MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 81-1

Introduction to Datae Flow Schemas
by

Jack B. Dennis
John B. Fosseen -

September 1973

This research was supported by the National Science Foundation
in part under research grant GJ-432, and in part under research
grant GJI-34671,

Introduetion

A data flow schema is a representation of the logical scheme of a program
in a form {in which the sequencing of function applications and teskts, and the
flow of values between applications are specified together, In a data flow
echema, an application of a function,or a test of a predicate, is free to proceed
ag soon ag the values required for its application are available. Since the avail-
ability of ome computed value may simultaneously enable the application of several
functions or predicates, concurrency of action iz an inherent aspect of data flow
schemas,

We pregent gome basic properties of a class of data fiow achemas which medel
the logical schemes of programe that compute with unstructured values. Thesc
schemas are a variation and extension of the "program graphs' studied by Rodriguez
[12]. A related data flow model for computaticns on structured data has been de-
scribed informally by Deanis [4]. Other related models include the work of Adams [1},
Béhrs [3], and Miller [7}. The material of the present paper is baged largely on a
thesis by Posseen [5].

The principal results of this paper are that for free data flow schemas
(defined in analogy with Paterson's free program schemas [10]), the equivalence of
data links is decidable and that any free schema may be transformed intoc an equiva-
lent schema in which no two links are equivalent. This implies that for any free
while schema (as defined in Ashcroft and Manna [2]), one can decide whether, for
every interprecation, two variables are assigned the same history of values in any

execution of the program.

An Example

Consider the follewing program expressed in an Algol-like notation:

begin
t oi=x; y = hix)
while p(w, t) do
begin
if q(y) then y := f(y)
o= g(t)
end

end

Variables w and x are input variables of the program and y is cthe ourput variable.
A data flow schema for this program is given in Figure 1, The arcs of a data

flow schema should be thought of as channels through which tokens flow carrying

G—

— — — — o — —

I

.

T m———— e e e —— o o e e —

A data flow schema.

Figure 1,

e |

values between nodes of the schema. The twoe kinda of link nodes and the eight
kinds of sctor nodeg are shown in Figure 2.

In general, a node is engbled if tokens with associated values are pregenlt on
each input are and no token is present on the output arc of the node. The execu-
tion or firing of a node absorbs the tokens on its input arcs and puts tokens on its’
Cutput arcs. Link nodes are provided so values produced by one actor may be dis-

tributed to several actors. Countrol links pass truth values {true, false; data

links pass arbitrary values from the domain of an interpretation for the schema.

An operator applies to its input values the function associated by an inter-
pretation with the function letter written inside the operator. A decider applies
to its input values the predicate associated by an interpretation with the pred-
icate letter written inside the decider. Data values are routed to operators and
deciders by T-gate and F-gate actors, A T-gate, for example, passes a value on to
its output arc if it receives z true value at its control input arc; the received
data value is discarded if a false value is received. The merge node allows a truth
value to control which of two socurces supplies a date value to its output arc. If
the contrel value false arrives at the control arc the merge passes on the value
present or next to arrive at the F-input arc. A value present at the T-input arc is

left undisturbed. The complementary sction occurs for the control value true.

In Figure 1 the graph of the schema is simplified a bit by the convention
that each control link 15 connected to all gate and merge nodes within the
same dashed boundary.

In the representation of a program loop, merge nodes pass initial values
into the body of the loop from their F-data input ares. Values for subsequent
repetitions of the body are recycled through the T-data input arcs., The arrow-
heads of the control ares of these merge nodes are drawm solid to indicate that
these control arcs hold tokens with false values in the initial condition of

the schema. In this way the first cycle of the body is begun when values ar-
rive at the data input links,

(a) 1links
data link
{b) =actors
1 R
q\
operator

e

.——-Q\ -

A

4

control link

r

i\'...
\;\\i:’, decider
% .
T —

-7

N

I

<

& [
merge
T-gate F-gate

vy

Nyl

" ®) apg —_ ~/ het
\ - ~, i
! 5 5

Boolean actors

Figure 2. Node types for dara flow schemas.

Definitions

Here we specify the representations for data flow schemas, and de-
velep the means for studying their behavior as a model for computer programs,

An (m,n)-data flow schema S is & bipartite directed graph in which the

two classes of nodes are called links and actors. The links (Figure 22) are cof

twe types: data links and control links. The ares that go between sctors and

links are called data arcs or control arcs according te the type of link. An

(n,n)-schema S has an ordered set IN(5) of m input links and an ordered set
OUT(5) of n output linkg; IN(S) and OUT(5) need not be disjoint. No arc of
S may terminate on any input link; exactly one arc must terminate on eath link
that is not an input link. At least one arc must originate at each link of §
that is not an cutput link.
The types of actors are shown in Figure 2b,
1. operator: An operator has an ordered set eof r input data arcs where

r 2 0, and a single output data arc, A function letter f selected

from a set F of function letters is written inside the operator
symbol. The set F may apply to several schemas; all cperators
bearing the same function letter must have the same number of

input arcs.

2., decider: A decider has an ordered set of r input data arcs where

r 2 1, and a single output control arc. A predicate letter p se-

lected from a set P of predicate letters is written inside the
decider gymbol. The set P may apply to several schemas; all deciders
bearing the same predicate letter must have the same mumber of in-

put arcs.
3. T-gate and F-gate nodes.
4. merpe nodes.
5. Boolean acters: and, or, not

The last three actor types have input and output arcs as shown in Figure 2b.
4 data flow schema 8 is an uninterpreted model for computation. Specifying

an interpretation for 5 provides a complete representation of an algorithm.

-

An interpretation for a data flow schema with function letters in F ard

predicate letters in P is:

1. A domain ;Eyof values,
2. An assignment of a total function

.r
R v
to each f € F, where each operator bearing the function letter f
has r input ares.
3. An assignment of a total predicate

s &F 4+ (true, false)

to each p € P, where each decider bearing the predicate letter P

has r input arcs,

The activity of a data flow schema is represented by sequences of configura-

tions., A configuration of schema 5 for an interpretation with domain L 1s:

1. An association of a value in < or the symbol null with each data
arc of 5.

2, An association of one of the symbols {true, false, null} with each

control arc of 5.

We depict a configuration of a schema by drawing a solid circle on each arc having
2 non-null value, and writing a value-dencting symbol beside. These circles are

called data tokens, true tokens or false tokens according teo the associated value.

A computation by S for a specified inirial configuration Yo is a sequence

where each y, is obtained from

"y ‘Yk’ Yk+1: L l+l
Yg by the firing of some enabled node of &, The rules of firing for the two

of configurations Ygr Yis

types of link node and four types of actors are given in Figure 3, Conditions

for which a node is enabled are shown on the left (an enabled node is indicated

by an asterisk). In addition, a necessary condition for any node to be enabled

is that its output arc does not hold a token. Any node which 1s enabled in a
configuration of S may be chosen to fire producing the change in configuration
specified in the right part of the figure. The firing rules for the Boolean actors
are similar to the rules for operators, and F-gates are identical to T-gates with

negated truth values.

(a) link nodes

data link

(b) actor nodes

vl"‘ L
£ = £
'.|v==f(v
& »
opera cor

control link

=

b p(v ree oV,)

decider

Figure 3, Firing rules for data flow schemas.

-8~

For a configuration y of a schema S, the corresponding marking M is a func-
tion that associates an element of [mark, null)} with each data arc of S and an

element of {true, false, null) with each control are of 5. A marking is identical

to the corresponding configuration except that values in the dumain,ﬁrare re-
placed by the single element mark.
The firing rules given in Figure 3 also specify the possible sequences
of markings of a data flow schema. For any marking in which a decider is
enabled, the decider may fire in either of two ways -- placing & true token or a false
token on its output arc. An enabled node of any other type can fire in only
one way -- determined by the tokens held by its input arcs. The possible se-
quences of markings of a data flow schema 5 afe determined by the initial
marking of S and are independent of the interpretation chosen for the funetion
and predicate letters of §.

Let S be a data flow schema and let:
A be the set of operator nodes of §
D be the set of decider nodes of §
C be the set of gate, merge and Boolean actors of §
L be the ser of link nodes of §

The alphabet of acticns for 5 is the set

Ve lalaca)u(dh, dfld e D) Ulefe el uigly e

*
A control sequence of § for a specified initial marking HD is any sequence

T:?;_-.v

that defines a sequence of markinga

M 7(0)-_H1 T(l)__M T{k-1)

o g —reere Z

such that-

l. The node apecified by v(i) is enabled for marking M, and Mi+ is the

i H

result of firing this node.
2. If t is a finite control sequence of k elements, then noc node is enabled
in the final marking M .
The symbols dT and dF are used to distinguish firings of a decider with Erue

outcome and false cutcoma.

*7h = {0, 1, ...} is the set of natural numbers.

We shall restrict our attention to data flow schemas that are well behaved in
the sense that they produce one set of output values for each set of input values

presented. Let S be an (m,n)-data flow schema and let HD be a marking of 5 in which
no data arc holds a token. Let §5' be 5 with added data arcs as shown in

Figure 4, Schema 5 iswell behaved for marking M, if and only if each finite
contrel sequence starting from the marking in Figure 4a leaves 8' with the
marking shown in Figure 4b, in which the marking of & is again HU‘

4 data flow schema is a system of interconnected elements that inter-
communicate according to a strict discipline. Patil [11] and others [6] have
studied such systems and their work shows that the actors of data flow schemas
are determinate systems and that since a data flow schema is a well formed
interconnection of determinate subsystems, any data flow schema is a determinate

system, Therefore, 2 well behaved (m,n)-data flow schema § defines a function

:DS: ﬁm_. ﬁl‘l

Since well behaved schemas are functional, weak and strong equivalence may
be defined in the usual manner for uninterpreted program schemas [9]: Two such
schemas S and S' are weakly eguivalent if and only if for every inter-
pretation g and Og s yield the same value y € ﬁn for each x € tm at which
both are defined; § and §' are strongly equivalent if and only if

(a) (&)

Figure 4. Definition of a well behaved schema.

-10-

S and 5' are weakly equivalent and Pg 1 is defined for x € jﬁm if and only if
Pgr is defined for x.
In the remainder of this paper we will be concerned only with data flow

schemas that have specified initfal markings for which they are well behaved.

Well Formed Data Flow Schemas.

For the remainder of this paper we will study & class of well behaved data
flow schemas constructed using formation rules analogous to the if,.. then...else..,
and while.,.do.,, constructions of programming languages. This class is char-
acterized by the recursgive definition of three kinds of well behaved data flow

schemas: conditional schemas, iteration schemas and well formed schemas.

Well formed gchemag: 4n (m, n)-well formed schema is any (m, n)-data flow

schema formed by an acyclic composition of component data flow schemas, where

each component is an operator, a conditional schema, or an iteration schema.

For the definitions of conditional and iteration schemas, we introduce
some additional diagramming conventions, In Figure 5a, a broead arc represents
a bundle of arcs connecting sets of links and actors. A large dot represents a
set of data links; as required by our definitions each link of the set ig driven
from exactly one arc of the incident bundle and each link must be the origin

of at least one arc in some emanating bundle. The decision structure shown in

Figure 6b represents & set of deciders that provide input control values to an
acyclic composition of Boolean actors having a single cutput control link. Both
truth values true and false must be possible at the output link for suitably

chosen outcomes of the deciders,

(a) ®)

acyclic net of
Boolean actor

Figure 5., Diagramming conventions.

=-11-

Conditional schemas: If P is a well formed (p, r)-schema, Q is a well formed
(g, s)-schema, and C is a decision structure, then the data flow schema $ shown in

Figure 6 1s a conditional schema. In the initial marking for S, component schemas

P and Q are marked as required by their definicions; no tokens are present on arcs
of S not contained in P or Q. A data flow schema is a conditional schema only if

it is formed in this way.

A conditional schema performs the decision represented by 1lts decision
structure and selects either the true alternative P or the false alternative Q
for execution to provide output values. The reader may verify that S is well
behaved 1f P and § are.

Ireration subschemas: if P is a well formed (p, r)-schema and C is a decision

structure, then the data flow schema S shown in Figure 7 is an iteration schema.

In the initial marking for S, component schema P is marked according to its
definition, and the only additional tokens in S are a false token on the control
input arc of each merge node not contained in P. A dara flow schema is an

iteration schema only if it is formed in this way.

An iteration schema uses its decision structure 0 to test some of its input
values and presents some 1nput values to its body P. The output values of P are
tested and the cycle is repeated until some test yie'ds a false decision, whereupon
certain values are presented as the output of S and *he schema is reset for sub-

sequent reactivation. Evidently S is well behaved i° P is well behaved.

It is easy to see how any program expressed as a sequence of statements
of the types shown below can be represented as a well formed data flow schema.

In these statements the x's are variable identifiers, and {Boolean expression}

means any predicate of the form pk(xil, veny X5 D
n
a) xj =R
b) xj = fk(xil’ R] x]‘_n)

c) if /Boolean expression)

then (programl) else (programz}

d) while (Boolean expression) do {program)

=12=

OUT(S)

Figure 6. TForm of a conditional schena.

IN(5)

Figure 7, Form of an iteration schema.

-13-

Since Ashcroft and Manna [2] have shown that any ''goto program™ may be
translated intoc a 'while program” having only these statement types, well formed
schemas are able to represent any "goto program'.

Since we are concerned only with well formed schemas, we shall henceforth

use the term schemz te mean well formed data flow schema.

Data Dependence Graphs.

A data dependence graph (or dadep graph) of a schema is an explicit rep-
resentation of the generaticn and testing of values for a particular control

gequence of the schema.

Data dependence graphs{dadep graphs}: A data dependence graph for an
(m, n)-schema S is a finite, directed, acyclic, bipartite graph. The nodes are

value nodes and action nodes. Each value node is labelled with a nonempty set

of data links of S. There are m value nodes labelled by the distinct input

links of 5 and having only emanating arcs; there are n value nodes labelled by cthe
distiner ourput links of $ and having exactly one incident arc, The action nodes
of a dadep graph have the forms shown in Figure 8, where f is a functiom letter
of some operator of $ having r input links, and p is a predicate letter of some
decider of § having r input links. Each action node in a dadep graph represents

an application of some operator of S or a test by some decider of S.

(@) () (c)

x1 *r

f

y test with outcome rest with outcome
application true false

Figure 8. Action nodes for dadep graphs.

=14 -

The class of dadep graphs for a schema §5 is dencted DADEPS(S) and is

defined recursively according to the recursive construction rules for schemas:

l. If 5 is an acyclic composition of schemas Sl, . Sk’ then
G € DADEPS(S) if and only if G is a similar composition of

G)» v+, G where G, € DADEPS(S,), i = 1, ..., k.

2, 1f C is a decision etructure, a decision by C consists of a value
node for each input link of C and a test for each decider of C,
where each test carries a label which is one of the outcomes
{true, false}. The outcome of a decision is the truth value ob-

tained by its Boolean actors from the ocutcomes of its tests,

3. 1f 5 is a conditional schema consisting of alternatives P and Q
and decision structure C, then G € DADEPS(S8) if and only if G has
the form shown in Figure 9 where D is a decision by C and
G' € DADEPS(P) if the outcome of D is true, and
G' € DADEPS(Q) if the outcome of D is falge.

4, 1f S is an iteration schema consisting of body P and decision
structure C, then G € DADEPS(S) if and only if G has the form shown
in Figure 10 where DD’ e, Dk-l are decisions by C having true
outcomes, D ig a decision by C having a false outcome, and
Gi € DADEPS(P), L = 0, ..., k-1.

Note that a solitary application qualifies as a dadep graph according to case (1).
In Figure 1l three dadep graphs of the schema in Figure 1 are shown.
(Labels corresponding to unnamed links in the schema have been omitted.)
The basic theorems for data flow schemas give conditions for equivalence
of schemas that deo not refer rothe notion of interpretation. These conditions
are stated in terms of two properties, similarity and consistency, which we

define now.

Similarity: Let S and 5' be (m, n)-schemas and let G € DADEPS(S),
G' € DADEPS(S'). A value node v of G is similar to & value node v' of G' if
and only if either
1. v has a label x and v' has a label x' where x is the i-l input link

of S and x' is the ith input link of 8'.

-15-

Figure 9. Dadep graph of &
conditional schema.

false

Figure 10. Dadep graph of an iteration schems,

<16-

(a) (b)

Figure 1l1. Dadep graphs for a data flow schema.

=17=-

2. v is the output value node of an applicaticn a, v' is the output
value node of an application a', applications a and a' bear the
same function letter, and corresponding input value nodes of a

and a' are similar.

Dadep graphs G and G’ are similar if and only if the value nodes v in G and v' in
G' labelled with corresponding output links of S and §' are similar. A test
t in G and a test t' in G' are similar if and only if t and t' bear the same

predicate letter and corresponding input value nodes of t and t' are similar.

Consistency: Let S and §' be (m, n)-schemas and let ¢ € DADEPS(S),
G' € DADEPS(S'). A test t in G and a test t' in G' are inconsistent if and
only if t and t' are similar, but the outcome of one is true and the other is

false. Otherwise t and t' are consistent. Dadep graphs G and G' are

inconsistent if and only if there is a test t in G and a test t' in G' such

that t and t' are inconslstent. Otherwise G and G' are consistent.

Basic Theorems.

The following three theorems are familiar basic results of schematology
expressed in the terminology of data flow schemes. The proofs make use of the

notion of free interpretations [9] and are only cutlined here.

Theorem 1: Let 5 be an (m, n)-schema and let Gy 02 € DADEPS(S). Then Gl and

G2 are similar whenever Gl and 62 are consistent.

Proof: If G1 and szere consistent but not similar, we ecould construct anm
interpretation for 5 and choose input values such that computations
corresponding to G1 and G2 vield differing output values, But this is

impossible because any schema is well behaved and therefore functional.

Theorem 2: Let S and S' be (m, n)-schemas. Then 3 and §' are weakly equivalernt
if and only if whenever G € DADEPS(S) and G' € DADEPS(S'), then G and G’

are similar if G and G' are consistent,

-18-

Proof (if): Suppose the condition is satisfied but § and §' are not weakly
equivalent. There must be computations by S and §' having dadep graphs
G and G' such that G and G' are not =imilar. By the condition G and @'
are inconsistent; hence there exist tests in G and G' that are similar but
have different outcemes, which is impossible.
(cnly 1£): Let G € DADEPS(S), G' £ DADEPS(S') and suppose G and G' are
congistent but not gimilar., We can construet an interpretation such
that test outcomes specified in G and G' are satisfied. For a free
interpretation of the funcrion letters, the output values will not be

the same and thus S and S' are not weakly equivalent.

Theorem 3: 1Let S and S' be (m, n)-schemas. Then S and 3' are strongly equivalent
(8§ =8') if and only if S and 8' are weakly equivalent (S = §'), and for
each G € DADEPS{S) there is a G' € DADEPS(S') such that G and G' are

consistent, and for each G' € DADEPS(5') there is a G € DADEPS(S) such
that G and G' are consistent,

Proof (if): Suppose the condition holds but 8 and S' are not strongly equivalenr.
Since S = §' there is some choice of interpretation and input m-tuple for
which S has a computation but S' does not (or viece versa). Thus for some
G € DADEPS(S) there is no G' € DADEPS(S8') such that G and G' are
consistent -- contradiction,

(only if): Suppose 5 = S' (and hence § = S') but there exists
G € DADEPS(S) such that no G' € DADEPS(S') is cconsistent with G. Since we
can choose an interpretation and input m-tuple such that § has a computation

described by G, but 53' has no (completed) computation, S' and S cannot be
strongly equivalent.

~1g-

Equivalence of Data Links

We shall show how ome can transform any free schema into a strongly equiva-

lent free schema such that any pair of data links may be tasted for equivalence,

Definition: Let x and x' be any two data links of an (m, n)-schemz., Then
x and x' are equivalent if and only if, for each interpretation for §
and each m-tuple of input values, each execution sequence has exactly

k firings of link x and k firings of link x', for some k = 0, and
i=1, ..., k

where (vl, - vk) and (vi, ey vi) are the sequences of values

passed by the firings of x and x'.

We cannot hope to effectively test the equivalence of data links in gen-
eral since such a test would provide a solution to the general equivalence prob-
lem for schemas, which is known to be unsclvable [10], The preocedure we have
davelopad applies tc free schemas where freedom 1s defined for data flow
schemas as in Paterson's work: No dadep graph of a free schema may contain
similar tests. It follows that every dadep graph of a free schema describes
a nonempty set of computations.

It is convenient to introduce some additional terminolegy: If 5 is a
(well formed) schema then BOUND(S) = IN(8) U OUT(S)and contains the boundary links
of 5. Those data links of S not in BOUND(S5) are intermal links of S. The set

of main links MAIN(S) contains all data links of § that are not internal links
of any condirional or iteration schema contained within S. We say that schema
R is a subschema of 8 if and only if S contains R and BOUND(R) € MAIN(S).
Note that the only data links of a schema S that are not main links of aome
sechema contained in S are the ocutput links of iteration schema merge nodes.

The order of a schema $ is the number of levels of nested subschemas in 5:
A schema having no conditional or iteration subschemas is of order 0. The order
of 2 conditional schema is one greater than its highest order alternative. The
order of en iteration schema is one greater than the order of its body. The order
of a schema in general is equal to the order of its highest order conditional or

iteration subschema.

-20-

Our algorithm for deciding link equivalence consists of four procedures
presented in the proofs of Theorems 7 and 8., The algorithm is recursive in the
order of the schema S being tested, and identifies all equivalences that held
among the boundary links of 8 (and among the boundary links of each schema con-
tained within S). Each of the four procedures corresponds to cne of the forms §

may have as a well formed schema:

8 contains only operators -- Theorem 7; Theorem 8, parc 1.

2. 8§ is a conditional schema -- Theorem 8, part 2,
3. S is an iteration schema -- Theorem 8, part 3.
4. 8 is a compasition of schemas -- Theorem 8, part 4.

In each case the input to the procedure is the schema $ and some partition P of
IN(S); the result is a partition P' of BOUND(S) such that: If P divides IN(S)
into maximal sets of mutually equivalent links, then P' divides BOUND(S) into
maximal sets of equivalent links.

Before presenting the details let us show by several examples some of the
problems any decision procedure must deal with. 1In Figure 12, one cannot determine
whether links y and v are equivalent just from the structure of conditional schema
€ and knowledge of whether links u and v are equivalent: If operators a and b have
the same function letter, as shown in the figure, then links y and v are equiva-
lent; but if these operators have distinct function letters, links y and v are not
eguivalent. Thus our procedure cannot work unless the schemas to be analyzed are
first transformed into a restricted form in which such situations as the cne in
Figure 12 cannot occur., Rules for performing such a transformation on any schema
are validated by Lemma 1 and Theorem § below. The restricted form of schema

that results from applying the transformation rules is called a modified schema.

In a modified schema no output link of any gate or merge node can be such that
every value passed is produced by operators bearing the same function letter.
The schema in Figure 12 is clearly not a modified schema, since link v does not

satisfy the condition.

-21-

Figure 12. 4 schema requiring
transformation.

22~

One might think 1t sufficient for our procedures to construct the partiticn
of the output links QUT(S) intec maximal sets of equivalent links. The example
in Figure 13 shows why it is necessary to partition BOUKND(S) so that information
about equivalences between input and output links of S is kept. The analysis of
schema Q must show that link x is equivalent to links u and v if and only if
these input links are equivalent to each other. Likewise, analysis of schema R
must show that link y is equivalent to links u and v 1f and enly if u and v are
equivalent. Otherwise we would not be able to discover in the analysis of schema
§ that equivalence of links u and v implies equivalence of links x and yv. The

congequences of assuming the two possible partitions of IN(S) are as follows:

Partition of IN(S): (u}{v} {u,v}
Partition of BOUND(Q): ful{viix} {u,v,x}
Partition of BOUND(R): {u}(v){y) {u,v,v}
Partiticn of BOUND(S): {ullvlix}'y} lu,v,x,v}

The recognition of such equivalences i{s essential to the validity of Theorem &,
part 4.

Figure 14 illustrates the problem of analyzing iteration schemas. Cutput links
y and z are equivalent if and only if links u and w are equivalent, and link x is
equivalent to links u and w if and only if u and w are equivalent. The required
correspondence between the possible partitions of IN(S) and the partitions of
BOUND(S) is as follows:

Partition of IN(S) Partition of BOUND(S)
ful{v}{w) {ul{viiw]ix)yi{z)
lu,vj{w)} {u,vi{wl{x!ly}z}
{u,w){v]} (u,wyx}{v]{yHz)
{u}{v,w} fvywi{ullx)iy,z?
{u,v,w} fu,v,wyxly,z}

The procedure given in Theorem 8, part 3, is designed to identify all such
equivalences in iteration schemas,

First we establish a necessary condition for the equivalence of two data links
in a free schema S§. This result lets us conclude rhat two links cannct be eguivalent

if they are intermal links of disjoint schemas within 8.

-23-

oUT(8) = 'x, v!

Figure 13. Link eguivalence in a composition of two schemas.

N

N A

P

-3

IN(8) = [u, v, w!

!
~—— e -~

Figure 14,

X

u v w
T F \T P ‘i/\?? F, ’
- ! -))
£ P
\(\) o
F | \\ .
F (F T 4 :
‘ A ¢
. —— T ! &F]
: S l’
y

OUT(S) = {x, v, z!

Link equivalence in an iteration schena.

-25-

Theorem 4: Let Py and Py be data links of a free gchema S. Then Py =P,
only if either:-
1, [pl, pZ] c MAIN(R) where schema R is contained in (and possibly
equal to) S,
2, Links Py and P, are output links of merge nodes of the same

iteration schemz in S.

Proof: Let R be the smallest schema in 5 that contains both link Py and link

P,- Denote by M(R) the set of output links of the merge nodes of R if R
is an iteration schema, and the empty set 1f R is not an iteratjon schema.

Suppose 1 £ MAIN{R) {4 M(R). Then either P1 € MAIN(P) or Py £ M(P)
where P is some schema contained in but distinet from R. It cannot be
that Py is a link of schema P, for then P would be a smaller schema than
R that contains both pl and Py We consider three cases:

1. Py € MAIN(P) where P is one alternative of some conditicmal
schema Q. Since S is free, either O or 1 tokens may be passed over link
Py in an execution of Q. This choice is independent of the number of
tokens passed over link P, unless Py is 2 link of the opposite alternative
of conditional schema . But in that case the number of tokens passed over

pz is nonzero only if the number passed over pl is zero. Thus pl £ pz.

2, P, € MAIY (P) where P is the body of an iteration schema Q.
Since S 15 free, the number of tokens passed over link Py may be 0, 1, 2..,
independent of the number of tokens passed by Pos hence Py # Py-

3. Py € M(P)} where P is an iteration schema, Since § is free the
number of tokens passed by link P, may be 1, 2, 3, ... independent of the
number of tokens passed by Pss hence Py] Py-

Similarly, assuming P, £ MATN(R) 10 M(R} leads to the conclusiom
P, £ p,. Therefore,
{p), pzl S MAIN(R) U M(R)

It cannot be that P, € MATN(R) and Py € M(R), because the number of tokens
passed by link Py would depend on decisions made by R whereas the number of
tokeng passed by link Py would mnot.

-26-

Irans formation Inte Modified Form

To apply our method for testing equivalence of links, we must transform
the given schema into a modified form such that information about equivalence
of links in IN(R) is sufficient to determine equivalence of links in OUT(R).

Modified schemas: By an empty data path in a schema we mean a path
containing only data links, gate nodes and merge nodes. A data link y in a
schema 5 is admissible if y meets these conditions:

1. Link y is the output link of a gate node of 5, or the ocutput
link of a conditional schema within S.

2. Each operator with output link X, such that 3 contains an
empty data path from x to y, has the same function letter.

3. Bchemz S contains no empty data path from x to y for any
x € IN(S).

The depth of an admissible link in S is the minimum number of operators on

any path from an input link of S to link Y. A schema is a modified schema

if and only if it has no admissible links.
A schema is put inte modified form by moving operators past gate and
merge nodes. This is done by repeated use of Transformation T given below:

Transformation I: Let S be a schema with admissible link ¥. Comnstruct schema

S' as follows:

Step 1. let A = [al, . nm} contain the operators of S such that § has an
empty data path from each x, toy wvhere x;
Let the input links of a, be Ugjgs sees By
Let Z be the subgraph of § that contains each empty data path from each

is the output link of 2.

(18]

Step
x; toy. If Z contains the output link w of an iteration schema
merge node, then include in Z each gate node having w as its input
data link. The input links of Z are IN(Z) = {xl, ceey xm]. The
output links OUT(Z) include each data link of 2 which is an input link

of some actor in 8§ but not in Z.

-27-

Step 3. For each y € QUT(Z) that is an input link of some decider d in the
decision structure of an iteration schema, perform the transformation
ghown in Figure 15. The new merge node m' is not part of Z, hence
L2 and L become output links of Z if they are not already. Link y
is ne longer an output lick of Z unless it is an input link of

actors other than d that are not in Z.

Step 4: Schema 5' ie the result of rearranging S using r copies of Z as shown
in Figure 16.

Figure 17 illustrates application of transformation T to admissible link w
of an iteration schema. 1In Figure 172 empty paths lead to link w from links x and
v, and links x and v are output links of operators a and b which have the same
function letter. The subgraph 2 for admissible link w is indicated in Figure 17b
and consists of the merge and gate nodes and links x, v, ¥, w and 2. Since link ¥
is an input link of decider d, a copy of the merge node is brought outside 2 as in
Figure 17c. Since operators a and b have one input link, just one copy of Z is

required, and the transformed schema is shown in Figure 17d.

(a) (b

Figure 15. Step 3 of transformation T.

-28-

(a)
Y11 Y1ir Ymi Yo
. * h ’ \ L ’
£ J £
xl *n ;
///’1 m E\\
! 2 J
1 n J
— ' .//
71 ¥a
)
1 Yml Yir Ymr
[e _e ®
/ 1 n \ 1 m
zy Z_
1 n 1 n
P / f
/
i £ f
L .
Yl ¥

Figure 16, Step 4 of transformation T.

{a)

(c)

Figur

17, ool v otor oot
e 17. Application of t

-2g-

(b)

s RILYratian

rangformation T for adﬁissible link w,

Lemma 1:

Proof:

Theorem 3:

Proof:

=-30-

If 8' is the result of applying transformation T to schema 8, then
§' is a (well formed) schems, and §' is strongly equivalent to §.

Furthermore, S' is free if S 15 free.

1. (8' is well formed.) The association of decision structures and

Zate and merge nodes with conditional and iteration schemas in 8' is

exactly as in 5, In fact, the only change is that operators occur
in 8" where they are not present in S and vice versa. There are two
places where introduction of an operator can make a schema not well
formed :
&, Between a merge node and a T-gate or F-gate of an iteration
schema.
b, Between a merge node and the decision structure of an

iteration schema,

But the comstruction of Z in Step 2 and the modification of § in
Step 3 ensure that no output link of an iteration schema merge node
is an output link of Z. Hence 5' is well formed.

2. (8' is strongly equivalent to S.) It is clear from Figures 12 and
13 that transformation T preserves functionality and therefore S' is
strongly equivalent to S.

3. (8' is free if S is free.) The decision structures of $' ¢correspond

one-to-one with decision structures of S, and perform identical decisions.

S§' = 8. Furthermore, S' is free if § is free.

We show how the required schema $' may be obtained by repeated applica-

tion of Transformation T until no further application is possible,

Step 1. Let S_ = S; set k = 0.

0
Step 2, Let Nk contain the admissible links of Si' If Nk is empty,
then §' = Sk is the transformed schema,

Step 3. Let vy ¢ Nk be some admissible link having greatest depth in

Sk' Use Transformation T to convert Sk inkto Sk+1'

Step 4, Set k = k + 1 and return to Step 2.

If S is a schema, one can construct a modified schems S’ such that

-31-

if this procedure rerminates, the resulting gchema will have no admissible
links. If § is a frese schema, then Lemma 1 shows that if the procedure
terminates, S' is well formed, free, and strongly equivalent to S. The
procedure terminates because each application of Transformation T re-
duces by one the number of admissible 1inks having greatest depth in

Sk’
Hence §' is a modified schema.

and creates a bounded number of admissible links of lesser depth.

A Necegsary Condition for Equivalence of Main Links

Next we show that in testing the equivalence of main links of a schema R
containing a conditional or iteration subschema R', we need only be con-
cerned with identifying those links in OUT(R') that are equivalent tc one

another, or are equivalent to links in IN(R').

The union of & conditional schema: Let R be a conditional schema within

schema S and let P and Q be the true and false alternative schemas of R. The
union of R is the schema R’ obtained by deleting the gate and merge nodes of R,
merging the output node of each g&fs_with its data input node, and taking
OUT(R') = QUT(P) {} OUT(Q).

Theorem 6: Let R be a schema within a free, modified schema S (possibly R. = s),
and let R' be a conditional or iteratiom subschema of R. 1f y € OUT(R")

then either

1. y = x for some x € IN(R")
or
2, 1f z € MAIN(R) then z = y only if R contains an empty data path
from y to z.

Proof: We consider two cases according as R' is an iteration schema or con-
ditional schema.
Part 1. (R' is an iceratior subschema of R.) Lat y € OUT(R') and su1p-
pese y # x, every x £¢ INR')., Let Hi ¢ DADEPS(R') where the first de-
cision in H) has outcome false and H) therefore contains zero repeti-
tions of the body of R'. Since S is free, there exists G; € DADEPS (S)

-32-

¥
1 containg Hl. Let v1 be

Node vy is also labelled x for some

containing some Hl € DADEPS(R) such that H

the value node labelled y in Hl.
x € IN(R') bacauge Hi ¢ontains no operator applications, Since by
hypothesis y # x, let H, be the result of replacing Hi by Hé in H,,
and let G, be the result of replacing Hl by Hy in G,, where

Hﬁ € DADEPS(R') 1is chosen so value node u, labelled x in HZ and value

, are not gimilar in G2' If 2 € MAIN(R), then

z cannot label vy in G1 and v, in G2 unless R contains an empty data

path from link y to link 2. Hence z # y unless there is an empty data

node v, labelled v in H

path in R from y to z,

Part 2. (R' is a conditional subschema of R.) We use an Induction
on r, the order of schema R.

Basis: The Theorem holds trivially if R contains no conditional or
iteration subschemas,

Induection: Assume the Theorem is valid whenever schema R is of order
less than r. Let R be of order r, let R' be a conditional subschema
of R, and let y € OUT(R'). Suppose v £ x, every x € IN(R'). Let P
and Q be the true and false alternative schemas of R', and let

u € OUT(P) and v € OUT(Q) be the T- and F-input links of the merge
with output link y. Let z € MAIN(R). Since $ is a free schema,

2 =y implies that either R contains an empty data path from y to z,
or that u = v in the union of R'. We shall demonstrate that the latter

assumption leads to a econtradiction.

Let n be the sum of the largest number of conditional and itera-
tion subgchemas on any path from IN(P) to link u € QUT(P) and the
largest number of conditionzl and iteration subschemas on any path
from IN(Q) to link v € OUT{Q). We show that u # v in the union of R'
by induction on m.

Basis: Schemas P and Q contain only operators. We distinguish three
cases,

1. u and v are input links of P and Q, respectively. If u = v in the
unicn of R', then in the union of R' links u and v must coincide with data
input links x and x' where x = x', But this implies that v = x, which
contradicts our assumption that y # x for each x € INQR').

353~

2. Links u and v are output links of operators a and b, regpectively.

Then operators a and b must have the same function letter, and § cannot be
a modified gchema with respect to link y.

3, Just one of links u and v is the cutput link of an operator. Suppose
link u is the output link of an operator with function letter f. Then v
must be an output link of a gate mode or an output link of a conditional
achema within Q. If u = v in the union of R’, then every empty data path
in S leading tc link v must originate at an operator with funetion letter £.
Hence S cannct be a modified schema with respect to link v,

Induction: We distinguish two cases:

1. Links u and v are output links of operators a and b, respeccively. Then
operators 2 and b must have the same function letter and S cannot be a modi-
fied schema with respect to link y.

2. At least one of u and v is an output link of a conditional or

iteration schema., First, suppose u € OUT(L) where L is an iteraticn
subschema of P, By Part 1 of the Theorem, either u = u' for some

u' € IN(L), or u # v in the union of R’ since the union cannot con-

tain a data path from link u to link v. But the largest number of
conditional and iteration subschemas on any path from IN(P) to link u'’

is one less than the corresponding number for link u, Hence, by the
hypothesis of induction, u' # v in the union of R'. Therefore,

u ¥ v in the union of R'. Second, suppose u € OUT(C) where C is a
conditional subschema of P. Since C is of order less than r, either

u = u' for some u' € IN(C) or u # v in the union of R'., Again, the

largest number of conditional and iteration gubschemas on any path

from IN(P) to link u' is one less than the corresponding number for

link u. By inducrion u' # v in the union of R', Therefore u # v in

the union of R'. The corresponding argument applies if link v is an

output link of a conditional or iteration schema,

-34-

The Decision Procedure

Procedures for deciding equivalence of any two main links of a schema are
glven in the proofs of Theorem 7 and Theorem B, These procedures yileld for
each subschema R a partition of the input and output links of R into sets of
equivalent links.

Equivalence Partitions: If X is a set of data links in a schema, then F

is the equivalence partition of X if and only if P is the partition of X into

maximal sets of equivalent links. We write P = EQPART(X). For simplicity,

we shall regard a partition P of a set X as a relation

PcXxX
and write
(2, x') € P
to mean: == and x' are in the same part of P,

Similar paths: 7Two paths ¢ and § in a schema containing only coperators

and data links are similar (v ~ B) if and only if both paths contain equally many
operators, and, if a is the ith operator on path v and b is the ith operater
on path 8, then a and b have the gsame function letter and the input ares of

a and b that lie on paths and B have the same index.

Thoerem 7: Let R be a schema in a free modified schema § (possibly R = 8).
Let R' be a subschema of R where R' containg only operators and data
links, and each x € IN(R') is in IN(R) or is an output link of some
conditional or iteration subschema of R. Then if P = EQPART(IN(R'))
ig given, one ¢an construct P' = EQPART(BOUND(R')).

Progf: In this proof we use the convention that x, x' € IN(R') and
vy, ¥v' € OUT(R'}. Define P' as follows:

(x, x') ¢ P' 1if and only if (x, x') € P,

(v, y') € P' if and only if, for each path in R'
from some x to v (or v') there is a similar
path in R' from some X' to y¥' (or y) where
x, x') € P,

..35-

By construction x = x' if and only if (%, x') € P'. We prove that

P' = EQPART(ROUND(R')}) by showing that: (1) v = v' if and only if
G, y")€P'; and (2) y = x if and only if y = x' where (x, x') € P.

Part 1. (y = y' if and only 1if (¥, v') € P'.,)

Sufficiency: By construction of P' the value nodes labelled v and y'
in any G € DADEPS(R) are similar if (y, y') £ P'.

Necessity: Suppose y = y' but (v, v') ¢ F'. There must be paths in R'
Ll
x_ 2 v and x' %,y

such that one of the following is true:

1. o~ o' but (x, x') ¢ P.
2. (x, x')EPbutg*f'g".

3. ad A" and (x, x") £ P.

We show that each of (1), (2) and (3) leads to a contradiction.

1. If w~ o' but (¢, x') £ P, then x £ x' and we can choose

G € DADEPS(S) containing H & DADEPS{R) such that the value nodes
labelled x and x' in H are not similar. Then the nodes labelled ¥
and y' in H are not similar, contradicting y = y'.

2, If (x, x") € Pbut o £ o then x = x' and in any G ¢ DADEPS(S)
containing some H € DADEPS(R), the nodes labelled x and x' in H will

be similar. Hence the nodes labelled'y and y' in H cannot be similar
and vy £ y'.

3. Suppose x # x' and o ¥ g'. If y = y', 2 must be similar to a
proper subpath of o' (or vice versa), as illustrared in Figure 18.
Suppose the last operator in g’ having no simfilar operator in o has
function letter f. Let G € DADEPS(S) contain H € DADEPS{R). The value
node labelled x in H must be the output value node of an applicacion
having function letter f. This must be true for every H £ DADEPS(R)
contained in any G € DADEPS(S). Since S is free, S can have no ampty
data path leading to* link x from any link in IN(S) or from the output

link of any operator having function letter g # £. But this is impossible

because S5 15 a modified schema.

~36-

T~

£
IN(X) lx -—n\x'\
“y,
|

QUT(X) = f /
¥ y

Figure 18. Necessity argument for Theorem 7.

Part 2. (y = x if and only if y = x' for some x' where {x, x') € P.):

If y =x' but x' # x then y # x. Otherwise R contains a nonempty path

to link y from some x'. If x' = x, the argunent of Part 1, case 2

applies to show v # x; if x' £ % the argument of Part 1, case 3 shows
that y # x.

Theorem §:

Let R be a2 schema within a free modified schema S {possibly R = §).

Ler Q be any subschema in R where Q is some composition of operators,

conditional schemas and iteration schemas of R, and IN(Q) = IN(R). Then

cne can construct P = EQPART(BOUND(Q)).

Proof: We validate the following three predicates by induction on the

order of any schema R conteined in §.

WE(r): If R is & (well formed) schems of order r aod -

P = EQPART(IN(R)), one can construct P' = EQPART(BOUND(R)).

COND(r): IfR is a conditional schema of order r and

P = EQPART(IN(R)), one can construct P' = EQPART (BOUND(R)).

ITER(r): If R is an iteration schema of order r and

P = EQPART(IN(R)), one can construct P' = EQPART (BOUKD®R }).

-37-

The proof is in four parts:
Parr 1: WF(0) is true,
Part 2: WF{(r) implies COND(r + 1)
Part 3: WF(r) implies ITER({(r + 1)
Part 4: COND(r) and ITER(r) imply WF(r)

Part 1, (WF(0) is true.) If R is of order O, R contains only operatocrs.,
By Theorem 7 one can construect P' = EQPART{BOUND(R)).

Part 2, (WF(r) implies COND{r+1).). Let C be a conditional schema
of order r + 1 within S and suppose P = EQPART(IN(C)). Let & and &
be the sgchemas that are the true and false alternatives of C

(see Figure 19), We use the convention that

x, x' ¢ IN(C) t, t' € INQA) v, v' € IN(B)

v, ¥y' € 0UT(C) u, u' € OUT(A) v, w' ¢ QUI(E)

¥.¥'® 0UT(C)

Figure 19. Part 2 of Theorem B.

=-38-

Construct partition P' of BOUND(C) as follows:

Step 1. Construct partition QA of IN(A):

(£, ') € QA if and only if ¢t and t' are output links of T-gates

with input links x and x', and (x, x') € P,

Construct partition Qg of IN(B):

(v, v') € Qp 1f and only if v and v' are output links of F-gates

with input links x and x', and (x, x') £ P.

Assertion l: P = EQPART(IN{(C)) implies QA = EQPART (IN (A)}

and Q; = EQPART(IN(B)).

Step Z. Use WF(r) to construct partition QA of BOUND(A) from
QA’ and partition Qé of BOUND(B) from QB'

Assertion 2: QA = EQPART(IN(A)) implies QA = EQPART(ROUXD(A)):
Qp = EQPART(IN(B)) implies Q) = EQPART{(BOUKD(E)).

Step 3. Construct partitionm P' of BOIND(C):

(%, x') € P' if and only if (x, x') £ P,

(%, y) < P'" if and only if: the merge with output
link y has data input links u and w; some T-gate
has input link x' and output link t where
(x, x') £ Pand (t, u) ¢ QA; some F-gate has input
link x" and cutput link v where (2, x") ¢ P and
(v, w) < Qg-

(v, ¥') € P' if and only 1f: the merge with output
link ¥ has input links u and w; the merge with
output link y' has input links u' and w';

(u, u') ¢ QA and (w, w') € Qé.
Assertion 3: Q. = EQPART(BOURD(A)), Qg = EQPART (BOUND(B)), and
P = EQPART(IN(C)) imply P' = EQPART (BOUND(C) 3},

The validity of Assertions 1 and 3 follows directly from the
construction of partitions QA’ QB and F', The validity of
Assertion 2 is provided by WF{r). The validity of Part 2 fol-

lows directly from the three asgertions.

-39-

Part 3. WF(r) implies ITER{r+1).): Let L be an iteration schema
of order r + 1 within § and suppose P = EQPART(IN{(L)). Let schema
B be the body of L and Iet M(L) contain the output links of the
merge nodes of L (see Figure 20)., We use the convention that

x, x' £ IN(L) w, w' & M(L) u, u' € IN(B)
vy, ¥y' € 0UT(L) v, v' € OUT(B)
Construct partition P' of BOUND(L) as feollows:

Step 1. Llet Qé = {INC(L) | OUT(B)} be an initial (trivial) partition
of IN(L) U OUT(B). Set i = 0.

Step 2. Construct partitien Pi of IN(L) '' M(L):
(x, x') € Pi if and only if (x, x'} ¢ P.

(w, w') € Pi if and only if: the merge nodes with output

links w and w' have F-input links x and x' and
T-input links v and v'; (v, v') ¢ Q{;
and (x, x') € P,

(x, w) ¢ P, 1f and only if: the perge node with output
link w has F-input link x' and T-input link w;

(x, x') ¢ P;and (x, v) € Qi.

¥a¥ OUT (L)

Figure 20, Part 3 of Theorem 8.

~£0-

Assertion l: P = EQPART(IN(L)) and Qi = EQPART(IK{L}) t} OUT(E))
imply P, = EQPART(IN(L) | M(L)).

Step 3. Construct partition Qq,q of IN(L) U IN(B):
(%, x') ¢ Qi+1 if and only if ‘x, x') € Pi'

fu, u') ¢ Qi+1 if and only if the T-gates having putput links
u and u' have data input links w and w', and
(w, w') €P_.

{x, u) ¢ Qi+1 if and only if the T-gate having output
link u has data input link w, and (x, w) € Pi'

Assertion 2, P

EQPART(IN(L) ! M(L)) implies Q.1 = EQPART(IN(L) "' IN(B)).

i
Step 4, Construct partition Q£+1 of IN(L) t] QUT(B):
Define partition R of IN(B) by :

(u, u') € R if and only if (u, u') & Q-
Assume R = EQPART(IN(B)) and use the validity of WF(r) to construct
R' = EQPART(BOUND(Z)). Define Q,; by:

{(x, ') € Q£+1 if and only if (x, x") € Qi+1'

(v, v') € Q£+1 if and onity if (v, v') € R".

T

(x, v) € Qi+1 if and only if (x, u) & Qi+1
and (u, v) € R' for some u.

Assertion 3. Qi+1 = EQPART(IN(L) U IN(B)) implies

Q£+1 = EQPART(IN{L) | QUT(B)).

Step 5. If Q£+1 # Q;, set i = i+1 and return to Step 2.

Otherwise let P" = Pi.

Srep 6. Define partition P' by:
(x, x") € P' if and only if (x, x') € P"

(¥, ¥') € P' if and only if the F-gates having output
links y and y' have data input links w and w',
and (w, w') € P"

(x, ¥y} € P' if and only if the F-gate having output
link y has data input link w,
and (x, w) € P",

~41-

Asgertion 4. P" = EQPART(IN(L) U M(L}) implies
P' = EQPART(BOUND(L)).

The vealidity of Assertions (1), (2) and (4) follows by constructicn;
that S is free 15 used in Assertion (1). The validiky of WF{(r)
establishes Assertion (3). Termination of the procedure is guar-
anteed because sach Q{+l is a refinement of Q{, and L has finitely
many links. Then P" = EQPART(IN(L)} U M{L)) holds by an induction
on the length of the procedure. Wirh Assertion (4), the validity
of ITER(r+1) follows. '

Part 4. (COND(r) and ITER(r) imply WF({(r+1).): Let R be 2 schema
within § and suppose @ = EQPART({IN(R)). As shown in Figure 21, let
Ris «euy Rn be the conditional and iteration subschemas of R, with

the numbering cheosen so R contains nc data path from Rj to Ri if

IN(R)
/__Jh'_'-_"'l
r —] [] -
‘0 ‘ 1 \
Ay
U, ~— e . e
1 rpi
> Q
U — e . ! »Pie1
Ri
vV, —— ® -
i
Ai |
— -
Uil o ¢
Uh+1~__ a e e
—
CUT{(R}

Figure 21. Structure of Schema R for Part 4
of Theorem 8§,

-42-

J=1. tet

Vo, U

0 v

1* "1 c¢ n’ ' "n+l

be sets of data links of R such that :

= IN{R): Un = QUT{R),

Yo
2. Each Vi and Ui is a subset of MAIN(R) that is a cut set of R.

+1

3. The sequence of cut sets strictly "progresses" through R;
that is, R contains no path from v € Vi to u € Uj where

js i, and no path from u to v where i< i,
4. The part of R between Ui and Vi is precisely Ri.

The actors between Vi and Ui+1 are operatcrs; let these operators
constitute schema Ai. Thus :

IN(Ri) c IJi IN(Ai) =V,

i
OUT(Ri) < Vi OUT(Ai) = Ui+1

We use the convention that
%, x' € IN(R) u, u' € Ui

¥, ¥' € OUT(R) v, v €V,
Construct Q' = EQPART(BOUND(R)) as follows:

Step 1. Let QG =Q; set i =0,

of

Step 2, Given partition Qi of IN(R) 1) Vi, construct partition Pi+l

IN(R) Ui+1:
x, x') € F,yp if and only if (x, x') & Qi'

(u, u") € P41 1f and only if either [u, u'l g Vi and

{u, u'y € Qi’ or {u, v'} ¢ OUT(AiJ and Ai contains similar

paths to links u and u' from links v and v' where (v, v') € Qi.

{x, u) ¢ Pi+1 if and only if there exists some v & Vi such that

v = u and (x, v) € Qi.

Assertion 1, Qi = EQPART{IN{R} U Vi) implies Pi+ = EQPART{IN(R) 1 U,

1 1+1L

Step 3. If i = n, ler Q' = Pi+1 and stop. Otherwise set { =1 + 1,

-43-

Step 4. Given partition P1 of IN(R) U Ui’ define partition Pi of IN(Ri) by :

(u, u') € P£ if and only if (u, u') € Pi

Aggsertion 2. Pi = EQPART(IN(R} U Ui) implies Pi = EQPART(IN(Ri)).

Step 5. TUse the validity of COND(r) and ITER(r} to congstruct partition

] [}
Q) of BOUND(R,) from P.

Assertion 3. P{ = EQPART(IN(Ri)) implies Qi = EQPART(BOUND(Ri)).

Step 6. Comstruct partition Qi of IN(R) ' Vi:

(x, x') € Qi if and only if (x, x') € Pi.

(v, v') € Q if and only if, for some u and u':
either v = u or (u, v) € Qi;

either v'= u'or (u',v') € Qi; and (u,v') € Pi'

{x, v) € Qi if and only if, for some u:

either v=u or {(u,v) € Q{; and (x,u) € Pi'

Return Lo Step 2.

Assertion 4. P, = EQPART(IN(R) UJ U) and Q! = EQPART(BOUND(R,))
imply Q; = EQPART(IN(R) U V,).

Agssertion (1) holds by construction and Theorem 7. Assertion (2) holds
by construction, Assertion (3) follows fromthe validity of COND(r)} and
ITER(r). Assertion (4)holdsbecause by Theorem 6, v = v' is possible
only if v, v' € Ui or v, v' € OUT(Ri). Step 1 validates

Qi = EQPART(IN(R) 1] Vi) for i = 0. Hence by induction using Asser-

tions (1), (2), (3) and (4), Q' = B, = EQPART(IN(R) U Uy’
= EQPART(BOUND(R)).

-

Theorem 9: Let S be a free, modified schema, and let Py and Py be any data
links of 8. It is decidable whether Py and p, are equivalent.

Proof: We consider three cases:
l. Suppose S5 contains a schema R such that [pl, P2] < MAIN(R).
By Theorem 8 one can construct P = EQPART(BOUND(R)). Then P =P, if
and only if (pl, PZ) e P.
2. Suppose S contains an iteration schema R such that Py and p, are
output links of merge nodes of R. Let %y and %, be the F-input links
and let Yy and Y, be the T-input links of these merge nodez. Then
P, = p, if and only if X, =x, and y, =y,. Since {xl, x2} < MAIN(R)
and {yl, yZ] < MAIN(B) where B is the body of R, Py =Py is decidable.
3. If neither case 1 nor case 2 applies, Theorem 4 shows that Py 3 P, -

Corollary: If S is a free schema, one can construct a strongly equivalent schema
s' such that no two data links of S' are equivalent. (We assume that sets

of equivalent output links in § are combined for comparison with §'.}

Proof: Transform S into a free, modified schema, then merge equivalent links

and delete redundant parts to obtain §'.

This work, unfortunately, does not apply as it stands to goto programs or
program schemas because there are free program schemas for which no equivalent
free data flow schema exists [8],

Having a procedure for testing equivalence of data links in any free schema
does not yield a test for equivalence of free schemas because combining two
schemas so our test may be applied to corresponding pairs of output links nec-
essarily destroys freedom if the schemas are equivalent, WNevertheless, we
hope to extend the concepts and methods developed here to obtain decision pro-

cedures for equivalence of schemas.

Acknowledgement

Many useful comments, ideas and counterexamples were contributed in the

course of this work by Paul Fox, John Linderman, Joe Qualitz and James Rumbaugh.

«45-

References
1. Adams, D. A. A Computation Model With Data Flow Seguencing.

10.

11.

12.

Technical Report CS 117, Computer Science Department, School of Humanities
and Sciences, Stanford University, Stanford Calif., December 1968,

Asheroft, E., and Manna, A. The translation of 'go to' programs to 'while'
programs. Information Processing 71, North-Holland Publishing Co.,
Amsterdam 1972, pp 250-255.

Bahrs, A. Operation patterns (An extensible model of an extensible language).
Symposium on Theoretical Programming, Novosibirsk, USSR, Augustc 1972 (preprint).

Dennis, J. B. Programming generality, parallelism and computer architecture.
Information Processing 68, North-Holland Publishing Co., Amsterdam 1969,
PP 484-492,

Fosseen, J. B. Representation of Algorithms by Maximally Parallel Schemata.

5. M. Thesis, Department of Electrical Engineering, Massachusetts Institute
of Technology, Cambridge, Mass., June 1972.

Kahn, G. A Preliminary Theory for Parallel Propgrams., Internal Memeo,

Ingtitut de Recherche d'Informatique et d'Automatique, Rocquencourt,

Yvelines, France, 1973,

Karp, R. M., and Miller, R. E. Properties of & model for parallel computations:
determinacy, termination, queueing. SIAM J. Appl. Math,, Vol, 14,
November 1966, pp 1390-1411,

Linderma v‘\w
Luckham, # t]ﬂ g”"‘* s M. 8. On formalised computer
programs ' g, Vol. 4, No. 3 (June 1970},

pp 220-2 ¢ ptMé-— Fli’uﬂ‘-'

Paterson g . AQ-VV' fel of Computation. Ph.D. Thesis,

Adr
Tinity ¢ RV 7.
Patil, S ‘ EﬂMl i iections of determinate systems.
Record o rrent Systems and Parallel Com-
putation

w

Rodrigue; L Computation. Report MAC-TR-64,

Project hna., ressacousecCs 1OECLCuce of lechnology, Cambridge, Mass.,
September 1969.

