MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAG

Computation Structures Group Memo 77

Computation Structures Group

Progress Report 1971-72

This research was done at Project MAC, MLT, and was supported
in part by the Advanced Research Projects Agency, Department
of Defense, under Qffice of Naval Research Contract Nenr
NOOO14-70-A-0362-0001, and in part by the Naticonal Science
Foundation under grant GJ-432.

April 1973

Prof.

R, M. Fano

COMPUTATION STRUCTURES

Prof. J. B.

Dennis

Academic Staff

Prof. §. 5. Patil

Instructors, Resecarch Associates,

Research Assistants and Others

G.
H.
C.
-D.

J.

kmerasinghe
G. Baker

‘Barguin

E. Bizhop
Cchen
Fogseen

J. Fox
Furtek

M. Gearing
Greif
Hack

T. Hawryszkiewycz

G. Bajoria
J. Kim

K. Leung
Misunas

Nievergelt

A. Merneault

Undergraduate

A. [lenderson
Lester

p. Linderman
B. Lotspiech
&. Meldman
E, Dualite
Ramchandani
J. Rotenberg
E. Rumbaugh
J. Stelger
R. Umarji

Students

Phillips
Sadeg

C. Schaffert
Swift

DSER Staff

Support staff

AL

Rubin

X L

i T A e i r i

e T R

COMPUTATION STRUCTURES

Tha Computation Strictures Group is concerned with She
analysis of fundamental issues arlsing in the design and
construction of gensral-purpose computer systems through the
formulation and study of apprepriate abstract models, Tho past
year has seen new dovelourenis in the thzory and applicacion
cf Petri ngts as a model of systems of interacting parts,
improved techniques tcor realizing digital systems with ass.r-
ance of correct operation, development of the theorv of data
flow schemata, and contributions to the study of program
corraectness and orouramning ceoncrality.

A. Petri Nets

Qur research relating to Petri nets is conearned with the
thecory of Petzi nets, the relation of nets to loglc circuits
and asynchroneous modular systemg, and the usse of Petrl nets as
a mpdel for the behavior of systems of interacting parts,
indluding systems within and outside the demain of computer
science.

Timaed Petri Hets

Chander Ramchandani is investigating the use of Petri net
models in the periormance analysis of systems. FPetri nets
(8, 5} are an attractive model for studies of system periormance
because the important interacticons between system parts are
casily represented. Petri nets represent tha ordering retation-
ship of events in a systom Lhat mark Lhe initiation and
termination of activities, but do not represent the timing ol
events or duraticons of activities. For performance analysis

‘the Petri-net model of a system must be augmented with timing

infarmatcion.

In a Petri net (Figure 1), the firing of a tramnsition may
represent an interval of activity by some system part. If the
transiticn is enakled {at least one token in each of itsg input
places) it means that activity of the system part may bhegin.
We associate initiation of activity with picking uwp onc token

“from each input place, ard termirnation of activity with adding

one token to each output place. This corresponds o gonsider-
ing the transiticn to be two transiticons and a place p as in
Figure 2,

Figqure 3 shows 2 timed Petri net cbtained by assoclating
time parameters with certain transizions of the net in Tigure
1. In a timed net transitions withaout time parameters repre-
sent sequencing constraints on activities as in a conventional
Petri pnet, Action of a timed transiticn may he explained in
ternms of Tigure I, where the time parameter T(t) 1s asscciated
with place p. Transition t' may fire immediately when enabled
or any time later (providing it remains enabled), Then trans-
ition t" becomes enabled and fires exactly 1 ({t) time units.
after the firing ¢f t'. Thus the firing of transitions t° and
t" represents initiatien and terminaticn of one instance of the
activity represented by transition =, It 18 possible for a
transition t in a timed not to ke re—cnabled boforc a
previgusly initiatcd instance of the assorciated activity has
terminated. In fact, many instances of theg activity may bg in

el LT .

K
i
R
;
i

COMPUTATION STRUCTURES

i
)L—o transition
!
L]
{

\/ ® token

| A/

Figura . A Petri net.

3

+

S

Figure 2. Meaning of a timed tronsition.

10

COMPUTATION STRUCTURES

a
Tia) = 5
(ja r{b) = 2
Q\ . |
/\/ b
. .
[
Figure 3. A timed Petri net,
{g} o timed marked graph {b) periodic schedule
ﬂ/“.‘\‘b’/-—"—\c
. e . transition o: 2-5, 8=1l, 14-17, ...
P g— b:0-2, 6-8, 12-14,...
v{o)=3 T(b]—z r(e)=4 c.2-5, B- }2 VIRT-

& transition

————pe 23 {08

——i— place with token

Figure 4. Periodic schedule for o tfimed maorked groph,

11

i = n e

COMPUTATICN STRUCTURES

Progress simultaneously, as we shall see in later examples.
The number of tckens in place p is the current number of
simultaneous_instances of the actiwity.

A schedule for a timed Petri net is a set of scguences of
initiation and termination times for the timed trangiticns of
the net. A schedule is feasible-if the timed net can axhibit
the hehaviecr specified by the schednle. A schedule is not
feasible if it calls for initiation of an activity earlier
than allowed by terminations of other activities, A feasible
schedules i= said to be prompt if each activity always initiates
as early as possible. Here are examples of feasihle and pPrompt
schedules for the timed net and initial token distribution
shown in Figure 3:

{a) a feasible schedule
transition a: 0-5, B-13, 13-18
b: 2-4, 4-8, 9-11, 11=13, 1%-17

{b} & prompt schedule
- Eransition a: 0-%, 5-10, 10-15
b: 0-2, 2-4, 5-7, 7-9, lo-12

Evary timad net for which the underiying Detri net is Eersistent
{no transition ceages being enabled except by firing) has a
unigue prompt schedule.

We have studied the class of Petri nets known as marked
graphs. In & marked graph, sach place is an input placde of at
nmost oneé transition, and an output place of at most ome trans-
ition. A1l transitions of a marked graph fire equally many
timee in any behavior that returns the net to itg original
configuration. In conseguence, a prompt schedule for a timed
graph is riodic in that sach timed transition initiates at
regular intarvale. The example in Figure 4 has a periodic
prompt schedule with period six. In this case, the rate of
firing is determined by the circuit centaining transitions b
and o, ’ : oo .

Figura 5.illustrates a situstion where saveral instances
of ‘an activity repkesentad by transition b may proc¢eed con-
currently, Instances of the activity represented by transition
a are foreced to ccour strictly in sequence by the one-token
self loop. The prempt. schedule shown has a periad of eight.

B The cgggutation zate of a timed marked graph is the average
rate &f firing Or 80y transition of the graph in a prompt
schedule. - Por the example in Figures 4 the rate is 1/6; for
Figure 5, the rata is 174,

There is a simple mlgorithm for determining the computation
rate of a timed marked graph. Let the vertices {transiticns]
and aras (places) of a strongly connected marked graph be

Velv, i, v,]

Ar [a,l, oy ap]

12

COMPUTATION STRUCTURLS

where an arg a, = (vi, vj) is dircected frem transition vi o
vj’ and leot T be the time associated with transition vy (Ti =

0 if v i1s not a timed tramsition)., For any strongly connected

marked graph one can find a set of simple circuits Cl’ s T

that cover all arcs of the graph (5). Let Mij be the nunber
of Tokens on arc (Ui' vj) in the initial marking of the ne«.
Then the computation rate p of the timed marked graph is given
by

where -~ =
Ty T E Ty

is the sum of the times assacizted with transitions of circuit

Ck and

is the number of tokens on arcs of circuit Ck‘

Figure & shows a "PERT" chart with activities a,b,c.d,e
and the corresponding timed marked graph. Application of the
toregeoing procedure shows that the comsutation rate is 1/8,
the reciprocal of the time for the critical path., We may ask
what happens to the computation rate if H, processors are

permitted to perform activities concurrently. The correspond-
ing marked graph is shown in Figure 7, where it is assumed
that cnly NR instances of activity e are pormitted at one

time, but arbitrarily many instances are possible for the othpr
activities, The figurc gives the computation rates for several
values of N and N .
P 2
Work is continuing on performancze analysis of svstems
represented by more general classes of Petri nets. Alse, the
properties of Petri rets hsaving time bounds or statistical

[
[

COMPUTATION STRUC TURES

/
(9]
'*—.—-—.—_.--—-——-—-po
a b
tlg} = 2 v(b} = 6
(b

tronsition a: 0-2, 2-3, 8-10,10-12, ...
b: 2-8, 4-10,10-18, 12-18,...

Fiqure 5. Marked groph with concurrent instances of an
activity,

L4

COMPUTATION STRUCTUR=S

(@) "PERT" chart

T

r{e)

b} marked graph o b

———— s

I\ © 5\‘\
» s

3 S\I/

O

< d

&
circuit Ny T,
ab | S
cd ! 4
oed | 8

Figure 6. Computotion rate of a timad marked groph

15

h
of—‘x Tla}
a
BEGIN ./' e __END (1)
T ¢}

M = W h —

i

e e

L

COMPUTATION STRUCTURES ' !

distributions associated with transitions are being studied.

Canonic Forms for Patri Nets

We have begun investigation of noticns of equivalence and
canenic forms for Petri nets. For the special case of marked
graphs, Henry Baker (2} has shown how to reduce any marked
graph to a simple form which is the same for all marked graphs
equivalent to the given marked graph,

Suppose G is a marked graph and N is some subset of the
transitions of G. Then if w is a firing segquence of G, the
corresponding derived firing segquence ay is obtained from w by

erasing all elements that are not members of N, Let G and G'
ke mérked graphs and let N = {tl, Cear tn} be a set of n trans-

itions that appear in both @ and G'. We say that G and G' are
eguivalent with respect to ¥ if for each firing seguence uw of
G thdre is a Tiring sequence w' of G' such that wy and wy are

identical, and vice versa, The two marked graphs in Figqure B
are equivalent with respect to N = [a,b} since in sach case the
set of derived firing seguences iz {ab U ba)*,

_Pirst we give two rules which when applied to any marked
‘graph will give a simpler marked graph eguivalent to the
original with respect to all of its transitions:

Rule 1: If an arc originates and terminates on the same
transition, and has at least one token, it may
be deleted.

Rule 2: Let a and b be any two distinct transitions, and
let x be an arc from a to b. If the number of
tokens on are x is greater than or equal to the
total number of tokens on the arcs of any other
simple, directed path frem a to b, then arc x
may be deleted. :

Use of the two rules is illuastrated in Figure 9, Rule 1
ie used to remove arc 1, and rule 2 is used to delete arce 2,
-3 and 4. For each of the three marked graphs, the firing
sequences are all prefixes of the infinite string (abc)®. &
marked graph for which no applications of the two rules are
posEible is called a minimal=-arc marked graph.

The minimal are form of a marked ¢graph always has the
same set of firing seguences as the original warked graph,
Furthermore, any pair of marked yraphs that are equivalent
with respact to a cne-to-ane correspondence of their transitions
have the same minimal-are form. Thus the minimal arg form is
canoni¢ for these marked graphs.

How suppose N is a set of n transitions commen to two
‘merked graphs G and G'. How can we tell whether G and G' are
equivalent with respect to N? It turns cut that if G is a live
marked graph, it may be reduced to an n-transiticn marked gragh
equivalent to G with respect to N, This is done by carrying

16

COMPUTATION STRUCTURES

‘out the steps below for cach transition t of G that iz not a
member of MN:

Stecp l: Delete any arcs that originate and terminate at
~transition t., Tf any such arc has no token, the
marked graph is not live. :
Step 2: Let X = {xl. R xm} be the set of input arcs
R and ¥ = {yl, vy yn} the set of output arcs of
transition t. Let M, be the number of tokens an
arc x, and let Nj be the number of tokens on arc

Yj-

A Step J: Replace transition t and the ares in ¥ U Y with
the arcs
{zjj|i =1, «v.om 3 =1, ..., n}

where zij originates on the same transition as
®y and terminates on the same transition as Yj'
Put M + N tokens on arc z .

i 3 i3

applying this procedure to either marked graph in Figure 8
gives the canconic form in Figure 10. This example shows that
the cancnical form for a safe marked graph (5) iz not
necassarily safe.

B. Arbiters

Arbiters are fundamental units of digital systems that are
‘required whenever twc or nore asynchronous activities compete
for acrcess to a-shared unit or resource. A basic form of
arbiter known as an elementary arbiter is illustrated in Figure
11. It eontrols access to a shared resource by two users --
user 1 and user 2. A 0-to-l transiticon on either one of the
request wires is a signal that the corresponding user desires
access to the shared reseource. In the absance of a competing
request from the other user the arbiter most promptly produce
-a J-to~l transition an the corresponding grant wire. The user
signals completion of his use of the resource by a 1-to-0
transition on the reguest wire, whereupcn the arhiter must
regspond with a 1-+0-0 transition on the grant wire, If reguests
arrive nearly simultanecusly from both users, the arbiter must
pramptly and unambiguously grant either one of the reguests
and delay granting the gecond reguest until the resource is
freed, Correct operation of an elementary arbiter must satisfy
these conditions: ' -

1. It must never cccur that both grant wires are simul-
taneously at level 1.

2. 1If hoth grant wires are at 0 ard at least one of the

request wires is at 1, the arbiter must grant one of
requests,

17

COMPUTATION STRUCTURES

Np
53
i N\ —-p
/I 5\
/ . ’
\3 I/
™ .
c d
. &
Np
Np
| 2 3 4

3 I/B I/4 3/3 IJ,/2

Figure 7. Timed marked graph represenling severgl
processors ond limited throughput of
One activity.

COMPUTATION STRUCTURES

(o} {t)

Figure & Two eguivatent marked graphs,

lu'l. bo, | : TIIN . (c) 2

i e

NI 0 :
firing sequences . (abe) ™ { A Ug Uab)
Figure 9 Simplification of a marked graph.
¥ e

, Figure 0. Canonic form for the marked graphs in Figure &,

e S e e o

request grant
wires EA wires

2 et e . D!

Figure t. The-elamantory arbiter.

13

COMPUTATION STAUCTURES

We have found that any requirement for arbitration in
asynchronous digital systems can be met by a modular subsystem
using elementary arbiters. For example, an arbiter that over-
sees sharing of & resource by n users can be built using a
binary tree of elementary -arbiters (14). The case of n users
and m servers has boep studied thoroughily by Patil, and he has
recently devised an improved solurion based on n-user and
m-user arbiters (13).

Designing an elementary arbiter that functiens cerrectly and
always acts within a specified time interval is a difficulr
Froblem, When the two reguest wires make 0O-to-1 transitiocns
nearly simultanecusly, The arbiter may make an arbitrary choice,
but it must do so without hesitation, and without the appaar-—
ance of%spurious signals on ths grant wires,

Suhps Patil has devised an elegant scheme for building an
elementary arbiter that will operate correctly in a fixed time
with extremely asmall probability of error. This scheme makes
use of a subunit called finjite resoluticon arbiter (FR&4)} and
illustrated in Pigure 12° An FRA can fail to operate
correctly only if two request signals arrive with a separation
of 3 time unite or less. TIf an FRA fails, the result is that
both grant wireg switch to 1.

Now consider a pair of FRA's connected in cascade as in
Figure 13a. If twg requests arrive at FRA-1 separated by more
than & time units, only one of the regquest signals will reach
FRA-2 and operation will be completed corractly., If requests
arrive at FRA-1 with less than & time units separation, then
FRA~1 will transmit both grant signals. Assume for the moment
that the two reguest signals are delayed equally by FRA-1,
Then, so long as A > 26, the reguests arriving at FRA-2 will be

-separated by more than § time units and FRA-2 will grant one

and only one af the requests,

: One of several possible cricuits for a finlte resolutien
arbiter is ghown in Figqure 14, Each pair of NAND gates forms

a2 set-reset flip flop which is forced into its 1 state by the
presence of a request con the associated input wire. The setting
of one flip flap prevents the other flip flop from being set,
thareby blocking its associated raquest, If two reguests

arrive at nearly the =mame instant, both flip flops will be set
since neither will be fast enough to bleek the othar,

The time interval § is the time separation of request
eignals such that a reguest signal and a block signal arrive
simultanecusly at on& @F Lhe flip flops. "In this circumstance
the flip flop may be placed in a matastable state in which it
may remain for an arbitrarily long time (with decreasing
probability). The existence of metastable states, and the
certainty that failures caused by circuits persisting in meta-
Stable states have been problematic in computer systems hag
been nicely explained by Crnstein (4).

20

COMPUTATTON STRUCTIRES

i1t is reasonable to model Elip £lop behavior for critical
input timing es follows: If the set and reset inputs become 1
with time ceparation less than some small fixed interval &, the
flop flop enters its metastable state, and the probability of
commitment to one of the stable states during an interval 4t

after elapsed time T is P(t)dt = (1/T)e /Tdt where T is a char-
acteristic time of the flip flop, An exponential density func-
tion P{1} is used because we cxpect that the probability of
commitment during any interval, given that commitment has not
occurred earlier, is indepandent of the elapsed time.

From Figure 15 we see that the cascade of two I'BA's ics
not perfeect:; it can fail if re%uest 2 and a block signal gen-
erated by request 1 occur similtaneously. The probability of
failure is very small if A >+ 2§ and decreases exponentially
as A ii made larger. Morecover, the probabkility of failure may
be mas as small as desired by adding further FRA's in cascade,
as in Figure 13b.

Note that, while it appears impossible to design a perfect
elementary arbiter that always operates within a fixed tire,
one can medify the FRA circuit so that each flip flop will re-
spond with grant and block signals only when it is committed to
a stable state. In this way a perfect elementary arbiter may
be constructed which may require an arbitrarily leng time
(exponentially distributed) to respengd.

C. Computation Schemata

Qur research in the theory of computation schemata has
tha goal of reaching a better understanding of goond represen-
tations for algorithma -- representations in terms of which de-
terminacy of an algorithm may be readily determined or guaran-
teed: forms suitable for deriving optimum machine code, or for
identifying concurrently executable parts; schemes of represen-
tation for which the meaning is readily apparent to the
pragrammar,
" We have studied two sorts of parallel computation schemata
that model programs and systems involving concurrent transfor-
mations and tests on unstructured values, On one hand we have
developed a refinement of the parallel program schemata of
¥arp and Miller (9) and have investigated issues raised by the
refined model., In this model the flow of data in a program or
syatem is modeled separately from the sequencing or control.
Oon the other hand are models like the program graphs studied by
Rof@riguez (16) in which the data flow and contrel specifications
are combined in a single graph. Further development of the ideas
of Rodriguez haz led to the study of data flow schemata., FRecent
rasulte from these two directions of research con parallel
schemata are reviewed below.

Productivity in Parellel Schemata

In a computation schema it may be that certain actions
cccurring during a computation have no effect on any output
value produced by the computation. In this case we say that

21

CCMPUTATICN STRUCTURES

t; # arrival time 12
of request |

lo = arrival time
|l ——— e | of request 2

region of
incorrect
operotion

FRA
f
2 ot = e » 2
J
!
]
Figure [2. The finite resolution arbiter.
(o}
T D_ : ______ 1
| —; & = E; " o -—-f—»- N
| FRA L2 | FRA |
| 2
| 1
2 = -—r-—..z'
O, -
{b)
ELAY] i
| e == A == <= |
FRA FRA FRA |
i 2 3
D - - _._DELAY -2
— A

Figure I3. Finite resolution arbiters
connected in coascode.

22

COMPUTATION STRUCTLRES

raquesl

[———] @ grant .
_NAND — |

grant
requesi NAND) o %
2 ——-—-____,/ I//

Figure 14, Circuit for finite resolution arbiter.

~request 2 probability of
f::‘h_er Piz) fuilurg gtven
gion A) (t),15)in &

request | {“A—S *—-‘ =T

earlier
{region B}

Figure {5, Foilure analysis for 1wo FRA's in tascode.

23

COMPUTATION STRUCTURES

these actions are not productive., We have found there is a
trade-off in parallel schemata Petween procductivity and degree
of cencurrency. That is, to achieve maximum parallelism, it is
necessary that the possibility of nonproductive actions be
intreduced. John Linderman has studied this matter for a class
of computation schemata closely related to the parallel program
schemata of Karp and Miller (9}, and the flow-graph schemata of
Slutz (17).

These schemata have scparate parts to represent the com-
munication paths for data and the saequencing of actions by
operators and decision elements. Since the distinction between
"transformations" and "tests" is so pervasive in programming,
we feel they should be modeled as differant fundamental actians
in computation schemata. For this reason, our data Flow graphs
contain both gperators, which model elements that transform
value?? and deciders, which perform tests with true/false
outcomes, Assoriated with each operator is a2 function Ietter,
and with each decider a predicate letter. Specific functions
and pradicates are assigned to Ehe Function and predicate
letters by an interpretation of the schema.' Tn this way,
several operators may be required te perform the same trans-
formation -- or Beveral deciders, the same predicate -- in any
interpretation of the schema. This departure from the Karp-
Miller model permits treatment of determinacy and egquivalence
for a broader range of programs and systems.

Each operator and decider has asseeciated initiatien and
termination events. when an cperator or decider initiates,
values are read from its orderad set of input memory calls
and this vector of values is, in gffect, entered into a first-
in=first-put gueue. Thus multiple initiations of an cperator
or decider may oceur without intervening terminations. When
an gperator terminates, it writes into its cutput memory cells
the values cbtained by applying the function denoted by its
function letter to the vector of values taken from the head of
the queue, For each decider there are two termination events
corresponding to the true and false outcomes of applying the
predicate denoted by its prediCate letter to the vector of
valuas at the head of its qusue.

When and if these events can happen is epecified by the
control of the schema. A variety of explicit mechanisms have
been used to represent the contrel, including finite state
machines, precedence graphs, and Petri nets. These mechanisms
share the proparty that they speeify which segquences of events
are allowed and which are not allowed as possible behaviors of
a sc¢hema. The allowed sequences of events ara called the
cogtrol sequences of the schema. Study of various contral
mechanisms has Shown that certain properties of control
sequences -- persistence, commutativity, conflict freedom, and
repetition freedom -- are central to the study of equivalence,
determinacy, parallelism and productivity, reyardless of the
mechanlism ujed to specify the set of control sequances.

For this reason we have studied thesc properties of schemata
without regard to the mechkanism ussd to spacify the set of
control sequences.

24

COMPUTATION STRUCTURES

Consider the program below in which w and % are input
variables and y and 2 are output variables: .

bagin

¥y = £{g(w}]

if p{w,x) then z := g{f(w)} else z := h{E{w))
end

™o schemata for this program are shown in Figure 16. Te be
definitive, the control sets have been specifisd by Petri nects,
Examples of control sequencaes for 5y inelude

jer

dac

]

. Et'pipacteec

in which averbars and underbars indicate initjation and ter-
mination, and the superscript T or F refers tc the outcome of a
dedider,

Wa identify certain memory cells of a schema as an ordered
det of input cells and an ordered set of output cells. Then we
may discuss equivalance of two schemata in Cerms of producing
the same output values when given identical inputs. In Figure
16, w and x are the input cells and y and z the output cells
of both Sland sz. It i easy to see that, in either schema,

any allowed sequence will assign the same values to cells y
and z as are produced by the program, Hence both schemata are
"functionally determinate" and are equivalent with respect ta
the specified input and output cells.

In these schemata, an issue arises that is not present
when every termination event puts a value in some memory cell
and all cell histories affect the question of equivalence, as
in the Karp-Millesr theory. It is now possible for operators
and deciders to be invloved in "useless activity." For
example, 1f y were not an output cell of schema Sl or 52,

operators a and ¢ would not be productive, Similarly if the
same sequence of actions followed either ocutcome of a decider,
then that action of the decider would not be productive,

The precime formulation of this notion of productivity
requires formaliems we do not wish to develop here, but the
central idea is fairly straightforward. & use of an operator
in‘a contrel sequence is productive if subsequent actions by
operators "carry its result" to a schema output cell or to a
productive decider. Sinee an action by a decider dees not
directly affect contents of memcry cells, determining its
productivity is not as easy, We consider a use of a decider to
be productive if the schema has two control sequences that
define ineguivalent computations, and are in “disagreement
about decider cutcomes" only at the given decider use. For
example, consider the program .

25

COMPUTATIGN STRUCTURES

{a) schema §;:

dato flow graph

control o begin

Figure 16. Two -equivaient computation schemalg,

26

COMPUTATION STRUCTURES

(b) schemo S, ;

dolo fiow graph

contrel begin

Figure 16. {Continued).

27

COMPUTATION STRUCTURES

begin
if p(x) then
if g(x) then y := f(x} else ¥ = g(x)

else

if q(x} then y := f£(x) else ¥ gix)

and

Sinca output y may be set to F{x) if p(x} is false, and g(x)} if
EF{x) is true, one might conclude that this use OF P is precduc-
tive, However, both possibilities exist in either case, the
choice being determined by g(x)}: hence p{x) is not really pro-
ducqive, in agreement with our definition.

Much of this research has bheen directed teward identifying
the most appropriate definitions for “productive control
sequéncea”. A seemingly desirable condition is that every use
of an operator or decider in a control seéquence be productive.,
Unfortunately, this strong productivity condition limits the
degree of parallelism that can be realiced, Suppose a
sequence must be performed if either of twe tests preduces
true as a result:

begin
Ei P(x}) or qix} then vy := f{x) else Y = gix)
end

AE soon as either p(x) or gix) is found to he true, evaluation
of the other is unproductive. Thus parallel evaluation of
pP(x) and g(x) will violate the strong praductivity condition,
We are studying a weaker form of productivity which does

not clash with parallelism.

Data Flow Schemata

An example of a data flow schema is shown in Figure 17,
It is a directed graph having two kinds of nodes: actor nodes
and link nodes. The arcs of a data flow schema are paths
thrcuaﬁ-thcE data and control values flow from actor nedes
te link nodes and from link nodes to actor nodes. Link nades
serve to distribute values to several actor nodes. and are of
‘twa kinds -- data links drawn as small solid cireles for data
values, and control Iinks drawn as small cpen circles for
control values. Certain data link nodes are the input nodes of
the schema, and certain data link nodes are the oLEpUt hodes
of the schema. Each link node, except the input nodes, has
exactly one incident are, and all but the output nodes have at
laagt one emanating are,

28

£

COMPUTATION STRUCTURES

There are five kinds of actor nodes:

operator sguare box wlth a function
letter written inside.

decider diamond box with a predicate
letter written inside,

true gate/false gate circle with T or F written
inside.

. merge : ellipse with T and F written

inside.

Boolean sguare box with one of the sym—
bols A, V, = written inside.

Each arc leaving a link node acts like a first-in-first=-cut

gueye for values waiting for use by the actor on which the arc
terminates. A value arriving at a link node is replicated as
required and. entered in the gueues of the emanating arcs. In
magttcases, each gueue will either be empty or hold one valuc,
However, permitting unbounded gueues permits operation of o
data flow schemata to achieve a kind of maximum parallelism
we shall illus<rate by a later exanmple,

Given a data flow schema and an interpretation of its
funttion and predicate letters, computations by the schema are

* described by seguences of actions by the actor nodes, analogous

to the firing saquences of a Petri net. An operator, decider,
or Boglean node is ehabled to act when at least one value 15
available from each of its input arcs. When enabled, one of
thege acters may "fire" by remeoving one wvalue from each input
gueue, applying the specified function, predicate or Boolean
oparator, and sending the results to its cutput data or control
link. A true gata iE enabled hy the availability of a data

: value and a control value from its input arcs. The ¥a e fires
i

by removing these values from their gueues. “hen, the
control value iw true the data value is sent to the output data
link; if the contr¥ol value is false no further action takes
place. The false gate acts in an analogous manner. A merge
node act$ by transmitting a value from its F-input are the
control input value is false, or a value from its T-input arc
if the control value is true., The filled-in arrows on certain
control links indicate that a false value is entered in their
queuss in the ini¢ial configquration of the schema. This
arrangement is needed to initiate action by a portion of a
data flow schema that performs an iteration,

According to these rules of behavior, every actor of a
data filow schema is persistent: once enablad an acter beacomes
not enabled only by firing. From this fact and the diecipline
by which actor and link nodes interact, a result of Patil (12)
shows that any data flow schema is a determinate system,

Study of the schema in Figure 17 revemls that it is
equivalent to the following "while schema”:

29

s

e o

COMPUTATION STRUCTURES

Figure 17 A well-Farmed dote flow schema,

Figure 18. A dota Flow schemc that is not free.

30

COMPUTATION STRUCTURES

Y

Figure 19. A deta flow schema requiring unbounded queues,

31

COMPUTATION STRUCTURES

begin

while pix) do

if gix} then w := f{x) else w := gix)

X 3= hiw}
end

¥y 1= x

end

Just g3 in a while schema, the data flow schema has a nested
strucapre indicated by the dashed lines, and uses specific
configurations of gate, merge and decider nodes to form condi-
tional-and iteration subschemas. & dafa flow schema having
this structure is said to ba well formed. Any well formed

data flow schema will generatg exactly ane value at.each output
node for eash set of values presented at the input nades,
Because it is determinate, any well=-formed data flow schema
determines a funetional dependence of output values on input
values. #We consider two schemas to be equivalent if bath
define the same functional dependence of outputs on inputs,

and this is true regardless of the interpretation cheosen for
the function and predicate letters.

On the basis of work by Ashcroft and Manna (1} one c¢an
congtruct a well-formed data flow schema equivalent to any
"gote program™ or any program schemz of the type studicd by
Paterson (11). Hence the general eguivalence problem for data
flow schemata is unsolvable.

It has been found that the theory of "free" schemata is
more rewarding in terms of positive results than the study of
unrestricted schemata. & data-flow schema is said to be free
if no two agtione by deciders apply the same predicate to the
eame value. Figure 18§ illustrates a schema that is not free
because the first two uses of decider d both apply predicate
P to the regult of applying f to the schema input value, Hence
there is no way for the iteratian subschema to perform exactly
one execution of its body,

John Fosseen (6) has found it possible to transform free
data flow schemata in such a way that any pair of data arcs
may be tasted for equivalence. {Two arce are eguivalent if
they pass the same sequence of data values in any computation.)
We hope the cancepts developed tc cbtain this result will
provide further insight into the equivalence problem for free,
data flow gchemata.

We remarked earlier that treating the input arcs of actors
as unbounded gueues permits greater concurrency., The data flow
schema in Figure 19 illustrates such & case and is based on an
example of Keller (14). The right-hand porticn of the schema
may run arbitrarily ahead gf the left-hand porticn, a true value
being entered in the guecues of arcs 4, b, and ¢ for each cycle,

32

COMPUTATION STRUCTURES

The left~hand part may operate as fast as it can until the
gueues are emptied, whereupon (to be strongly productive)
operation must wait for further decisions to be made.

&ny data flow schema is inherently maximally parallel in
the sense that each operator and decider is at work whenever
values ere available for some productive use of tha cperator or
dacider.

wéhkly Productive Computations

In a data flow schema, actions are initiated when the
reguired input values are present and the action [in most cases)
is known to be productive, As an interesting exploratary study,
we have studied properties of parallel cemputationd in which
every joperation is initiated as soon as its input values have
been cbmputed, so long as some pessihle continuation of the
computation makes productive use of the result. Consider the
data'f;ow schema in Figure 20, which represents the following
program with input variable x and output variable y:

begin
while p{x) do

if q{x) then x := f{x) else x = g(x)
y = x

end

If execution of this# schema is performed according to the rules
given earlier, then every action by the operators fa and b) and
deciders (d and e) is productive. Let us consider what happens
if we allow all weakly productive actions to initiare. Suppose .
termination of the first uses of deciders & and e :s arbitrarily
delayed.” Since the,first uses of operators a and b reguire cnly
the initial wvalue of x, these uses are immediately initiated,
Their terminations produce values that are inputs to further
weakly productive uses of coperators a and b, and sa on. These
actions define the unbounded tree of walueg jillustrated in
Figure 2la; the tree has a node for each value any computation
by the schema could generate, BAs cutcomes of decider actians
become known, portipns of the tree of walues becoms uscless

and may be deleted, since the aperator uses that produce these
values become known to be nonproductive. Fur example, if the
first use of decider d vields false, the tree of possibly usaful
values is ag in Figure 21b, and 1f deciders & and & have
successive outeomes P,T and T,T,F, respectively, the tree becomes
that in Figure 2lc, and represents a completed computation,

Jeseph Qualitz (15} has studied the bookeeping requirements
for weakly productive computaticms, and has devised execution
structures in terms of which the detailed progress of such
computations may be studied. Clearly it iz necessary to tag earh
value produced by a schema cperator with the assumptions made

+

33

COMPUTATION STRUCTURES

Figure 20 Data flow schema.

34

COMPUTATION STRUCTURES

- ’ x
(a) /\
FHaD gl flglad glgld
A A A A
o\ FAEAY F RN PN
) / %] \ ’ \ 7/ \

- {o) . {c)

|

%
gix) F gixl F
Ak b

flg{x)} glglx)) fal=y

] L] L
\ FT \ FF \{FT
T : {?1" TT

Figure 21 Value trees from o weokly productive
computation,

+ COMPUTATION STRUCTURES

about decider cutcomes. We let each valus carry & color which

is a set of seguences of the symbels (T, F, T, F!}, one seguence
for each decider of the schema. The letters without overbars
denote known outcomes, whereas letters with overbars denote .
assumed owtcomes. In Figures 21b, 2lc, colore are shown for each
value.

: At any stage in a weakly productive aomputation, many
values may be associated with certain value nodes of a schema.
It is net useful to order these sets of values because, unlike
~normal execution of a data flow schema, the order in which
values arrive is not necessarily the prder in which they are
. used., Instead, each value ncde is regarded as holding a peol
of values, each tagged with the appropriate coler, and available
for»use, Therefore, when an operator or decider has several
inpat value ncdes, some means must be provided for identifying
he combinatiens of values to vhich a function or predicate
howld be applied., This is done by associating with each value
an index that is distinct for each cycle of any loop in the
schema. F¥inally, when a decision is made, certain values bhecome
vwseless and further initlation of actions that use those values
" myst be inhibited,

He have devised rules of execution for weakly productive
computationa and have shown that these rules correctly simulate
the computations of any well-behaved data flow schema.

D. Indurctive Procfs of Program Properties

ne ot the purposes of studying schemata or simplified
programming languages is to isolate aspects of programs which
must be encompassed by any approach to the construction of
formal proofs about the functions copputed by programs. Recursion
is one such property. To prove equivalence or correctness
results about recursive programs, some form of argument by
induction must be made, This has been recognized by many peuple
and several of them have formulated induction rules to be used
for particular classes of programs. Generally, a program can
be viewed as falling in several of these classes. By examining
a single program and proofs about it from different viewpoints
we have heen able to clarify the relationships amcnyg these
varigua proof techniques. By means of a simple example we
shall illustrate the work of Irene Greif (7} on relating the
different ways of interpreting a recursive definition and the
correspending proof technigues.

Consider the following definition of a fungtien f over
the nonnegative integers: . :

fim,n) 2 if n = 0 then m else fim + 1, n - 11

{The reader should convince himself that fim, n} = m + n.,] The
first and most obvious intergretation of the definition is

that it describes an algorithm for computing f. The algorithm
is to test for n = 0; if n = 0 then f(m, n) = m: otherwise
apply the same algoritnm in computing f{m + 1, n - 1) to obtain
the result. A segond interpretation depends on the existence
of an cordering on the domain of the function. In this case

36

COMPUTATION STRUCTURES

the palrs of integers (m,n} ¢an be ordered as follows:
(ml. nl) (E} (my, nz)

if and only if

nl < 1'12.

Then the definition of f is an inductive definition. The base
of the definition is:

Far all m £(m, 0) = m.
The induction step is:
Y f(m, n) = £(m+ 1, n - 1). |
The third interpretaticn of f i3 as the minimal fixpoint of
the following functional:
G(x: = dm.in. if n = 0 then p else X(m + 1, n - 1)
Tt can be shown that the minimal fixpoint of € is U &
i=0
where 1 is the function that is everywhere undefined and i{x)
means the fungtion produced by 1 applications of ‘: to X.
Notice that {:(ﬂ) = Am.An. if n = 0 then m else G(m + 1, n -~ 1)
is the function which is m Tor (m, 07 and undefined for all
other ordered pairs. 2(.’2] has the value m for the ordered
pair (m, 0) and m + 1 for the ordered pair (m, 1) and is
otherwise undefined., Proceeding in this manner, the function
f which we are expecting will be generated.

The last interpretation is that the functien f revresents
the agreement of 'its “truncations." These truncations are the
partial functions defined as follows:

f,;(m, n) = if n = 0 then m else f, ,im+ 1, n - 1).

The reader should ncote that in this case

i
f,m, n).= €7 (R} @, m).

Now we will give four different proofs of the following
simple fact:

f(m+ 1, n) = £(m, n) + 1.
The first, by recursive inducticon, corresponds to the notion of"
definition by afgorithm.” We show that £(m + 1, n) and f(m, n)+1

can be computed by exactly the same algorithm by showing that
they can ke expressed in the same farm, namaly:

37

COMPUTATION STRUCTURES

¥{m, n) = if n = 0 then m + 1 clse Am+ 1, n - 1)

1. gl(m,'nJ = f(m + 1, n)
=if n = 0 thenm + 1 alse fim + 2, n = 1)

= if n = 0 then m + 1 else g,m+ 1, n~ 1)
=0 L LA

2. gztm, n) = f(m, n} + 1
= (1f n = 0 then m else fim + L, n-1)) + 1

=if n =90 thenm + 1 else fm+ 1, n - 1) +1

[N

- = 1if n = 0 then m + 1 else gz(m + 1, n~1)

This shbws that d; = g, on the domain of X. If we are £rying
Lo prove 9 = 9, for the pairs of nonnegative integers, a separ—
ate proof about the demain of X will ke reguired,

N
Another proef can be written, utilizing the partial crder-
ing on the demain of these functions, and the inductive defin-
ition. The basis of this pranf by structural induction is:

for all m

fim+ 1, 0) = if 0 =9 thenm + 1 else £{m + 2, 0=1)

Elm, Q) + 1

[}
-
h
[

a
[=]

then m + 1 else f(m+l, 0-1} + 1
=m+ 1
Therefore, for the minimal element in the domaln,
f{m + 1, n) = £(m, n) + 1. The induetion step, for (m, n;,
n# 0 is:
Apsume for {m, n), n < ¥ that £{m + 1, n) = £(m. n) + 1

1. fm+ 1, N) = £(m+ 2, N - 1)

i, fim, ¥} + 1= fim+ 1, N ~ 1) + 1

ft

fim + 2, ¥ ~ 1) by inducticn since W-1 < N.
The 1n1t1al assumptlon, based on the means of definition of the
function is that f is totzl on the ordered pairs, partially
ordered by (:) From this fact and the abave orogf, we know

that f{m + 1, n) = f{m, n} + 1 for all pairs of nonnegative
integers.

38

CCMPUTATION STRUCTURES

The third proof is actually simple induction an the depth
of racursion of a computation. In terms of the definition of
the minimal fixecoint

£- U €,
i=m

conputationgl (cr u-rule) ilnduction is simple irduction onm i.

1. for 1 = 0 we must show
.ﬂ(m + 1, n) = Qim, n) + 1
Obviously both are totally undefired.

2, Assume X{m + L, n) = X(m, n) + 1

then prove fo(X)(m + 1, &) = € tm, ny = 1
Cxyim + 1, n) = if n = 0 then m+l clse X(m+2, n-1)

= if n = 0 then m+l else X{m+l, n=1) + 1

(by inducticn)

= (if n = 0 then m+l else X(m+1l, n-1) }+1

GiX)tm, n) + 1 ;

This proves that f£{m, n} = £{m, n) + 1 are totally eguivalen:,
i,e,, either both are uncdefined or both are defined and have the
same value.

A separate argument canh easily be given te show that both
funotions are defined for all pairs of nonnegative integers.

The last proof technigug is very similar to computatioral
induction, being course-of-vglues incuetion on the index i cf
the truncatiens of a function., This amounts to deing course-of
values induction en the depth of recursion. For our particular
example, in which equivalence depends only one oneé gtep in the
computation of the fixpoint, the difference between the two ¢
proofs is strictly a matter of Tormalism. We prove that for
1= Or fa(m + 1, n) = fD[ml n) o+ 1.

Then for i # 0

assume for j < i, fj(m + 1, n) = fj{m, ny + 1

n
-
-

fi{m + 1, n)-

n =10 then m+] else fi_l(m+2, n=1}
= if n = 1 then m+l else fi_l(m+1, n=-1)+1

= (if n = 0 then m+l else f, , (m+tl, n-1) 1+1

Eitm, n] + 1

COMPUTATION STRUCTURES

A5 in the last proosf, this shows strong cguivalence, this time
by truncation induction.

Generally, any method can be used far a proof,. If the
pregrammer had one of these interpretations in mind in writing
his program, then the corresponding proof technigue will
prnbébly Seem moBt natural, Ideally an automatic program
verifier would be flexible with respect toc choice of induction
rule. It is unlikely, however, that all of these will he
equivalently useful in mechanical progfs, even though there seems
to be no real difference in scope of application among them.

E,’ h Computer for Ceneral Data Types

One goal in the design of programming systems is teo retain
the gefrerality of an algorithm when it is encoded into the
language of the programming system. A& sericus limitation on the
generality readily achieved in contemporary computer systems is
imposed- by the fixed word length and finite size of conputer
memories., :

In preparing a program for execution by a computey system,
the programmer first imagines the abstryact function the progzram
is te implement. Simple examples might he to implement the
sealar Eroduct of any two n-compeonent vectors of real numbers
or to obtain the greatest common divisor of two integers. As
in these examples, the abstract funotion almest always has an
infinite domairn. Then the programmer conceives af an algorithm
for. the function =-- a step-by-step process for chtaining the value
of the function through the use of idealized primitive operationg
such as the arithmetic cperations on integers and reals. The
next step is to express the algerithm in the language of some
practical programming system. Usually the actual data types
of the programming system have their idealized counterparts,
and, if the. language is suited to the needs of the algerithm,
the algorithm may be converted into a program with littla
difficulty, OQur problem of generality would be sclved if the
task of the programmer were completed at this point. -However,
he must now check whether the word size and finite memory size
of the computer system, as reflected in defecte of the primitive
operations of the bprogramming lansguage, may prevent correct
operation of his program. In many cases, the program will
operate aorrectly for a large (but finite) number of points in
the domain of the abstract function, and will fail f{often with-
out any hint to the user) for the remaining {(infinite) set of
domain peints., In other rcases the programmer will £ind that
the number of cases for which the program will work correctly
is too small to be of interest and a new approach, using a
language less suited to expressing the algorithm, or less
efficient in execution, must be adopted.

The akility of a programming system to correctly execute
programs expressed in terms of idealized data types ie called
geneyality with respect to domain. Most programming systems
fall to be general with respect to Jomain by limiting the
amount of storage that may be allocated to one data value to
less than the available memory of the computer on which the

40

COMPUTATION STRUCTURES

programming system runs. Por instance, integers are usually
limited in value by the number of bits in one memory word, and
the maximum range of an array subscript must aften be specified
at the moment the array is created.

Since the memory of any practical computer system ia, in
fact, finite we cannot expect any program to obtain the value of
the programmer's abstract function for any point in its domain.
However, we should expect a programming svstem to produce the
correct result unless the computer system runs cut of nemory
in trying. (If the compukter system runs out of memory, should
one blame the program for the absence ¢f sufficient memory to
compute the function 7) This consideration is the basis for
the following definitionst

Deflnltion. A program p, with input variahles x = (xl, Ve an
and output variables = (yl, c-es ¥), computes a function

£ ‘over domain D if and conly if far each point % in D cither
l. program p produces output y from input x where
y = F{x), or
2. for input x program p fails to complete dues to an
unsatisfied request for additional staraqe.

Thus a program that computes a function must obtain the correct
result whenever it is given gsufficient resources to cperate.

Pefinition: A programming system that implements a language L
T 1s general with respect to domain if and only if for any
algorTthm that defines a function f on deomain D, the

cerresponding progfam in L computes £ on D.

The heart of the ptoblem of implementing programming
systems having generality with respect to domain is machine
ingtructions which themselves are programs not general with
respect to domain. The basic arithmetic instructions, for
example, usually operate on representations that cccupy a
single register. Since conventional programmed multiple length
arithmetic introduces a high cost in time consumed, even: for
quantities that require only single-length representation,
acbhieving generality for these data types in a conventional
computer system is unattractive. i

Fater Bishep (3) has designed an abkstract computer in
which generality with respect te domain is achieved for a large
class of data types including integers, floating point numbers,
strings and arrays, as well as more elaborate structures. In
the abstract computer, each data wvalue is represented by a
pointer-linked tree structure having as many elements as
necessary to represent the valug., The representation of any
quantlty may expand arbitrarily as required until available
memory is exhausted,

411

COMFUTATION STRUCTURES

References

1,

‘Ho. 2 (May 19651, pp 147-1%5.

1o,

Ashcroft, E., and Manna, Z., The translation of ‘9o
to' programs to 'while' programs. Information
Brocessing 71, Ljubljana, 1971.

Baker, H., Petri Néts and Languayes. ' Computation
Structures Group Memo 68, Project MAC, M,I.T.,
May 1372,

Bishop, P. B., Data Types for Programning Generality.
E.B. and S.M. Thesis, Department of Electrical
Engineering, M.E.T., June 1872,

Chaney, 7. J., Ornstein, 5. M. and Littlefield, W. J.,
Beware the synchronizer. Proceedings of the Sixth
Annual TEEE Computer Socletv Internatinna

Conference, San Franciscc, September 1972, pp 317-319.

Commoner, F., Holt, A, W., Even, S., and Prueli, A,
Marked directed graphs. J. of Computer and System
Sciences, Vel. 5 {1971}, pp 511-523.

Fosseen, J. B., Representation of Algorithms by

Maximally Parallel Schemata. S.M. Thesis, Department
of Eleactrical Engineering, M.I.T., June 1972,

Greif, I. G,, Induction in Procfs About Programs.
8.M. Thesis, Department of Flectrical Endineering,
M.I1.T,., December 1971.

Holt, A. W. and Commoner, F. Events and Conditions.
{In three parts), Applied Data Research, New Yark

1870. (Chapters I, IXI, IV and VI appear in Record

af the Project MAC Confarence on Conevwrrent Systems
and Farallel Computation, ACM, New York 1970, BB 3-52.}

Karp, R. M., and Miller, R. E,, Parallel progfﬁm -
schemata. J. of Computer and System Sciences, Vol. 13,

Keller, R. M.; On maximally parallel schemata. IEEE
Confarence Reccrd. Eleventh Annual S osium on

-SWitching and Automata Theory, 1070, pp 32-50.

1l.

1z.

Luckham, D. C., Park, D. M. R., and Paterson, M. 5.
On formalized computer programs. J. ¢f Computer and
System Sciences, Vol. 4, No, 3 (June I970), pp 220-249,

Patil, 8. 8., Closure properties af interconnections
of determinate systems. Recard of the Project MAC
Conference on Concurrent Systems and Parallsl
Computation, ACM, New York 1970, pp l07-11%.

42

COMPUTATION STRUCTURZS

References (continued)

13. Patil, 5. 5., Forward Acting n ¥ m Arbiter.
Computation Structures Group Memo 67, Project MAC,
M.I.T., June 1372.

14. Plummer, W. W., Asynchronous Arbiters. IEEBE Trans.
an Computers, Vol. C¢-21, No. 1 {January 575

15, Qualitz, J. E., Weakly Productive Compitatien
Schemata. S5.B. and 5.M., Thesis, Department of
ETectrical Englnecring, M,I.T., May 1572.

lé. Rodriguez, J. E., A GraEh Model for Parallel
Comgutaticns. Technical Report TR-6d4, Project MAC,
M.I.T., September 19&9,

<17, 8lutz, D, R., The Flow Graph Schemata Model of
o Parallel Computation. Technical Report TH-57, Project
. MAC, M.I.T,, September 19%%.

43

COMPUTATION STRUCTURES

PFublications

1.

2.

B.

14.

i1.

1z,

13,

‘Baker, H., "Fetri Hetg and Languages", Conmputation

Structures Group Memo 68, May 1972,

Dennis, J. B., "Management of Names in =z Computer
System", Computation Structures Group Memo 63,
Movember 1971,

Dennis, J. B., "Concurrency in Software Systems"”,
Computation Structures Group Memo 65-1, June 1972,

Dennis, J, B., "The Design and Construction of Soft-
ware Systems", Computation Structures Group Memo 63,
June 1972,

Dennis, J. B., "Modularity", Computation Structures

Group Memo 70, June 197Z.

Dennis, J. B., On the Design and Specificatienm of a
Common Base Language, Project BAL, M. I.T., MAC TR=101,
June 1972, A0 7i4-97

AD 744-207,

Fano, R. M., "On the Number of Bits Regquired to
Implement an Associative Memory", Computaticn Struc-
kures Group Memo 61, August 1971,

Flinker, E., "Translation of a Bleck Structured
Language Intc the Common Base Language", Computation
Structures Group Memo 66, January 1972,)

Fox, P, J., "A Look at 'The Controlled Execution of
Parallel Prcgrams Operating on Structured Data' by
Ian Campbell-Grant", Computation Structures Group
Memo £2, Octobar 1971

Greif, I, G., Induction in Progfs about Prograns,
Project MAC, M.I.T., MAC TR-93, February 1972,
AD 737-701,

Hack, M. H. T., Analysis of Praducticn Schemata o
Petri Nets, Project MAC, M,1.T., MAC TR=94, FeBruary

1972, A0 T40-320.,

Lester, B. P,, Cost Analysis of Cebugging 5 stems,
Project MAC, M.I.T., MAC TR-%0, September IETI,

AD 730-521. .

Patil, 5. 5,, "Forward Acting n x m Arbiter"”,
Camputatien Structures Group Memo 67, June 1572.

44

Talks

COMPUTATION STRUCTURES

Dennis, J. B., and 3. 8. Patil, "Systematic Realization
of Asynchronous Systems", I1EEE Seminar, Bosten,
Beptember 9, 1971,

‘Dennis, J. B., “"Design of a Common Base Languagzs"; and

"A Data Floew Model of Computation”, Tutorial Symposium
on Semantic Models of Computaticn, New Mexiceo State
University, Las Cruces, New Mexieo, January 3-5%5, 1972,

Dennis, J. R., “"The Design and Construction of Soft-
ware Systems”; “Modularity"; and "Concurreney in
Software Systems", Advanced Course on Software Engin-
eering, Technical University of Munich, Munich, Germany,
February 21 - March 4, 1872,

Dennis, J, B., "On the Desigr and Specification of a
Common Base Language™, talk at the Geseral Elecotric
Co., Schenectady, New York, July 15, 1972.

Thetes Completed

1.

Bishop, P. B., Pata Types for Programming Ganerality,
5.B. and S5.M. Thesis, Departrment of Electrival Engin-
eering, M.I.T., Jun= 1572,

Fosseen, J. B,, Represantation of Algorithma by Maxi=-
mally Parallel Fchemata, 5.M. Thesis, Departmeht of
Elaectrical Englpeerlng, M.I.T., June 1972,

Furtek, ¥, C., ﬁodular Implementation of Petri Nets,
5.M. Thesis, Department of Electridal Englndering,
M,I.T., September 1971.

Greif, I. 5., Induction in Proofs about Prquans, 5.M.
Thesis, Department of Electrical Engilneering, M.I.T.
February 1972.

Hack, M., Anplysis cf Precduction Schemata by Petri Nets,
S.#M. Thesis,! Department of Electrical Englneerirg,
M.I.T., February 1972,

Qualitz, J. E., Weakly Productive Computation Schemata,

5.M. Thesis, Dapartment of Electrical Enginecering,
M,I,T., May 19732,

Thases in Progress

1.

Z.

Amerasinghe, 5. N., "The Handling of Procedure Varlables
in a Base language"”, 5.M. Thasis,.

Fox, P. J., "Representation of Parallel Conputation on
Pata Structures”, S.M. and E.E. Thesis.

Hawryszkiewycz, I. T., "The S$emantics of Data Dase
Systems"”, Bh.D. Thesisz,

45

COMPUTATICON STRUCTURES

Dennis, J. B., and 8. 8. Patil, "Systematic Realization
of Asynchronous Systems", 1EEE Seminar, Bosten,
September 8, 1971,

-Dennis, J. B., "Design of a Common Base Language": and

"2 Data Flew Model of Computation”, Tutorial Symposium
on Semantic Models of Computaticn, New Mexico State
University, Las Cruces, HNew Mexico, January 3-%5, 1872,

Dennis, J. B., "The Design and Construction of Soft-
ware 8ystems": “Modularity"; and "Concurrenecy in
Software Systems”, Advanced Course on Software kngin-
eering, Technigal University of Munich, Munich, Germany,
February 21 - March 4, 1872,

Dennis, J, B., "On the Desigr and Specification of a
Common Basz Language”, talk at the General Flectric
Co., Schenectady, HNew York, July 15, 1972,

Theses Completed

1.

Bishop, P. B., Pata Types for Programming Generality,
5.B. and S.M. Thesis, Department of Electriwval Engin-
eering, M.I.T., Juns 1972,

Fosseen, J. B,, Representation of Algarithmd by Maxi=
mally Parallel gchemata, 5.M. Thesis, Department of
Electrical Engipeering. M.I.T., June 1972,

Furtek, F. C., Modular Implementation of Petri Nets,
5.M. Thesis, Dapartment of Electrical Englngering,
M.I.T,, September 1971.

Greif, I. G., Induction in Proofs about Programs, S5.M.
Thesis, Department of Electrical Engineering, M.:I.T.
February 1972.

I

Hack, M,, Anplysis cf Production Schemata by Petri Nets,
§.M. Thesis,! Department of Electrical Englneecrirg,
M.I.T,, February 1972,

Qualitz, J. E., Weakly DProductive Zcomputation Schemata,

5.M. Thesis, Dapartment af Electrical Engineering,
M,I,T., May 1972.

Theses in Progress

1.

2.

Amerasinghe, 5. N., "The Handling of Procedure Variables
in a Base lLanguage", 5.M. Thesis., .

Fox, P. J., "Representation of Parallel Computation on
Data Structures”, 5.M. and E.E. Thesis.

Hawryszkiewycz, I. T., "The Semantics of Data DBase
Systems"”, Bh.D. Thesis,

45

