, and elementary objects are
associated only with leaf nodea. We prefer a less restricted class so an
object may have distinct component objects that share some third object az a
common component. The reader will see that this possibility of sharing is
esgential to the formulation of the base language and interpreter presented
here. Our class of cbjects is defined as follows:

Let E be a class of elementary ocbjects, and let 8 be a class of

selectors, An cbiect is a directed acyclic graph having a single

root node from which all other nodes may be reached over directed
paths. Easch are is labelled with one selector in §, and an

elementary object in E may be assoclated with each leaf node.
We use integera and strings as selectors:
5=ZUW

Figure 10 gives an example of an object. Leaf nodes having associated ele-
mentary abjects are represented by circles with the element of E written inside;
integers are represented by numerals, strings are enclosed in single quotes,
and -reals have decimal points. Other nodes are represented by aolid dets, with
a horizontal bar if there is more than one emanating arc.

The node of an object reached by traversing an arc emanating from its
root node is itself the root node of an object called a component of the
original object. The component object consists of all nodes and arcs that can
be reached by directed paths from its root nade.

4.2, STRUCTURE OF A BASE LANGUAGE INTERFRETER

Figure 11 shows how source languages would be defined in terms of a common
base language. 4 single class of abstract programs constitutes the base language.
Concrete programs in source languages (Ll and L2 in the figure) are defined by
translators into the base language. The structure of abstract programs cannat

reflect the peculiarities of any particular source language, but must provide a
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set of fundamental linguistic constructs in terms of which the features of
these source languages may be Tealized. The translators themselvea ahould be
specified in terms of the base language, probably by means of a specialized
source language. The semantics of abstract programs of the base language are
specified by an interpreter which is a nondeterministic state-transition
system, as in the work of the Vienna group. Formally, abstract programs in
the base language, and states of the interpreter are elements of the class
of objectzs defined above,

The structure of states of the interpreter for the base language is shown
in Figure 12. BSince we regard the interpreter for the base language as &
complete specification for the functionmal operation of a computer system, a
state of the interpreter represents the totality of programs, data, and control
information present in the computer system. In Figure 12 the universe ia an
object that represents all information present in the computer system when the
system 1s idle -- that is, when no computation is in progress. The universe
has data structures and procedure structures as constituent objects. Any object
ia a legitimate data structure; for example, a data atructure may hawve components
that are procedure structures. A procedure structure iz an obj)ect that represents
& procedure expressed in the base language. It has components which are instructions
of the base language, data structures, or other procedure structures. So that
multiple activations of procedures may be accommodated, a procedure structure
rématns ungltered during its interpretatiom.

The local structure of an interpreter state contains a local structure for

each current activation of each base language procedure. Each local structure
has as components the local structures of all procedure activations Initiated
within it. Thus the hierarchy of local structures represents the dynamic
relationship of procedure activations. One may think of the root local structure
as the nueleus of an operating asystem that initiates independent, concurrent
computations on behalf of system users as they request activation of procedures
from the svatem files (the unilverse).

The local structure of a procedure activation has a compoment object for
each variable of the bagse language procedure. The selector of each component
is its identifier in the instructions of the procedure. These objects may be
elementary or compound objects and may be common with objects within the

univerge or within local structures of cother procedure activations.
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The control component of an interpreter state is an unordered set of
sites of activity. A typlcal site of activity is represented in Figure &4 by
an aaterisk at an instruction of procedure P and an arrow to the local
atructure L for some activation of P. This is analogous to the "instruction
pointer/environment pointer' combination that represents a aite of activity in
Johnaton's contour model [8]. Since several activations of a procedure may
exist concurrently, there may be two or more sites of activity involving the
same instruction of some procedure, but designating different local structures.
Also, within one activation of a procedure, several instructions may be active
concurrently; thus asterisks on different instructions of a procedure may have
arrows to the same local satructure.

Each state tranaitfon of the interpreter executes one instruction for
some procedure activation, 'at a site of activity selected arbitrarily from
the control of the current state. Thus the interpreter is a nondeterministic
transition system. In the state resulting from a transition, the chosen site
of activity is replaced according to the sequencing rules of the base language.

_—cus o oo E D s S S

Next we show how typlcal instructionsz of a rudimentary base language
would be implemented by state transitions of an interpreter. This will put the
eonéépta expressed above into more concrete form. For illustration, we will
use a representation for procedures that employs conventional instruction
sequencing. The instructions of a procedure are objects selected by successive
integers, with 0 being the selector of the initial instruction.

The effect of representative instructions on the interpreter state ia
shown in Figures 13 through 19 in the form of before/after pictures of rele-
vant state components. In these figures, P marks the root of the procedure
structure containing an imstruction under conasideration as its i-component,
and L(P) is the root of the local structure for the relevant activation of P,

The add instruction is typical of instructions that apply binary operations
to elementary objecta. The instruction

add 'u', 'v', "'

is an object having as components the four elementary objects 'add’, u', 'v',
and 'w'. These are interpreted as an operation code and three "address fields"
used as selectors for operauds and result in the local structure L(P). The
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state transition is shown in Figure 13. Note that the site of activity advances
sequentially to the i+l-component of P.

Let us say that a procedure activation has direct access to a data structure
if the data structure is the s-component of the local ztructure for some
selector s. The instruction

n, 'q

select 'p', '

is used to gain direct acceas to the 'n'-component of a data structure to which
direct access exists. This instruction makes the object that is the
'p'.'n'-component of L(P) also the 'q'-component of L(P), aa shown by Figure l4.

Literal values are retrieved from the procedure structure by const
inatruections such as

¢const 1.5, 'x'

which makes the elementary object 1.5 the "x'-component of L(F). Select and
congt instructions may be used to build arbitrary data structures as 1llus-

trated in Figure 153. Note that execution of select 'p’, 'n', 'x' implies
creation of an 'n'-component of the object selected by 'p' if none already exists.

Figure 16 shows how the instruction

link "p', 'n', 'q

T

estahlishes an arc between two objects (the 'p'- and 'g'-components of L(P))
to which direct access exists. Execution of this instruction makes the
'q'-component of L(P} also the "p'.'n'-component of L{P). The link instruction
is the means for establishing sharing -- making one object a common component of
two distinct objects.

The instruction

delate 'p', 'n'

erages the arc labelled 'n' emanating from the root of the 'p'-component of
L(P}. Any nodes and arcs that are unrooted after the erasure cease to be part
of the interpreter atate, as shown in Figure 17.

Although we have not mentioned them in this brief summary, the base language
will include appropriate instructions for implementing conditional and iteration

statements, and for testing the presgence and type of a component of an cbject,
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Flgure 16, Insertion of an are by a link :Lnstrué:ion.
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Figure 17, The effect of executing & delete instruction.
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Activation of a new procedure is accomplished by the instruction

apply 'f£', 'a
where the '£'-compoment of L(P) igs the procedure atructure F of the procedure
to be activated, and the 'a'-component of L(P) is an object (an argument structure)

that contains as components all data required by the procedure (e.g., actual

parameter values) to perform its function. Execution of the apply instruction

causes the state transftion fllustrated in Figure 18: A root node L(F) is created

for the local structure of the new activation; the argument structure is made

the A-component of L{F); a new site of activity is denoted by an asterisk on the

O-component of F and an arrow to L(F); and the original site of activity is

advanced to the i+Il-instruction of P and made doemant as indicated by the pareatheses.
A procedure activation is terminated by the inatruction

return

which causes the state transition displayed in Figure 19. The root node L(F)

is erased, deleting all parts of the local structure of F that are not linked to
the argument structure; the asite of activity at the return imstruction disppears;
and the dormant site of activity in the activating procedure is activated, Note
that the entire effect of executing procedure F ia conveyed to the activation of
P by way of the argument structure.
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4.4. REPRESENTATION OF MODULAR PROGRAMS

With the foregoing introductiom to base language councepts we may study
how well the base language could serve the needs of modular programming.
First we conaider the adequacy of the base language for representing and
trans forming data atructures.

The data types of many practical programming languages have natural
representations aa objects that are strictly trees (have no shared substructures).
These include vectors, arrays, directories, symbol tables, and hierarchical data
bases (files). Some data management systems employ representations that provide
for sharing of substructures., Also, most data structures occurring in Liap
programs have the form of binary trees with shared subtrees. These structures
are directly modelled aa objects having shared component objects.

Some important.languages, ineluding PL/1, Algol 68, and Lisp, permit the
programmer to build data structures containing directed cyecles. Such structures
do not have direct representationa as objects of the base language. It ia
not yet clear to what extent use of cycles is an essential part of modelling
real world semantic comstructs in conktramat to use of cycles as - an implementation
technique through which, for example, sbjects may be represented and efficlently
manipulated as lista.
builging and manipulating objecta. Any object may be constructed by a base

language procedure through repeated use of select and const instructions.

Through use of link instructions, objects may be made shared components of several
objects, and argument structures may be assembled from any finite set of arbitrary
cbjects. In contrast to lingulstic levels (such as defined by PL/I) closely
tired to the concept of linear address apace, passing an object to a base
language procedure gives the procedure the ability to transform the object in any
way without the possibility of affecting objects not passed to the procedure as
part of the argument structure.

In the paragraphs below we show how the use of objects as the fundamental
notion of data structure yields natural solutions to a number of issues af

language implementatlon and medular programming.
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Recursion: Rgcurs}on occurs when a procedure makes application of itself in order
to perform its function. In the base language interpreter outlined above, there
is no way, without introducing cycles, to make a procedure structure a component
of itself so it may be applied recursively. However, as shown in Figure 20,

the prncedﬁre P that makes the initial application of a recursive procedure F

may include the pruﬁsdure atructure of F as a component of the argument structure
for its call of F, In this way F may make F a component of its local structure

and create recurslve activations.

Block structure: Implementation of free variables in procedures requires the

ability to access variables by means of nonlocal references, and is essential
for many programming languagea derived from Algol 60. Although nonlocal ref-
erences are not permitted in the base language, we may include as part of the
argument structure for a procedure application an object having as a component
each object to which execution of the procedure may require access because of
nonlocal referencea in the source language program (see Figure 21). In this way,
block-structured programs can be translated into base language procedure struc-
turesd and interpreted correctly. Further details are given in [1].

Procedure variables: Some advanced languages permit asaignment of procedure
values to variables. In a block-structured language, correct implementation of
procedure-valued variables requires use of the notion of the closure of a pro-
cedure, In the base language a closure may be represented by an ob ject having

two components as shown in Figure 22. The T-component is the text of the procedure
and the E-component is an object that contains as components values of the vari-
ables that have free occurrences in the procedure text. A closure serves as the

value of a procedure variable,

Context: In the base language the correct context for interpretation of names
ia provided by objecta. FEach identifier encountered during execution of a pro-
cedure is interpreted as the selactor of a component of some specific objeck.
The object ia the local strucfure for the procedure activation or some part of
the procedure structﬁre itself, if the identifier waa chosen by the author of
the procedure. Otherwise the object is part of the argumant structure, In thigs
way all usual sourees of name conflicts are avoided, and mistakea in use of

names lead to error reports rather than unsuspected bindings.
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Run-time libraries: Accesstte library procedures of the implementation of a
particular programming language is readily handled in the base language. Each
procedure gstructure resulting from translation of a program in source

language A has dszits 'lib'-component an object that represents the directory
of Tun-time procedures for language A, as illustrated in Figure 23. This
directory 1a a shared component of all procedure structures produced by _
translation of programs in langvage A. Procedures expressed in & different
gource language B become procedure structures sharing a separate directory of

run-time procedures,

4.5. USE OF THE MODEL

The base language is founded on objects as the underlying noticn of memory
instead of the linear address space. Hence, it may turn out thar radically
new concepta of computer architeckture [9] are required to bring the promised
advantages into general practice., Nevertheless, the base language concepts
presented here should be valuable to computer system designers intereated in
producing systems and languages that better serve the needs of modular pro-
gramming. These ideas may be applied in several ways: They may serve as a
guide for those proposing and evaluating advanced concepta of computer organization,
and they may help the evoluttdnnof programming languages in directions favorable
to medular programming. Moreover, the linguistic level of the base language can
serve as a standard of achievement -- to be equaled or exceeded by the designer
of praetical computer systems. It should help designers batter understand the
true limitationa of their systems for modular programming, and where design
changes can correct defects that might otherwise plague users for many years
after.
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