MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FROJECT MAC

Computation Structures Group Memo 87

Translation of Simula 67 Into the Common Base Language
by

Fhilippe Coueignoux

Philippe Janson
[

This work was submitted for credit in Sublect 6.534,
"Semantic Thecry for Computer Systems," Spring 1973,

August 1973

L. Scope of the Paper

In an earlier paper of this term (3), two of us have given a general and

informal deseription of Simula 67 and have outlined how the main primitivea of
the language could be translated into the Common Base Language defined by
Dennis [11 and Amerasinghe {2]. That brief study showed us that the CBL could
support most of the concepts of Simula 67. However, some features of Simula 67
iatreduce new problems (e.g. coroutines, cycles, garbage collection, ...).
Since the problems seemed challenging and interesting, we decided to carry om
our study, to give amore complete definitionm of Simula &7, to give guidelines
for the translation of each primitive and to solve the problems introduced by
our translation rules.

The paper is unfortun;tely divided into two parts, although we both worked
out all topica during common work sessions. This first part will describe
S8imula 67 and the rules finally adopted For his translation into CBL. The second
part will explain what the problems are, how they can be solved in general, and
it will show the interpretation of a simple one queue-one gerver problem. This
part will in faet justify the tramslation rules explained in the first part.
Like in the first paper, we will only consider features proper to Simula, and we

assume that all Algol features can be translated with no problem.

II. Description of Simula 67

The deseription given here is based on the definitions given in [#, 5,6, 7,8].
The CDC manual gives the complete and formal definition of the primitives but also
describes built-in and base functlions which were implemented only to support the
compiler and are actually not part of the language and inaccessible to the user.
We will not describe these primitivea. We are not interested, for instance, in

statistical distribution generators, I/0 handlers, etc.

1. Fundamental concepts

a. Systems

Simula is an Algol-like block structured language designed for the simu-

lation of systems. A program describes a system; its execution gimulates the
evolution of the system. Two concepts are embedded in any system described

by Simula: set manipulation and pseudo-parallel sequencing. Set manipulation
Blves to the program the ability to declare and use sets (i.e. queunes).
Pseudo-parallel sequencing gives to the program the ability to be run on a real

world gequential machine and yeat to simulate the evolution of a system containing

concurrent components.

b. Objects:

In addition to the Algol-like notions of block and procedure, Simula has the
notion of class; Simula also uses a text manipulation technique called prefixing.
A class 1s a compound statement declared just like a procedure. The difference
between both appears in the activations. Classes have to be activated by a re-
served primitive (not a call) and when all ingtructions of a class are executed,
the termination of the class activation is not equivalent to a return. The notion
of class, unlike the notion of procedure, allows the user to define pseudo-
coroutines. Prefixing means writing the name of a class in front of the declara-
tion of another class or of a Block. Prefixing inserts the whole text of the pre-
fix class between the declaration part and the statement part of the prefixed
class or prefixed block, Prefixing i8 nothing else than a powerful tool for
concatenation of texts, Any activation of a block, procedure, class, prefixed
block or prefixed class is called an object. Objects are the components of the
simulated system.

2. Implementation of the concepts
4. Detaching:! System structure:

In Algol, block and procedure activations are either attached or terminated.
While executing, the activation of a block or procedure is said to be attached
to the block or procedure which created it. After the end of the block or the
return of the procedure the block or procedure activatcion 18 terminated and

inaccessible. The same is true in Simulz.

-

b, Resuming: system discrete gimulation time scale:

We have Just mertioned that a detached object can be active or passive.
We will now explain what it means in terms of the simulation of the system.
Any Simuls program has a built-in privileged set called the sequencing set
(8Q5) which is the time scale of the simulation, Each element of SQS is called
an event notice, In each event notice there exist two componentg: a pointer to
4 detached object and the real mumber gtanding for its scheduled activation time.
All event notices are ordered in SQS by increasing time, thereby creating a
discrete time scale. This discrete time scale implies a discrete simulation.
When the object, pointed to by the first event notice of 3Q5, 1s active, the
system time is fixed and equal to the time associated with the event notice.
Execution proceeds to the next event notice when the active object hits the
instruction "resume, " thereby becoming passive (eraging the current event notice).
As execution proceeds to the next event notice, time flows at once to the time
of this new curreat event notice.
N.B.: '"Resume" is also inaccessible to the user, It is implicitly contained
in instructions like "end," "pasaivace,” etec.

3. Aspect of a Program and Generation of a System

begin {%ny set of Algol declarations and class declarations
{%ny set of Algol statementa
simulation begin i%ny eet of Simula declarations
{?ny set of Simula statementas

end:

{any set of Algol statements

end:

Figure 1

Now we come to the case of a prefixed block activation. Prefixed bloeck
activations are always detached or terminated. Detaching a prefixed block
activation means that one defines a system (or subsystem) at a certain level.
Let us ignore for a while the existence of any compound statement except pre-
fized blocks. 1In doing so we define 2 proper hieracrchy of prefixed blocks in
the Simula program. The outermost prefixed block of the program must be pre-
fixed by "simulation" (a built-in class; see further). Ouly this block can be
prefixed by "simulation." Tt is detached at level one and defines the system
similated by the program. Any prefixed block nested in the first one will be
detached at an upper level defined by the prefixed block hierarchy and will
define an independent subsystem. The termination of a prefixsd block implies
the termination of 4ll objects detached at the same level, i.e. detached class
chjects.

Finally we come to the case of classes (prefixed or not). Activations of
classes can be attached, detached, or terminated. When initially created, a
class actiwation is attached to the object which created it. A class may contain
the instructiom ''detach" causing any activation to be detached at the level of
the smallest enclosing prefixed block activation. Detaching a class activation
for the first time returns the control back to the activation statement but the
class activation object still remains in existence and is accessible, If, later
on, control enters again the object, execution will proceed after the '"detach"
statement. If control hits ancther "detach" statement, it again quits the object
but returns to the smallest enclosing prefixed block activation instead of re-
turning to the object which created the current class object. If conmtrol hits
the 'end" statement of a class, the class activation is terminated, i.e. no more
executable, but still accessible (its environment is not discarded). Control
returng to the activation statement or the smallaest enclosing prefixed block de-
pending whether the class activation object was still attached or not.

Class detached objects together with the smallest enclosing prefixed block
detached object define the components of a pseudo-paralliel system (subsystem)
at the level of the prefixed block object. Other block, procedure or class
objects can be attached to a detached cbject. When an object is detached and
has control it is said to be active; when it does not have contrel, it ias pas-
sive. When control is in an object attached {directly or transitively) to a
detached object, the detached object is active,

N.B.: 'Detach" should not be used by bhe programmer. It is impiicitly in the
text of all clesses prefixed by 'process” (see further).

which also can be a set member and describes properties of event notices.

In addition, simulation contains a few procedure declarations and initialization
Statements. When control enters the block prefixed by simulation, these state-
ments will be the first ones to be executed before the actual user statements,
Their purpose is to initiate a similation, i.e. to generate the first object

(the current prefixed block activation), to set up 3Q3 and an event notice for the
current prefixed block known under the name MAIN.

4. Description of Simula primitives

(Primitives of linkage, process, and event notice are inaccessible to the
programmer and therefore uninteresting to us hera,)

a. Declarations

In addition to Algol declarations, Simula uses classes and references.
Classes have bean described above. References are pointers to detached objects:

e.g.:

ref(head) Q declaras a set;
ref(truck) MAC declares an objact MAC of the class truck.

b. Macros recognized by the translator

- new: is the privileged instruction generating an activation of a class
or a prefixed class.
@.g.: MAC := mew(truck) generates an object of class cruck
called MAC,

= 1insvect: 1is an instruction which allows the ob ject executing it to
access the environmernt (GBL local structure)} of ancther object.
@.z.: finspect X do B allows the executing object to interpret
the variables in block B as if it wereworking in the environ-

ment of object X. This is called remocte access.

- dot notation: is a means much like inspect to access the enviromment of an
external object (remote access),
e.g.: X.proec {argl) allows the executing object to execute
procedure proc with arguments argl in the enviromment of
objeet X. The arguments must be defined in the caller's
environment but the procedure must exist in the external
cbject enviromment.

-7-

- this: 1is a pointer to the current active object unlesss this appears

in an inspect block.

- time: returns the current system time.

¢. Primitives deélared in class head:

- Q. first iz a procedure which returns a pointer to the first element of
set Q.

- Q. last returns the last element of set Q.
Q. cardinal returns the mumber of members of set Q,
- Q. empty returns the boolean state of set Q.
Q

. ctlear empties aet Q.

d. Primitives declared in class link:

- P. into (Q) inserts object P as the last member of set Q.

~ B, precede (X) inserts P in front of ¥ in whatever set X is,
- P. follow (X) inserts P behind X in whatewer set X is.

- P, out removes P from whatever set P ig in. This procedure is

implicitly called by the other three before anything else.

e, Primitives declared in class simulation:

Sequencing

- passivate: passivates the current ohject.

- wait(Q): passivates the current ohject and inserts it at the end of set Q.

- hold(T): passivates the current object and schedules its next active
phase in 5Q8, T time units later.

- c¢ancel(P): erases the event notice corregponding to cbject P in 548§,
if any. This procedure is implicitly called by the other three before
anything else.

Scheduling

In all these statements, the event notice corresponding to the object P
in 8Q8 if any, 18 first removed. (Cancel (P).)
= activate (P)(T)(S): schedules an active phase for ohject P at time T

with respect to 8,
- reactivate (P){(T){S): passivates the current object and schedules an

active phase for object P at time T with respect to §.
{P) is any kind of pointer referencing a detached object.
(8) is blank or prior, meaning after or before all objects already
scheduled for time (T).

(T) is at T: at time T
delay T: at current time +T
before X: before X in 5Qs
after X: after X in SQS
blank: schedules P immediately, reschedules the current chject

after P and passivates 1t now.

III. Tranglation of Simula Primitives

1, Text Bepregentation

The translator should first of all have knowledge about the internal clasges
simset and simulation. It then should know how to manipulate prefixing in order
to insert text of prefixes where appropriate. Tt also should distinguish prefixed
blocks and clagses from other compound statements in order to correctly translate
the activation and termination atatements like attach, detach, resume, and end.
{(See further.)

2. Object Representation

Any Simula object 1s characterized by two structures:
%(object) %(object)

! { i | I |
Det Sya §1 52 veeus ep ip S FN MM 1IN
! i i i } i i I I !

L{object) is a component of the 'lacal'’ component of the interpreter state.
Detached is a boolean of which the meaning i& obvicus. System is a component of
which the value iz the name of the smalleagt encloging black activation to be

used when the object is detached. $1 and 52 are used for calls and remote access
(see IV.5), C(object) is a component of the 'control' component of the inter-
preter state. It i3 a proceesor in the CBL sense. Ep, ip and s are as in CBL.
FN, MN, and LN are needed to represent coroutines and aveld physical cycles

(see IV.6). Their scope of use is broader than just Simula. In addition to
these components which are created for any object, several components are created
with objects of classes being, or containing as a prefix, head, link, process or
event notice. Am object containing head, when created, adds to its local struc-
ture a 'succ' component which will polnt to the first object of the set and a
'pred’ component which will point to the last set member.

An object containing the properties of link also has two such components
pointing to its successor and its predecessor in a set. It is, therefore, clear
that a set is a cycle with two-way pointers (see IV.6 for btheir elimination),

In addition an event notiee object has a time component and a process component.
An object with the properties of "proeess" has an 'event' component pointing to
an.azgociate evenkt notice cbject, All objects of a class containing "'process"

are detached because the code of process containg "detach" as its first inatruc-

tion.

3. Declaration Primitives,

- glass: declaring a class in Simula has the same effect as declaring a

procedure in Algol. The translator creates a closure with a text
and a list of externals,

- ref (classname) objectname: creates a pointer initially null, to be used
to point to a Simula object local structure.

- Notice that objects of the class event notice are not declared by the
programmer, They are implicitly declared in primitives uaing,
creating or deleting them.

-10~

4., Compile Time Macros

- time: 13 eagy to translate, It 13 just a reference to 5Q8.succ.time.

The translation of other primitives is much more complex and poses problems --
not proper to Simula -« which result of the use of (pseudo-) coroutines and the
ability to access the locdl structure of an external object (remote access).

The translation of these features requires new instructions to be created for

CBL. They will be explained in the second part of this paper.

5. Head Primitives

- first: returns the external 'succ' component of the local structure of

the head object where it is called.

- last: returnsa the external 'pred' component of the loecdl structure of

the hgad object where it is called.

- cardinal: starting with the object pointed to by the 'succ' component
of the local structure of the head object where it is called,
it counts the number of set members until the 'succ' component
of an object (the last one) points to the head object. Notice
that this implies that the procedure access the local struc-
tures of all set members. This ia done by a new CBL primitive
(see p 15).

- empty: rteturns a boolean which is true if the 'suce' component of the

local structure of the head object where it is called is null,

- clear: resets the 'succ' and 'pred' components of the head object to

"null" and collects the garbage of set members by destroying all
'succ’ and 'pred' components. This also implies Temote access to

all set members local structures.

6., Link Primitives

Previously to anything else 21l following procedures call the procedure "out.’
- out: must be executed in an object local structure with link properties.
It reads the 'succ' and 'pred' components of the local structure.
It copies 'succ' tnto the 'suec' component of the object pointed
to by 'pred' and copies 'pred' into the 'pred' component of the
object pointed to by 'suce.' It needs remote access to these objects,

It then seta 'succ' and 'pred' to null in the local structure where
it is called,

«11-

- follow(X): gets remote access to X's local structure, copies the 'succ'
component of ¥ inta the 'suce' component of the current
link object where it is called and sets the 'succ' component
of X to point to the current object. It then gets remcte
access to the 'suce' objeet of the current cbiect, copies
its 'pred’ componment into the current locel structure 'pred'’
component. and sets the 'pred' component just read to point
te the current object.

- precede(X): is just like follow {substitute 'pred’ for 'succ' above).

- into(Q): gets remote access to the set Q's local structure, copies
Q.pred into the current local structure 'pred' component, and
sets Q.pred to point to the current object. It then gets access
to the 'pred' cbject of the current object, copies its 'auce'
component into the current ‘'succ' component and sets its 'succ'

component to point to the current cbject.

7. Similation Primitives

The following lines express the redundancy of a lot of primitives: the trans-
lator should use them like macros rather than have a procedure for each. This
brings down the overhead at run time.
wait(Q) = this. into(Q): passivate;
hold(T) = activate this at (time+T); passivate;
reactivate (P){T}{S) = ectivate (PY}{T){(S); paasivate;
activate P delay T = activate P at (time+T);

activate P = activate P after this: activate this after P; pasdatvate;

Given theae macros, we will translate only the following primitives, They
are called in the local structure of the current active object which executes them.
- cancel(X): gets remote access to X and from there to the correaponding
event notice E if any, It then performs the procedure E.out,

terminates E and erases the pointer to E in X.

- activate P at T (prior): firat cails cancel (P). It then gets remote
access to 5QS and searches until it finds an event motice E'
with a time component greater than or equal to T. If the
greater relation holds, an event notice E is generated with a

-12-

time component equal to T and the processor component
bointing to P, the procedure E.precede(E') is executed and
a pointer te E {8 copied into the 'event' component of P.
If the equal relation holds and there 1s a prior argument,
the above procedure is alsc executed, If prior is not
pregent then the search goes on again until the greater re-

lation holds, and the above procedure is then executed,

[ad

- activate P before/after P': first calls cancel (P). It then remotely

accesses P', reads 'event', accesses the evenkt notice E',
creates a2 new event notice E with the processor component
pointing to P and the time component equal to the time compo-
nent of E' and finally executes E.precede/follow (E').

- passivate: readd the 'event' component of the current detached object,
i.e., the currently active processor or the detached processor
to which it is attabhed. It then accesses the corresponding
event notice E, executes E.out and terminates E, It finally
executes a 'resume' instruction on the new current object,

i.e. the new first object of SQS (see p 24).

IV. Solutions and Problems

1. If the reader has not already donme so, he is welcomed to skip this section
and lock at the example, to see how the language works. Knowing rthe previous
sections and going through the example, he may criticize the implementation,
discover some problems, find his own solutions, then compare what he has found
to the present section. For he must not congider the following aalthe ultimate
tructh: the CBL is undefined enough toc allow each user to modify it, hoping for

improvements, at least to raise guestiong,

2. Coroutines

The most powerful concept of Simula 67 is the use of pseudo-coroutines. A
coroutine is a CBL-process which can be interrupted and restarted without being
killed and created again. Therefore, it 1s necessary to keep all its components
at hand, which mey even be modified in the meantime by some other CBL-process
through data-sharing. A process, in the usual sense of time-gharing, is such a

coroutine, generally implemented on a virtual system; parallelism can be modelled

=13-

with coroutines. Therefore we felt free to modify the CBL to account for such

2 broad construction, without being guilty of warping the CBL to fit our problem.
In fact Simula does not use all the possibilities of coroutines: there is no
parallelism in its execution sequence, only 2 pseudo-one; heace only one coroutine

is working at any given time and every interruption is aelf-performed.

3. The CBL-73

a. At this point we present our version of the CBL and of the stare space,
The latter is composed of a set af procegses called the econtrol structure. A

process has six components (see p 8).

m: (FN) the name: a character string; see rthe formation of names for
Simula-67 below,
(o) the state: a boolean O if the process may not be executed
1 if it may

(M) the asommame: the name of another process or an empty string
(ip) the ip: a polnter towards the next instruction to be executed
(ep) the ep: a pointer towards the local structure of the prbcess
(LN} the fathername: the name of another process

The p;imitives are the following:

gelect, link, const, assign are as stated in CBL
However, it is allowed that an instruction refers to FN, MN or LN of the process
which executes it, just where any component of the local structure would have been
legal,

mark replaces create

ummark replaces delete

The primitives create, sense, resume, wash are introduced -

-14-

b. create (gemeric-name), (text pointer)

before

W g M{ip | Iy

om® T

create A, ipD T
after

™ & M ipl N Moo Mip | LN

@]P @)“b poip ®,8)
(B;B) s B,
,/// 51

create A, ipo |
(A,0)

The create lnstruction generates a new proceasd with a unique name formed by
concétena:ing the generic name A with a unique number ; its state is 0; it has no
san-name ; ipo is as provided; its local gtructure is empty; its father-name is
the name of the process which has executed the create instruction. Note that
the new name is recorded in a special compoment, 31, of the o0ld local atructure,
thus providing a path between old and new processes, as well as.between new and
old ones.

Note: Whenever a (unique-name) ia written in an instruction, it must be

undergtood as the value of a referenee variable in the local structure

{ex.: Sense $1).

-15-

c. gense (unique-name)

before
L il ¢ i] | [
FN o WM ip LN FN o M ip LN
o b
(BsB) (A,cr)
T]
sense (A, o) sl $2 $ﬁ ﬁz
! |
after
! f ' ' I
FN ip

FN
| ep | N
(B,8) I Ao
sense (A, V $f1 $|2 $L s

The sense instruction mekes the local structure of the process (A,) known to
the process (B, $), which executes the instruction, by copying the ep of (A, o)
into a special location, $2, of the local structure of (B, B).

-16-

d. resume (unigue-name)

before

Lo s &

after

The resume Instruction transfers the site of activity from one process
to another, See below an dddition to the semantics: the reaume * instruction
(* means indirect).

If the name is not a process name, an error message is produced and the
instruction ignored,

-17-

e. wash (unique-name)

before
T T T 71 1 T
T ip ﬂN o
') I 4,a) (f)
wash (A, o)
after

The wash instruction gets rid of the operand process.

Note: Those instructions are very powerful and their use should be atrictly
under control. A way is to disallow direct programming in CBL, leéting
the task to enforce security and safety to the compiler (or to some
macro-assembler). The last step would be to include good primitives for
parallelism, yet to be discovered: for in our model, as in CBL, only one

process i3 in state 1 at any given time.

The sense primitive can lead to cycles if used without precautions.

~18-

£. The use of the son-name and the 'resume*” instruction

By now the use of every component of a process is clear: the father-name
has replaced the $RET component, the other components are unchanged from CBL.
The unique-name is a way to avoid pointers, which could produce cycles which
would fool a simple garbage collection. The son-name is yet to be explained.

A process 13 created without a son-name,

However, when in state 1, it can gain one by executing the instruction:
assign (unlque name) son-name

Once again, the unique name is the value of some reference variable within
the local structure, and "son-name" is recognized as the MN component of the

process under execution.

Rule: The '"resume*" instruction has the Eollowing effect:
move the ip of the process under execution past the instruction "resume®';
switch the state of the executing process from 1 to 0;
until the son-name of the designated process is empty:
take this son-name as the name of the designated process;

switech the state of the designated process from ¢ to 1;

4. An Example of CBL-73

Let ug tramslate this piece of code written in CBL:

f: begin: return;
apply £, SARG : end;

We obtain:

create £, £.ip

f: mark SPAR
assign $1, MN mark $2
resume 51 sense LN
unmark MN select 52, SARG, SPAR
wash $1 ummark %2

resume LN

-19-

Note: £.ip is a shorthand for: seleet £, ip, ipy
create £, ipo

This contraction will be used over again as a symbolic facility.

The apply primitive of CBL is taken as a2 macro and behaves in this way:
see pp 19-20.

The return primitive of CBL undergoes a similar treatment: see p 20.

before "apply"

| | T]
FN ¢ Ml ip LN
I

(B,ﬂ)fi) jJ ep

]

create f, f.ipo
assign §1, MN
Tesume $1 L 4 [] I i

£ SARG §1 32
| |
ipo E
mark $PAR AL
mark 52
sense LN

select 52, SARG, $PAR

unmarik $2

-20-

after "apply"

before "returr

i | | [| [] I I T
FN a MN ip LN FN o My ip Lili
\ @5 ep | é) ep
(B,B) (f,m) (E,n) (B,8)
create f, f.ip0
assign $1, MN
resume $1
unmarl MN i
wash $1
- - - _ SPAR $2
T |
' $ARG g1 $2
f \
(£,n}
ib |
DUDAS
marle $PAR r__L_1
mark $2
sense LN
select $2, SARG, SPAR)
unmark $2
resume LN
after "return"
(the parta which are in-
acceasible are not shawn)
; ! ! ;
lr o MN 1ip LK
ep
(B,B) Cb
wash $1 : S
| |
SARG $1 52

I |
—|- J— (Jf,n)

-21-

Note: Suppose the operating system, which is some procese in concurrent

activity, wants to interrupt the process B, which it happens to know
by name. It will need some primitive gtop* which would be the con-
trary of resume indirect, In such a way, even if B is not in state i,
but if 1t has relinquished the control to some descendant £, stop*
will interrupt the compound process and resume® will restart it exactly
as if it were a simple process,

To keep the simplicity of the CBL representation requires those
possibly long primitives: a physical implementation might put an upper
bound on the number of descendants, but it does appear feasible.f

5. The Translation of Simula-67 Inmto CBL-73

The following must be specified:

how to build generic-names and represent objects and references to ob jects
how to set up the local structures
how to translate the primitives: this_new_detach_resume_end_inspect

of Simula-67

" The previous study (of Part III) has shown how to compile any program using
these facilities.
We invite the reader to draw diagrams aa he goes through the translatioun of

those primitives.

2. The task to build generic names is left to the language at hand.
For Simula-67, we propose the following:

Each of the blocks, procedures, classes declared in the program ia given
2 unique generic name, If the block or the class B is prefixed by a class A,
the generic name of A ia concatenated to the generic name of B, in effect

forming A.B; this convention is recuralve, when A is already prefixed.

*I strongly recommend to store the layer of processes in an assocfative Memory :

4 proper scheme for names could use this to gpeed up indirect instructions.

-22=

A reference variable is a new type of the language which has twa components:
name: which is empty or the unique-name of a process
generic-name : which iz a generic¢-name

Reference variables are used for referencing class-objects only.

b. The local structure of any process contains four componenta special to
Simula in addition to $1 and $2: (aee p 8).

Succ and Prede which are feference variables initialized to
Lame : empty

generic-name: linkage

System: which is a reference variable imitialized to the name and
genericename of khe prefixed block defining the quasi-parallel
gystem to which the object was origimally attached.

Detached: which is a boelean variable equal to 1 if the object is detached,

0 otherwise

Return, & unique-name, appears in the local structure of prefixed blocks to
ensure proper block exits despite the fact that prefixed blocks
are horn detached.

- CBL processes from a class prefixed by "process" and from class "event-notice"

have other spscial components as mentioned earlier.

¢. fthis {see p 7) is translated into FN within a class or a prefixed block;
or it may be an external passed as an argument to procedures and simple blocks

(it may also be a general reference variable in special cases not discussed here

as in "inspect" blocks).

new (see p 6): taken &g an example of creation and call (almogt gsimilar
translations would be performed at the entry of blocks and call of procedures).

Let (B, B) be in execution;

laet A be the generic-name of a closure:

let X be a reference variable of generic-name compatible with A
let x := new(A) be the program instruction,

-23_

In the text of B, instead read: create A, A.ip
assign §1, X-name
assign S1, MN
regume 31

urmmark MN

Wash $1 only appears for any block entry or a procedure call, after the

"unmark MN' instruction. $ARG i1z supposed to be already in L{B,p).

In the text of A, read: mark Suce
agssign Bucec-generic name, linkage
mark Prede

assign Prede-generic name, linkage

mark 8yatem
mark Betached
mark SPSR
marlk 52

sense IN

select $2, SARG, 5PAR

unmark $2

select 4$PAR, system, system

assign "0", Betached /*Boolean "0"k/

Notice 8ystem is always passed as an argument except for prefixed blocks. 1Im that
case (which is not a translation of new, but of the entry of a prefixed bloek!) the
sequence is alightly different:

in the text of B: suppress asgign $1, MN for a prefixed
and unmark MN ; block is born detached
in the text of A: suppress select $PAR, System, System

assign "0", Detached

and instead put select $PAR, generic-name, temp
assign temp, Systemrgeneric name
aggign IN, return
aggign FN, LN
asgign FN, System-name
assign "1", Detached /*Boolean "1"#%/

-4 -

The prefixed block gets his generic-name from the parent-object as a parameter.
At this point read ggain II, 2), &) on p, 2,

d. Detach: Suppose the first instruction of A, in the preceding example,
is "detach' as it would be the case, were A a class prefixed by "procesgs,"

Then, in the text of A, there follows:

if Detached then resume * LN
else do: mark temp
assign IN, temp
assign System - name, LN
assign "1", Detached
resume temp
end;

{(We use Algol-like notation as a symbelic short-cut!)

As mentioned in the earlier discussion: the effect of a detach statement
within an object already detached is equivalent to a resums procedure for the
asscoclated prefixed block. A detach statement within a prefix block is,
therefore, a dummy statement.

Resume: At this point read II, 2), b) on page 4 and II, 4), e) on page 7.
Resume coperates on the current event notice (after the erasing of the old current
one) through the value returned by a built-in procedure "current.” This value is

a reference variable and the general format of the Instruction resume is as follows:

Let (B, B) be in execution
let X be a non-empty reference variable A.o, G)
let resume (X) be the program instrueétion

in the text of B, read: sense X.name
seléct $2, Detached, temp
ummark 52
if = temp then ERROR

else resume * X.name

Note: Appreciate the use of indirect resume instructions,

R - - - _ . ——— -

-25-

End: At this point read over I1, 2), a) on page 3.

end in a block which is not prefixed or a procedure is 23 tranglated in
paragraph 4): resume LN and there ig a corresponding wash statement in LN
as the next executable instruction.

end in a class has two possible outcomes which can be molten in the following:

if Detached then resume* LN
else resume 1IN

go to}

end in & prefixed-block is translated by: resume return

Note: An end statement ia reached inp a detached class only after an error has
been notified. The normal exit is a "passivate” statement inserted just before
the end statement.

Inspeet; Let (B, B) be operating;
let X be a non-empty reference variable A.a, G);
let inspect (X) be a program instructiom.
The compiler has determined the set of attributes needed from A; it outputs:

gense X-name
select $2, attr 1, temp 1

select $2, attr n, temp n

unmark $2

6. Problems, Explanations and Difficulties

a@. A first problem was to choose how to translate block, procedure and class
activation. We felt that a very congequence of the definition ig the ereation of
a new local structure: hence, in our model, there must be a corresponding
Process, and a formal call to the process with argument transmission. This is
simpler than to distinguish between a simple bloeck and others.

b. The first serious problem was a cycle problem. Amerasinghe has tackled
the problem of cycles within a local structure and we do not look again at this.
But a more deeper type of cycle arises when one deals with coroutines: while a

gimple hlock-structuredlanguagebuilds 4 tree of processes, Simula builds general

-26-

graphs of them. Hence keeplng pointers leads to eycles, OQur philosophy is
that no physical cycle must appear, to allow a simple garbage collection at
the system level: instead we transform a physical cycle into a conceptual
cycle by use of names Instead of pointers to objects, and we transfer the task
of general garbage collecting to specialized procedures of the language under
consideration.

Rule 1: no phyaical cycles are allowed.

Rule 2! the system level simple garbage collection applies to everything
éxcept processes (obviously the layer of processes must be known
as such for Iinterpretation),

Rule 3: every program must wash its own processes ip its own way
(dealing with its own kind of conceptual cyeles).

Hence the last instruction of the process controlling "a" program, is always:
"wash FN" (this supposes cthe operating system is running concurremtly),

A block structured language is readily implementable this way, for procedure
returns and bloeck exits invoke a corresponding wash operation on their pracesses.

However, class cbjects never get washed out, to allow for the performing of
gense instructions on them.

' Théreﬁore, each time the end of a prefixed block (A,) has been per formed
and the instruction wash (A, o) is read as the next executable instruction (see
above), a call to a special subroutine is executed instead, which hes the ability
to sense every process generated by the program (such a table must be kept by
the system anyhow; or it is the whole control structure of the machine if the

latter is not shared). It then executes the loop:

select $2, System, Temp
if Temp = (A, ») then wash $2
unmark $§2

Another specialized subroutine may be called within the simulation block if
further storage is lacking. It is allowed to know every process 8o far generated

within the simulation block. The rule would be:

-27-

list every proeess within the SQS #n list L

take the first one in L
———® for it, list its son-name, father-name, ep.SUCC, ep.PREDE and any
other reference name in its lccal structure; let 1 be the list:

merge 1 after I,
if the end of L is not reached then take the next in L and go to_j

elge:
teke the first process in the control structure to be knowm

if it is not in L, wash it off
("if there is a next one, take it and go to .|

This gets rid of implicit deaths.

Note: The fact that this subroutine ought to gain direct access to the control
structure (to read names) is very bad, for we tried to make the control
layer accessible by a process only through instructions create, wash,
resume; and direct access of itself. Maybe we need to copy the names

into the local structure of each process,

¢. The problem of cycles leads to give names to processes. A feature of
Simula 67 determined the form of the names and the form of references. A
reference variable is qualified in the language by a class name, so that an
assignment to it of a process which is not an instance of the same class, or
one of its subelasses, produces an error message at run time, when it has not
been discovered at compile time. The way the compiler would translate a check
is made simple by the concatenated form we have adopted.

Let x = y be the instruction at run time.
The check is to see if A is a prefix of C by

' I string manipulations; then to assign y.name

| | to X.name. Note that B must be a prefix of C.

-28-

d., Simula has a notion of objects alightly different from ours:
procedure calls, for example, are done by executing the procedure '"within"
(or "attached to') the caller; it may passivate itself (= "this" = the caller)
and resume another process; after return to the first object, the rest of the
procedure is executed. But since we decided to represent a procedure by a
separate process, we had to provide for resuming a called procedure when
awaking its caller, without knowing the call from outside. This leads us to
the notion of son-name and indirect resuming, which are felt to be inherent to

coroutines.

e. C(reate, resume, and wash were thus used to implement coroutines. Sense
is needed te allow commnications between local structures, without gaining
access to the control layer. The "epply" primitive of CBL makes use of it
implicitly. It is needed explicitly by Simula through remote access which makes
known to a process attributes of another process which may be independent of the
first one: a bad way would be to attempt to make the second process a subroutine
of the first, to return attributes to it.

f. Difficulties are not absent in CBL-73, however, and a more careful study
of the primitives to be added is required.
Notice that in the apply-return example of (4), the sequences:

assign $1, MN H and: _— e m are not interruptable

resume $1 unmark MN

(Interruptions would make resume*® instructions from outside illegal,)

=20~

1. Sample Program

GEN [———

Q
terleuleLeL s crx

(FIFO)

(Algol) begin
Similation begin Int T, NRCL;

real SVTM, MyT:

bool IDLE;

real array QT [1:100];
(head)q;
(clerk)CLK;
{clgen)GEN;

|.1_
Hh

)
T

=]

[
i

Process-class clgen; begin real T;

{caunt, nr of clients to generate)
(service time, mean queuing time)
(flag for CLK)

(queuing time array)

(a set)

{a clerk)

{a client generator)

(random generation time)

ref (client)NEXT; (a client generated)

LiI:=1I+4+1;

(lterate)

if I>NRCL then goto FIN; (all generated + die)

T :=random;
held {T);

{next client arrival time)
(wait until then)

NEXT :=mew client; {generate it)

aetivate NEXT after this; (schedule 1t)

goto L;

FIN: end:

process class client;begin real TIN, TOUT;

(Loep)
(suicide!)

(errival and exit times)

int ID; (arrival number)
ID := IT~1; (get 1it)
TIN := time; (temember input)
(:) this . into{Q); (get intc the queue)

if IDLE then reactivate CLK; (ask for help)

this . out;

" elae passivate;
TOUT := time;

(wait, he ig busy)
(remember output)
{get out of Q)

QT(ID) := TOUT - TIN; (how long did I wait?)

end;

(served » die)

=3()=

process class clerk; begin ref (client)NEXT: (a client)
int ID; (a client mumber)
L: IDLE := FALSE; (somebody called?)
ID := Ip+ 1: {iterate)
NEXT := Q.first; {(who is first?)
activate NEXT: {(get Lt out of the Q)
hold (SVTM) ; {serve it)
if = (Q.empty) then goto L; (who 18 next?)
if ID = NRCL ghen reactivate MAIN; (Nobody? -+ close
IDLE := TRUE:; (expect somebody yet)
- pasgivate; (wait for him)
&goto L; (laop)
end; C.a)
Q := ney head;
GEN := new clgen;
CLK := new clerk; (initialize)
8YTM := 5.; NRCL := 2; IDLE := TRUE;
activate GEN after this; {start)
passivate; {wait until the end)
for I :=1 step 1 until NRCL do MQT :=MQT +QT(I)/NRCL; (compute statist
end; (terminated)}

end (Algol);

Note: For the sake of understandability, some syntactic features of Simula
have been omitted (denotation, etc.)., This program is gemantically

correct but could not be run as such on a CDC 6000,

2,

-31-

Comments on the Example

This 18 a program simulating a cne-server, one-gueue system. Clients are
generated by the object GEN of class CLGEN at random intervals determined

by calls to a built-in random number generator procedure. Each time a new
client is created, it is activated and puts fitself in Q. It then tests to
see if the clerk CLK of class CLERK is IDLE or mot. If not it passivates
itself; If ves, it activates the CLK -- CLK then activates the First

CLIENT in Q. This client gets itself out of the Q -- CLK then holds SVTM
(gervice time) units with the flag IDLE off and then tries to activate

the new first CLIENT in Q if any, otherwise it passivates itself and sets

IDLE on. Simsim initializes the system by creating Q, GEN, and CIK =-- it also
terminates the gsimulation by calculating the mean queuing time of all CLIENTS.

By the time control goes to Q := new(head), there already exist 5 objects in
the system: the outer Algol block, the prefixed Simula block Simsim, SQS
and a current event notice in 5Q5 for Main, a companion of Simeim.

The reader may easily simulate the whole system according to our rules. We

have only represented here a partial snapshot of the interpreter state before

the emecution of the first statement: Q := new(head), followed by a partial

snapshot of the interpreter state at step (:) for the second client gen-
erated. It i3 assumed that a first client was generated at time 1., and a

second at time 2, .

We have left out posasible assigmmenta of $1 and $2, For instance in L(GEN)
$1 would in fact be (CLIENT, 1, the last object created, $2 would be
(HEAD, 3) while performing hold(T) since hold(T) implies "sensing"” the local

structure of 50S.

All "8ys" components when non-null are (Simsim, 2) since this ig the only
level existing (1 peefixed block). Terminated objects are kept around though
no more executable,

Terminated Event Notices are not wepresented here.

ip pointers point to texts in closure of the universe (not represented here),

At step , only the second client is active.

-32-

- All MN are null, though it is not alwaysg the case. During a call to
"random", a procedure attached to it, GEN MN would be the unique name #N of

"random" control struecture

= All IN are (8imsim, 2) because all proceasors are detached from or ter-
minated and formerly attached to (Simsim, 2},

3. Snapshots

Generic names in uge have the following abbreviated versions:

Algol A (the outer algol bloek)
Linkage L (the Simula-67 block)
Simset - Simulation SimSim
Linkage - Head Head
Link - Event notice Ev
Link - Process Pr
Link - Process - Main program Main
Link - Process - Clgen Clgen
Link - Process - Client Client
Link - Process - Clerk Clerk

This 1s a departure from the real notation which Tequires concatenation

of names.
The use of MAIN is to give the Simulation block the equiva-
lence of' the scheduling capacities of a process, Whenever a
Initial Snapshot scheduling statement refers to rthis block in the program, it

18 translated by making the statement to refer to MATN, insatead.
Notice that the Simulation block does not have the prefix process.

=-33-

1 I I !
o e v oY gy
Algol i } '
(A1) ©

Simula l | | & |
FN a ep LN

I | i

(Simsim,2) 1 (Simaim, 2)
1 | | T [| A
Suce Prede Bys Detached Return 5Q3 Main &
I |]
(Simsim,2) Simsim Yyes (A, 1) (Hefad,a) Head aqa'in,ai) Main

T bl

SQs LN a ‘ ep LN
| I |

(Head,3) 0 { (Simsim,2)
K i {
Succ P:'elde Sys Detached
!
f —1 | 1
(Ev,5) L (Ev,5Y L (Sfmgim,2) Simsim

NB: @ : See next page.

-3

{ |
Main LR o | 1P eP
! i
(Main,4) 0 (S:.msf.m 2)
regume LN
Sucec Pr:ede Det:ached Event ‘@
I | i .
(5imsim,2) Simsim ves (Ev,5) Ev
Ma®n | I i L | 1
Event LN ('j“ ep N
| I
{Ev,5) 0O l (Simsim,2)
I
| 1 | 1 '
Suce Prede Sys Detached Evtime Proc Into
! i : E ' [
f T i ; { i no o i 1 ;
(Main,4) Pr Ext Text

(Head,3) L [?Eead,s) L (Simsim,2) Simsis

L

-35-

Second Snapshot

Algol: as previously
Bimula :
T 1 11
FN c ep Lf
(Simsim,2) 0 (Simsim,2)
| | I 1 —
Q GEN - CEK IDILE
(Head,6) Head (Clgen,7) Clgen (Clerk,8) €lark f8lse
503: the local structure has become
Suee Prede
L 1 !
(Ev,18) L (Ev,16) L

Main and Main-Event: WNot shown; notice that {Ev,5) ia legically dead since the
execution of: 'activate

GEN after this; passivate", by the Simula block.
If the program ia correct, (Ev,5) is in fact implicitly inaccessible,

However, it is stéll in the local structures of Simula and Main and will be

overwritten only when CIX executes: 'reactiwvate MAIN",

-36-

Q
| L S
FN o ep LN
| | |
(Head,8) 0 (8imsim,2)
| i | T
Succ Prede S¥s Detached
I i
) | 1 i 1 r!o
(Client,17) 1, (Client,17) L
GEN
| | [y |]
T -
{(Clgen,7) a {Simsim,2)
[l | bl
Event Next 1 T
i L I t L
(E J Ev (Client,17) Client !

(Ev,9), at time 0, (Ev,10), at time 1,
of CLGEN.

(Bv,13) at time 3 are the three activations

-37-

CLK
| | I ‘ I
FN o LN
I l |
(Clerk,8) 0 ep (Simsim,2)
! |]
Detached Event Next
|

»

Ev (Client,11) Client

(Ev, 14) corresponds to the service of the first client at time 1;
(Ev,16) is scheduled in SQS at time 6,

First Client

! []
e : v n
l |
5 im, 2
(Client,11) 0 ep (Simsim,2)
1 | I T I [)
Succ Pﬁede Syst Det Event ID TIN TouT
™ R — r__i‘_T I | l
(Head 6) L(H}(d,&) L ce. Ev 1 L L

(Ev,12} and {Bv,15) correspond to the two activations of

"first client", at time I,

-38-

Becond Client

l | [{ 1
FN o IiN
I I (Simsim,k2)
(Client,17) 1 ep
l l l I | l
Suce P;ede Event ID TIN 'KI)UT
| | '
f L 1 I‘Iﬁ |2 |
(Head,6) L (Head,6) L (Ev,18) Ev 3

Of the Event notices, only two are currently alive and are in 3GQS:

(Ev,18): {process: second elient (currently in activity)
time r 3

(Ev,16): {process: clerk

time L

The client will wait in the queue until the eclerk wakesg up at time 6 and services him.

Time O] Time 1 | Time 3 Time 6

(Ev,5)5 (Ev,9); (Ev,10); (Ev,12); (Bv,14)5 (Ev,15); (Ev,14); (Ev,13); (Ev,18); (Ev,16)

(Main), (generator), (lst » (Clerk), (lst s {Clerk}, (Gener-, {Client}, (Glerk)
client) Client) ator)

-39-

References
1. J. B. Dennis, On the Design and Specification of a Common Base Language.

Project MAC Techmical Report TR-101. M.I.T., Cambridge, Mags., June 1972.

N. Amerasinghe, Translation of Blkstruc Programs to the Base Language.
Computation Structures Group Notes, Project MAC, M.I,T., Cambridge, Mass.,
February 1973.

P. Coueignouz and P. Janson, On the Translation of Simula 67 into a Common

Base Language. Course 6.534 Review Paper, Department of Electrical En-
gineering, M.I.T., Cambridge, Mass., Spring 1973,

Elgsaas, A Short Introduction to Simulation and Simula. Norsk Regnen
Zentraal, 1970C.

K. Nygaard, Sjstem Degeription by Simula. Norsk Regnen Zentraal, 19%70.

Palme, Simula 67. Norsk Regnen Zeuntraal, 1970.

Simula Reference Manual 600G, Revision E. CDC Documenmtation Dept., 1971.

Chavy, Introduction au Langage Simula 67. Unpublished notes, European
Software Development, Paris 1970,

