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0. Introduction

In 1968, R. Karp and R. Miller [10] introduced a formalism called

Vector Additicn Systems to discuas decidability questions about their

Parallel Program Schemata. That same year, A, W. Holt introduced Petri
Nets [8, 14} to model concurrent behavior in Systems, Both formalisms

have been used to model and analyze the structural behavior of asynchromnous
and parallel systems {5, 6, 10, 11, 16, 17].

The similarity of these two formalisms has been recognized early, but
had not been exploited uantil about 1972, when R. Keller [11] used a2 gen-
eralized form of Petri Nets as a convenient graphical representation for
his Vector Replacement Systems, a generalization of Vector Additiom Systems.
Thus he translated Petri Net concepts such as Liveness -- which he needed to
model Asynchronous Systems -- into Vector Replacement Systems terms.

In 1972 also, M. Rabin [2, 15] presented the Unsolvability of the Inclu-
sion Problem for Reachability Sets in Vector Addition Systems in a talk at
MIT. From this, two things appeared: (1) There are unsolvable problems
about Petri Nets, and {(2) The proof could be presented very clearly in Petri
Net terms.

In this memo it is our purpose to establish the following results and

observations: .

- The four formalisms mentioned so far -- Vector Addition Systems,
Petri Nets, Vector Replacement Systems, and Generalized Petri Nets --
are equivalent to each other, in the gense that any problem ex-
pressed in one formalism can be translated by a standard procedure
inta another formalism. Thus, the generalization of the origimal

formalisms only buys convenience, not more generality,

-~ The graphical appeal of Petri Net methods permits a better grasp
for intuitive arguments, which can help enormously to find rigorous

proofs of varioua facts.

- Taking advantage of the above observation, we present new proofs of
the major decidability results obtained for Vector Addition Systems

by Karp and Miller,as well as of Rabin's Undecidability result.

- Finally, we apply our tools to geveral open questions, and prove the
recursive reducibilities between various decidability questioms. In

particular, we prove the recursive equivalence of the Liveness Problem

and the Reachability Problem, and explore some hypotheses which would
imply the Undecidability or the Decidability of these problems.



1. Definitions and Notations
We begin by defining the most general concepts of which the earlier

definitions are a restricted case.

1.1 Generalized Petri Nets

Definition 1.1: A Generalized Petri Net (GPN) N={H,T,F,B,MO) consists of
the following:

1. a finite set of places, E={pl,...,pr}
2. a finite set of trangitions, T = {tl,...,ts} disjoint from T
3. a forwards incidence function F:; Il x .+ W (Nis the set of non-
4. a backwards incidence function B: I x ¥ » N negative integers)
5. an injtial marking HO: T+ N
It is represented graphically as follows:
1. places are represented by circlesg (:)
2. transitions are represented by bars I Fig. 1.T

3. eircles and bars are connected by bundles of arcs: if p is a

place and t is a transition, aund F(p,t) = 3, we have a

bundle of 3 arcs going from p to t.

OEE or O=+ED| Fig. 1.2

p t p 3 t

4. a marking is represented by drawing a number of tokens into
a place, or writing rhe number,
Example: ] ={p1,p2,p3}
= {E1,ty,Eq,t, ]

I T S I
Pl T3 o 0
F={py| 0 1 0 0 f.e., F(py,ty) = 1
Ppl 0 0 1 5
S I T
P, @ 2 0 0 p, O



For the purpose of modeling Asynchronous Systems, a Petri Net is

a dynamic object. The system starts in some initial configuration,

and goes through a series of configurations by a sequence of actions.
We study the set of possible configurations the System may assume,
and the set of possible action sequences the syatem may go through.

Configurations are modeled by markings, action sequences are modeled

by firing sequences, and elementary configuration changes (actions)

are modeled by the firing of a transition, which changes the marking by

removing tokens from some places and adding tokens to some other places.
A firing sequence ia then denoted by a string over the alphabet of transi-
tion names. A Petri Net then represents the structure of the System with

a given initial configuration, and the possible evolutions of the System

are repregented by the set of firing sequences and the set of reachable

markings, also called reachability set or marking class.

Vector notation: We can interpret a marking M as a vector with r

coordinates, where r is the number of places. Thus, the ith coordinate
of M is M(pi). The distinction will be clear from the context: M ig
a vector on B and M(p ) is a non-negative integer. For a given
transition tJ, wa sxmilarly define am-input vector F(t, ) and am output
vector B{t.) as follows:
the i h coordinate of F(tj) is F{pi,t
_B(tj) B(pi.tj)

Thus, F(tj) and B(tj) are also vectors on N°. When we loock upon markings

as r-dimensional vectors, it is sometimes useful to look upon B and F as

r x s-matrices, with Fi g = F(pi, tj). See definition 1,18 on page 13 for an
»

application.

Firing Relation: We shall interpret a transition as a relation between

markings:
Definition 1,2: We write M[tYM', and say that transition t is firablae at

marking M and leads to marking M', as follows:

M[tedYM! = ( Mz F (t) & M'-M=BR (t) -F (t) )

The relationm = for vectors is the componentwise greater-or-equal partial

order relation on WN¥,



We then extend the Firing Relation to a sequence of firings

g = titj...tk as the composition of the relations corresponding
to ti’tj"’tk' This composition of relations corresponds to the

concatenation operation for strings. We thus define a firing
sequence as follows: -

Definition 1.3: A firing sequence from marking M to marking M' is a

string ot€D ¥ defined recursively as follows:
Miot)M' & DUENT: Mo)M" & MU [k )

If A stands for the empty string (length zero), it is understood
that, YMEIN®: M[\)M.
Now we are ready to define the two most important concepts: the set

of firing sequences of a Petri Net, and the set of reachable markings,

or marking class.

Definition 1.4: Given a GPN N = {n,ELE;B,Mb) with initial marking My, we
define:

8y (M,)= {o€T* | (aem ™) M (oM}, the set of firing sequences

starting at Mo.

i-'io = Ry(M) = {MEN" | (F0€T*) M,[c)M), the set of reachable

markings from Mo, or the marking class, or the reachability set.

Note: The reachability set of a net N could of course be written R(NY,
since HU is part of the specification of N. But it is advantageous

to show its dependence on M, in particular. This permits us to

. 0
consider SN(M) and RN(M) for the same Net, except for the consider-

atlon of an arbitrary initial marking M.
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1.2 Ordinsry Petri Nets and Self-Loop-Free Petri Nets

Definition 1,5: An ordinary Petri Net is a CPN where the size of are~
bundles 1s restricted to one. Thus, the only possible values for

the incidence functions F and B are zero and one:

Vp€ll
Yt €2

F(p,t) $ 1 & B(p,t) < 1

A Self-Loop-Free Petri Net is a GPN where no place-transition

palr is both forwards and backwards connected:

31’5‘% F(p,t)* B(p,t} = 0

A Restricted Petri Net (RPN} is both ordinary and Self-Loop-Free.

Alternative representations:

For ordinary Petri Nete, the F and B incidence functions are often
replaced by a relation . called the dot relation or arc relation over
bipartite pairs of places and transitiong. s < OIXxZ U EZxT, and {p,t)€+ is
written as pet and means that an arc goes from place p to transition t.
Thus :

prt
tep

[}

F(p,t)=1

B{p,t)=1
This is the definition used in MAC TR-94 [6]

For Self-Loop-Free Petfi Nets, the two incidence functions F and B
can be replaced by s single incidence function T = B-F, where bundles
from a transition to a place are repreaented by pogitive numbers (the
number of tokens one firing adds to that place), and bundles from a
Place to a tramsition are indicsted by negative numbers {the number
of tokens a firing takes away from that place). It can be seen that
firability is defined as follows:

MIEOM' & ¥20 & M'™20 & M'-M = T(t} (where, of course, T(t) stands
for the vector whose components are T(pi,t).)

In particular, RPN's have a aingle incidence function whose range
is {-1,0,+1].



1.3 Vector Replacement Systems and Vector Addition Systems

We give Karp and Miller's original definition of a Vector Additiom

System below: (= non-negative integers; % = integers.) {10]

Definition 1l.6: An r- dlm&__[_l?lOT‘lBl Vector Addltlon System (VAS) is a pair
W = {q,Win wh1ch q is an r-dimemsional wvector of noa-negative Lntegers,
and W is a finite set of r-dimensional integer vectors: q€IN', W S Z .

The reachability set R{w) is the set af all wvectors of the form

q + v + v, +...+wn guch that, Vi <n:
i

W, EW&q+ X W. 20
=1

Geometrically, in r-coordinate space, R{W) 1s the set of points
reachable froem q by successive translations from the set W without ever

leaving the first orthant.

Relation to Petri Nets: There is a one-to-one correspondence between

VAS's and Self-~Loap-Free Petri Nets:

VAS Correspondence Self-Loop-Free Petri Net
W= rq, W N={0,%,T,4,) = (1,L,F,B,M)
(the r "dimensions" of W) C= {pl, censy pr}
q € W q = M, My € IF
W= [wl,...,ws} o - 1oL E=ft1,...,ts}
we z* * * T =B - F as defined before
w,-translation without t,-firing: M[I: YM' with
léaving the first orthant 12 Q&M 20
reachability set ROW) = Ry (M) reachability markmgs Ry (My) or

ROWD marking class M = R.N(Mo)

The isomorphism is quite apparent. Firing sequences were not explicitly
defined for a VAS.
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R. Keller defines Vector Replacement Systems in the widetr context of

Transition Systems, where a Transition System is anything having a

possibly infinite set of distinguishable states or configurations, a
finite set of transitions that describe elementery state changes, and

an initial state. 1Im this context, we have: [11]

Definition 1,7: A Vector Replacement System (VRS) (29sL, U, V) is a
Transition System where:

1. The set of states 1is Q% IHT, where r = dimension of the VRS.

2. 9o ls the initial state: qOEQ.

3. I is the set of transitions: 5 = {tl,...ts}.

4. U and V are functions from L to Z, with the following properties:

(let tiﬁ}:)
a) U(ti) is called & test-vector for £
b) V(ti) is called a replacement vector for t
c) U(ti) < V(ti)
d) t changes the state from q to q' iff q +U(t;) =20 and
q+V(t) =q'.
The set of states Q is the reachability set of rhe VBS.

i

Thus, a VRS is like a VAS <q0,W = {wi w, = V(ti}}> except that the
condition restricting the application of some translation w; to a point
q depends on whether q + U(ti) Z 0, which 1s more restrictive than
q+V(ti)=q+wi20.

Relation to Petri Nets:

VRS: {q;,L,U,V) GPN: (I,L,F,B,M,)

dim VES = r O=fpseeep}s |f=r
= [tl,...tiE}

g EINT g, = M MENT

0 Q (4] 0

U, VL~ Z° F,B:L+ W

VtiEE:u(ti)sv(ti)

assume U:L + -N U= -F

(see note below) vV = B-F

set of states Q Q= R(HOJ reachability set R(Mo)

Note: As Keller himself points out, positive coordinates of a test
vectoar U(ti) do not matter, i.e., we get exactly the same results

if we get all positive coordinates of a test vector to zero.
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1.4 Liveness, Boundedness, Reachability and Coverability

From now on, we shall use the language of GPN's, taking advantage
however of the fact that markings are expressed as vectors, and the
action of a transition firing can be expressed by the pair of vectors
F(t) and B(t). Unless specified otherwise, we shall be talking about
a Petri Net N = <ﬂ.ELF,B,Mb>, L= {pl,...,pr}, L= {tl""’ts]'

Definition 1.,8: A marking M covers a marking M' 1ff M = M', Two markings
M and M' are incomparable 1ff neither covers the other. We write thia:

M¥E M oMz M &M &M

Definition 1.9: Two markings M and M' agree over a subset P ¢ [I, which

we write MEM' (mod P), iff the coordinates corresponding to places
in P agree:

M=M' (mod P) = ¥p EP: M(p,) = M'(p,).

The set of markings which agree over a given subset P with a given

marking M is denocted by:
M/P = {M'|¥=M" (mod B)].

Tnstead of referring to the congruence class m = M/P, we often call
it a submarking m of P} in this case we also say that M agrees with
the submarking m.

Definition 1,10: A marking M is reachable iff HER(MU).
A submarking m of Pl is reachable iff EHER(MO): m=M/P, i.e. iff

some marking M which agrees with m is reachable.

Definition 1,11: A marking M is coverable iff EH'GR(Mb) M'=M

A submarking is weakly coverable iff some marking which agrees with it

is coverable,.

A submarking is sfroagly cgggrablg_if% everg_markingm;hich agrees

with it is coverable.

Note that a reachable submarking is weakly coverable, but not necessarily

strongly coverable.
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Definition 1.12: A place p is bounded at hb iff there exists an 1nteger
b, €N such that:

WER(MO) H(pi) < bi

A subset P S]] ig bounded at My LEf every PiEP is bounded at My

A GPN is bounded 1ff I is bounded at HO'

Definition 1.13: A place Py €1 is certainly unbounded at MO iff it 13 un-
bounded (not bounded) at every MER(MO).

Definition 1.14: A set of places P S T is simultaneously unbounded 1ff any
arbitrarily large submarking of P is weakly coverable, or equivalently
1£f the zero submarking of 11 - P is strongly coverable.

Definitlon 1.15: A transition t is potentially firable at MO iff there exists
a marking HER(Mh) at which t is firable:
’!D!ER(MO). Mz F(t)

Definition 1.16: A transition t is live at M, iff it is potentially firable
at every HER(MO).

A subset of transitions is live iff every element is live; a Net

is live iff X is live at MO.

Note: For vectors, 2 is a partial order. Thus, ¥ iz not the same as <
(€but not =). The order relationship between two vectors is either
= or € or ®. Also, if we write M < M' to indicate (M <M' & M o My,
this does not mean that every coordinate of M is strictly less than
the corresponding coordinate of M'. This latter requirement would
be better indicated by writing M < M'-1, where 1 stands for the

vector whose coordinates are all equal to one.

* R. Reller calls this property "pseudo-live", but various other live-
11ke properties (such as infinitely often firable) have been called
"pseudo-live", and we wish to avoid confusiom, [11]
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Definition 1.17: The marking change Ao associated with a firing se-

quence is precisely what it says: if Hl[a)Mz, then As = H2 - Ml'

Definition 1.18: The firing vector § associated with a firing sequence is

an s-dimensional vector (s = |£|, the number of transitions) whose

i coordinate is the number of occurrences of t1 in g.

This gives us an alternate way of defining Ac, which is, like a marking,
an r-dimengsional vector: Ac = (B - F)} * 5, where B and F are viewed as

T X s-matrices,

Definition 1,19: The hurdle Hy of a firing sequence g is the smallest

marking which permits g to be completely fired. We have:
Ho = -gtb {Vviv=0 or (Ac;, ohe': o'tiol =0 & V=40' -F(t;)})}

{(The greatest lower bound glb of & set of vectors is the largest veckLor
(not necessarily in the set) which is covered (<) by all vectors in the

sekb.) Also nate that Vo: Ho + Az = O.

Some useful properties of R(M) and S(M):
M ER(M) = R(M)) < R(Mp)

Hl = HD = S(MO) L= S(Ml)
(t is live at MD & MIER(HD)) = (t is live at MI)

(p is bounded at MO & MlER(MO)) = (p is bounded at Hl)

(p is certainly umbounded at Mb e MIER(MQ)) = (p is certainly unbounded

at Ml)'
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2. The Equivalence of the GPN Model and the RPN Model

Many systems can be naturally and easily represented by GPN's
because in certain contexts the restrictions of RPN's seem to be
arbitrary, On the other hand, certain analytical techniques that have
been developed for RPN's could be very usefully applied to more general
systems.

In this section we shall show how an arbitrary GPN can be represented
by an RPN such that the two nets behave equivalently, in the following
sense; FEvery firing sequence of one net can be translated into a
correasponding firing sequence of the other net; every marking of one
can be translated into a corresponding marking in the uther net; and
corresponding flring sequences yield corresponding markings. It will be
seen that every question about the GPN can be answered by agking a

corresponding question about the RPN used to represent the GEN.

2.1 The Construction of an RPN Equivalent to a Given GPN

Civen a Generalized Petri Net N = {H,T]F.B,MD>, we shall construct
~ A A A
a Restricted Petri Net N = (H,?,F,g,ﬁb> as followa: (let I = {pl...pr]
and L = {tl...ts})

a. for each place Py € 11, determine the maximum number of arcs
(forwards or backwards) that go from ] to each transition.
Let this number be ki:

k, = max (Flpy, tj) + Blp,, tj))

1 £ j<s

b. for each place Py € n,'ﬁ will contain a set of ki places,

which we denote:

M

~ P b
Pi,l, pl,Z’ - i!ki

™ Fa)
Thege are all the places in . Thus, |I| = T Kk

lgizr .
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,~ . ~ ' h o~
¢. 3 will contain a tranagition tj for eaip tj € ¥. But ¥ will
also contain additional M-transitions, which connect the ki
places'B s sy 3‘ correaponding te p, in [I into a ring:
i,1 i,k i

The example above thus transforms inte:

N
/ \
- Gyl
\ |
\ |
‘ /
' /
| M3 /

N o L L

Note: If for some Pys ki = 1, then there ig no need for change,

and for this place, no A-transition need be introduced.

d. Now we generate ﬁ-and i by distributing the arca connected to a plac
p; over the places in the corresponding ring in such a way as to
create no self-loops and no multiple ares. This 1s always possible,
usually in many different (but equivalent) ways because of the choice
of k '

*
A is the symbol of the empty string or the empty firing sequence. We
talk about A-transitions because, in a sense, their firings are invigible,
l1.e. the correspondence with firing sequences of the represented GPN is
eatablished by deleting the hi occurences in the string corresponding to

a firing sequence of the transfsrmed net Not A .
the symbol of the empty string. ote that i, i 1tself is not
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Fig. 2.3 i
A ve defined as: |M. @, ) =M (p;)
e. Let M/ be defined asg: ori,l oL
A .
= 0 for * 1
Ho@i,_]) ]

It should be clear that the tokens can always arrange themselves in
the place rings in such a way as to permit exactly the same firing
sequences as in the original net, if we digregard the additional firings
of the A-transitions, i.e., each firing sequence of N corresponds to the
firing sequence of N obtained by deleting from the string in i% all
occurences of A-transition, thus making it into a strlng in T*, and N
has no other firing sequences., (A firing sequence of N containing only
»firings corregponds to the empty flrlng sequence of N, and in fact does
not significantly change the marking of N because the sum of the tokens
in any given place ring is not affected by A-firings. J Alse, to every
marking MERN(M ) (marking class) there will correspond a set of markings

jl;RN(M ) such that:

e My [uep = T HE )
, 1 sk, +J

We also readily convince ourselves that t. is live in N at any
treachable marking M £f and only if %j is liie in N at any and all
A
corresponding markings M. The same applies to boundedness: p; is
bounded if and only if any (and all) places ﬁi,j’ 1< js ki’ are
bounded, and the bound is the same. Questions about reachability,
coverahility, firability, etc., can be answered in this very manner.

We can therefore state:
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Theorem 2.1: Generalized Petri Nets, Restricted Petri Nets, Vector
Addition Systems, and Vector Replacement Systems are equivalent in

modeling power for Asynchronous Systems.

0f course, this talks only about the modeling power, not the
modeling convenience. But from an analytical poinmt of view, 1t means
that we can choose whichever form we like to prove our theorems. Karp
and Miller's and Keller's decidability results for boundedness and
coverability, Rabin's undecidability result for the inclusion of
Reachability Sets, and the various results obtained by many authets
for Petri Nets can be applied to any of the formalisms mentioned, and
the proof uses the model most appropriate to the proof method. As an
example, we shall present a Petri Net version of Rabin's proof in section 4.

2.2 Other even more restricted models of a Petri Net

a) Fan-in/Fan-out reduction: The fan-im and fan-out from every place
and every transition can be reduced to Z.
It is easy to see that if we make the place-rings larger, we can generate an
equivalent net where each place has at most one input and two outputs, or
two inputs and one output:

Just use k., = ¥ (F(p,, E,) + B{p,, £.))
i lgi<s i j i j

The example of figure-z.l now becomes:

A M

Fig. 2.4
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But by extending the principle of a A-transition ring, we can also reduce

fan-in and fan-out of Eransitions, as we show Dy the following example:

Py Py 3 6 5

Figure 2.6

The net can be further transformed by reducing the fan-in and/or fzr-out on

the places; this only adds l-in- l-out A-transitions.

The equivalence of firing sequences is as before: Same up to A-firings.
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The equivalence of markings is similar: We still have the linear function,
but the sets of places over which the sums extend are not disjoint as before.

In cur example, we have:

M(1) = M) + RO + #a3)
M(2) = %) + A1) + fc13)
M(3) = M) + M2y + #23)
M(G) = M(4) + M(12) + #M(13)
M(5) = H(5)

M6) = fe) + H(14)

M(7) = M(7) + M(14)

M(8) = H(8) + M(s)

M) = R + Aas)

Thus, every generalized Petri Net is equivalent to a self-loop free Petri Net

where the fan-in and Ean-ocut is limited to 2 at every node.

We should note that the above constructions do not affect the following properties

- liveness

- boundedness

- decomposability into State Machines or Marked Graphs*)
- State Machine

- connectedness

- deadlock, trap™)

—_

The constructions may affect the following properties:

- safeness

- conflict-freeness

- pérsistence

- Free Choice, Simple*)

- Marked Graph

[T

But these concepts can usually be redefined, For example, F. G. Commoner [3]

has liveness and deadlock results for multiple-arc Simple Hets.

%}

These concepts are defined and used in [3,6,9].
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b)Y Almost=Euler Nets: We can rransform a Petri Net intoc an equivalent

net where each transition is one-in-ome-out or two-in-two=-out, except for
two non-Fuler transitions, one of which is one-in-tweo-out and genevakes

extra tokens as needed, the other ig two-~in-one-put and TeEmoves tokens from

the net when needed.
We first reduce fan-in and fan-out: the only non-Fuler transitions left

are one-in-two=out, or two-in-one-out, or possibly zero-in or zero-out.

We succesaively use the following partial constructions

K:: becomes
“—- becomes

:" becomes

hecomes

becomes

hecomes

Figure 2.7
(all thin transitiong are A-trangitions)

Finally, we conmect all o places into a ring with one extra place ol all B

places into a ring, ete., giving ug 6 place-rings, which are then intercon-

nected as follows:
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‘Fhe two only non-Fuler
o transitions

7 5
’ A
‘/ L]
! 1!
1
! |
\

L) ;’
L] ’ ~ ,
- . . .

s - " -
I N =

Figure 2.8

We do not go into the detail of how this curiosity works. We only give it
as an example of the kind of transformations one can make. We shall see

another quite interesting transformation in Section 5.2.
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3. Decidable Questions: Boundedness, Coverability

3.0 Introduction

One way a place p; may become unbounded is the following:
Let MO be the original marking, and suppose there exists a firing sequence

0479 such that:
Mplopy & MylopMy & My =3 &My(py) > M (py)

Because of HZ - Ml’ every firing sequence possible from Ml is alio possible
from Mz, in particular, o, can be repeated, and therefore glogz) is a legal
set of firing sequences. But then it is clear that by repeating o, arbitrarily
often, the marking in P; can grow without bounds. In particuler, after the
firing sequence ol(qz)n, the marking will be M; + n ° (1, - M). All places

P for which Mz(pj) - Ml(pj) » O will be unbounded. But this is not the only

way a place can become unbounded. Example:

£ Py
P
1 M. = (1,0,0, 0
0
O
Py
£y Pz,
3

Figure 3.1

P, is unbounded: given any number n, the firing sequence (:l)n tz(tB)n yields
the marking {0, 1, 0, n). But for no pair of reachable markings such that
M2 2 MI do we also have Mz(pa) > Ml(p4). This net incidentally has the inter-

esting property that t, can fire any finite number of Ekimes, but cannot fire

3
indefinitely.

However, in this case the unboundedness of P follows from that of P3» for
which we do find two markings having the property described here: Hn[tl} M,

and M = My and My(py) > Mylpy): My = (1, 0, 1, 0).
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Karp and Miller [i0Q] have shown that there exiests a finite construction
which explicitly shows which places are unbounded, and which are not, e

shall use basically the same construction, called a coverability tree.

3.1 Coverability Trees

A coverability tree is a rooted, labelled tree. The labels are chosen
from the set (W U {w})r, where w i3 a special symbal used to denote unbounded-

ness. It means "arbitrarily many," and we will perform arithmetic with it as
if it were a natural number larger than any other natural number. The Ereater
or equal than relation (2) and the operations of additiom (+) and subtraction
(-), when applied to w, satisfy the following rule:

Tng Nr Wp 0w & Wan & WHn=w & Wens=uw & Waknp

Thus indeed, "arbitrarily many"” can exceed any given finite number, and i{s not
affected by adding or subtracting a finite number.

The labels are thus r-dimensional vectors, where some coordinates may be
W, and the = relation for vectors is defined as usual, taking into account cthe
abovementioned rule for W,

The arcs of this tree will also be labelled: the arc-labels will be
transition names. 1In addition to the arcs of the tree, we will provide two
kinde of backpeointers, which can point from a node w to an antecedent of that
nade, l.e. a node P thar lies on the (unique) path from the roet node p to
node . These pointers are not considered to be arcs of the tree (it would not
be a tree anymore) but are introduced for the purpose of recﬁrd-keeping only,

If B 19 an antecedent of ¢, we write this 8 < g, not to be confused with
the relation < for vectors or labels. The root node is an antecedent to every
other node in the tree and has no antecedent; a leaf node is not antecedent to
any nade. The label of node y is denoted hy La‘

The label of the root node will be the initial marking vector, and the
arcs of the tree will express transition firings. The node labels reflect
the corresponding marking changes, but as soon 2z a node g is reached whose
label LQ covers the label of some antecedent B, there is a possibility of
unboundedness, and we introduce @ for those coordinates where arbltrarily many
tokens can be generated if the firing sequence expressed by the arc labels

along the path from B teo ¢ is repeated sufficiently often. To expressz this
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more conveniently, we include an u-backpointér, labelled wi if we introduce W

in the ith coordinate, from that node to the corresponding antecedent 8.
If we reach a node o whose label equals that of some of its antecedents f,

we make  a leaf node and introduce a loop backpointer, labelled n, Erom ¢ to B.

The symbol M stands for the empty string and suggests that, when ome reaches the
leaf node ¢y, one has in fact also reached the interior node B and can continue
tracing a path corresponding to a firing sequence, as we ghall see. The reascn
for constructing a tree instead of the graph obtained by identifying nodes with
identical labels is because the tree structure is more convenient for the

proofs which will qulow.

Definition 3.1: Given a Petri Net W = {m, L, F, B, Mh), we define its
coverability tree TN(Mﬁ) recursively as follows:

basig: The label of the root node is the original marking:

gstep: Let o be a node in the coverability tree, with label La' There

are gseveral cases:

a. If no transition would be firable at a marking agreeing with La

in its finite coordinates, i.e. if
Yt € It Lor # F(t)
then o is a leaf node called a dead-end.*
b. TIf some antecedent of ¢ has a label equal te La’ i.e. if

< & L =1L
Y o} v o

then ¢ is a leaf node called a loop-end, and there is a loop back-

cinter, labelled A, from o to y, written a[Myy.

c. 1If a i not a leaf node by (a) or (b), then it has a succegsor node
for each transition which might be firable by a marking agreeing
with L {n its finite coordinates. If t is such a transitiom, an

arc labelled t will go from gy to a node B, which we write al[t)8.

*
R. Keller calls this a null-end [11].
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(This is not a firing relation for markings in RN(MD), but a
gimilar relation for nodes in the coverability tree INCMU).

Thus we have: (assuming o is not a leaf node)
Yk Lu 2 F(t) = o[t)

Now we determine the label LB’ where [t)B, as follows:
Let AB be the set of thoge antecedents of B (possibly including
o) whose labels are covered by L' = La - F(t) + B(t):

AB a [y }y < B & LY < L'}

We consider two subcases:

cl. 1If Ag = p, let LB = L' = Ld - F(t) + B(t).

c2. For every coordinate i in which L' 1s finfte but strictly

greater than the label LY of some ¥y € AB, we introduce an
w-backpointer, labelled wi’ from B to vy, which we write as

Blw, )y

Vi, 1S i<r; ¥y €45 (LI #0 & LT > L (1) = Blw >y

The label LB ig then determined as follows:

¥i, 1 i< r: Lﬁ(i) = if (Fy: B[wi)y) then ® elge L'(i)

We see that atep (c2) is where W-coordinates are intreoduced. The variocus
ui-backpainters indicate which firing sequence can be used to increase the
corresponding place marking beyond any bound -- provided that sequence can

indeed be fired sufficiently often,
Disregarding the arc labels and the backpointers, this construction is

exactly the same 2s Karp and Miller's [10]. Tt differs slightly from

R. Keller's construction [11] in that Keller includes step (b) under step (c2)
by checking whether Aﬁ containg a node y whose label LY is equal to L',
Figure 3.2 shows an example of a simple Self-Loop-Free Petri net, which thus
directly corresponds to a Vector Addition System, where the two constructioms

yield different coverability trees.
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Rarp and Miller's constructiom, Keller's construction.
gsame as definicion 3.1 without backpointers.

Figure 3.2

We will show that this coverability tree will be finite for amy given
Petri Net, and thus the recursive definition provides at the same time an algo-
rithm for constructing the coverability tree of 2 Petri Net.

To illustrate this, we construct the coverability tree for the example
shown in the beginning of this section, reproduced in Fig. 3.3 on the next page.
The w3-backpointer shows us how to increase the third coordinate without
bounds by repeating Lt it The w4 backpointer shows that we must repeat tq
n times to get n tokensz on Py by firing (t ) But this is pogsible only
if Py hag enough tokens, i.e. the fourth deEends on the third w, That is
because the firing vector associated with t, is not positive. This does not
mean that we canmot produce arbitrarily many tokens irn Py but it does mean
that to do so we must first produce enough tokens in Py

Our aim in constructing this coverability tree is to provide a decision
procedure for deciding whether a given place is bounded, and whether a given
marking can be covered by a reachable marking. For this, we need three

theorems :
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root

01 0 0 |ldt_lwoi‘“-,\\
dead-end

{o

loop-end

Figure 3.3
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Theorem 3.1: Every coverability tree is finite,

Theorem 3.2: A place is unbounded if and only if the coverability tree contains

a label in which the corresponding coordinate is .

Theorem 3.3: There exists a reachable marking covering a given vector in N
if and only if the coverability tree contains a label which

covers that vector,

Theorem 3.3 also praovides the justification of the name 'coverability tree."

We shall now prove these thecrems,

3.2 Finiteness

Lerma 3.4 Every iunfinite sequence of non-negative integers contains a non-

decreasing subsequence.

Proof: If the sequence contains infinitely many mutually distinct elements, we
can extract a strictly increasing subsequence starting with any element
and scanning along the sequence until we find a larger element, and so on.

1f the sequence does not contain infinitely many mutually distinct
elements, some element must be repeated infinitely often, and there ex-
igts an infinite constant subsequence.
In any caese, Ehere ig an infinite non-decreasing subsequence.
QED

, RN 5
Legma 3.5 Every infinite sequence of r-dimensional vectors in (WU (=

contains an infinite non-decreasing subsequence.

Proof: Consider the first coordinate. If there are infinitely many vectors

whose first coordinate is @, they form an infinite subsequence non-
decreasing in the first coordinate. Otherwise, disregarding those
vectors whose first coordinate is w, there exists an infinite subse-
quence of vectors whose First coordinate is non-decreasing, by Lemma
3.4. In any case, there exists an {nfinite subsequence non-decreasing

in iks first coordinate.

This infinite subsequence now contains another infinite subse-
th
quence non-decreasing in its gsecond coordinate, and 50 on to the r

coordinate., Thus there exists an infinite subsequence non-decreasing

in each coordinate.
QED
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Corgllary 3.6 There exists no infinite set of mutually incomparable vectors
in (N U (wDHF.

Proof: This infinite set, being denumerable, could be arranged in an infinite
sequence where each element occurs exactly once. But then, by Lemma 3.3,
any two elements of some infinite non-decreasing subsequence would be
comparable, which contradicts the assumption of infinity.

QED
Note, however, that if r = 2, no a-priori bound exists on such sets of incompar-
able vectors: The set [{x, ¥) Efﬂzlx +y =k} is such a set of mutually incom-

parable pairs of size k+l, arbitrarily large.

*
Proof of Theorem gél:) Every coverability tree is finite and can be effectively

constructed.

Suppose some Petri Net has an infinite coverability tree. By construction,

every node has at most as many immediate successors as there are transitiona in
the Petri Net, a finite number. Then, by Konig's Infinity Lemma for rooted trees,
there must be an infinite path in the tree, i.e. a path which does not eventually
end at a leaf node. But then, by Lemma 3.5, there must be an infinite mon-
decreasing subsequence of the sequence of node labels along that infinite

path. TIn fact, it must be atrictly increasing, otherwise the path would have

to end in a loop-end leaf node at the first repetition of a label. But each
time a label is reached which is strictly larger than some previous label, it
will have, by construction, at least cne more coordinate equal to « than the
smaller label. Since there can be at most r coordinates equal to ©, the
" axistence of such an infinite increasing subsequence of labels along a path
in the tree is contradictory.Now that we know that the tree is finite, we can
convince ourselves that the recursive definitiom 3.1 also provides an algo-

rithm for econstructing the coverability tree.
QED

Note: K8nig's Infinity Lemma for rooted trees can easily be prooved non-cons-
tructively. Assume the rooted tree is infinite, yet at each node there is a
finite number of branches. Then at least one of the branches from the root node
must point to the root of an infinite subtree. The path traced out by the root
nodes of such sucessive infinite subtrees wmust be an infinite path -- QED.
Konig's original Infinity Lemma [12] is more general. We provide a translation

‘of his proof in appendix, page77 -

*
) This is the same proof as in Karp and Miller [10].
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3.3 Firing Sequences and Composite Paths in a Coverability Tree

Now that we know that coverability trees are finite objects, we can use
them to answer certain questiuns about the corresponding Petri Net.

?irst, we show that every firing sequence can be folded on the coverability
tree, in the sense that there exists a sequence of paths in the tree, linked by
loop backpointers, such that the arc labels spell out the given firing sequenca.
This is why we write g[t)B if an arc labelled t goes from node ¢ to node B, and
now we extend this to the case where o is a loop-end and [*)y and y[E}B.
Indeed, as in the formation of a firing sequence, we have w[ME)B, where X is the
gymbol for the empty string. See Fig. 3.4. We then observe that the "firing
rule" for labels is similar to that for markings, taking into account the tules

for arithmetic with w and the possible introduction of new W-coordinates.

altdp = L = F(E) & Lg=1L - F(t) + B(t)

T 1%
£y
0’. - Yy (L =L)
t3 W4 t2 t3
B (/1 o R

SN
[+
loop-end

Two cases where uk3)ﬁ

Fig. 3.4

Definition 3.2: A MA-composite path o from node ¢ to node § in a cover-
ability tree, written o[c)B, is a concatenation of paths starting

at o, ending at g, and linked by locp-backpointers.

An example of a M-composite path in figure 3.4 (right) is a[t1t2t4t3)ﬁ
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Lemma 3.7 If 5 L8 a firing sequence of the Petri Net N leading from the
original marking MO to some marking M, then ¢ is also a A-composite path
path in the coverability tree Ih(Mb) from the root p to a node o such
thar Lu 2 M, and such that La and M agree in the finite coordinates of

L :
o

Yo € Sy (My) Tor € Ty (M) :Ho[g)u & popleda & (vi, 1< {1 <cr :La(:i.) £ M) = Lor(i_) =)
Proof: By induction on the length of g.

basis: Lp = M, for the null sequence or path

step: assume Mb[g)Ml and Ml[t)m2'
By induction, there is a node g such that ofada and Lb = Hl with

E& and M, agreeing in Lﬂ's finite coordinates.

SBince t is firable at Ml we have Ml 2 F(t), and therefore
LCr z F(t). Therefore, x cannot be a dead-end leaf node, If 4 is a
loop-end leaf node, we follow the loop backpointer to o' and consider
a', gince we then alsc have oleda' and La' =L, Thus we can assume
plodx and La = M; = F(t) for some interior node ¢. But then, by the
comstruction of the coverability tree, there is an arc labelled t which
goes from ¢ ke a node B such that LB 2 La - F(t) + B(t). Singe

HZ =M - F{(t) + B(t), we have:

o[t)B = plotd & LBzM2

and the finite cocrdinates are tranaformed the same way for the labels
as for the markings.
QED
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Corollary 3.8: 1If place Py is unbounded in a Petri Net, the corresponding

. . _th . .
coverability tree contains a label whose i~ coordinate is .

Proof: Suppose no label has W as its ith coordinate., S5ince the number of
labels is finite, there is a largest value, bi £ w, of the ith coordi-
nate of all labels. Now, since every reachable marking is covered by
the label reached by a corresponding composite path im the cover-
ability tree, no reachable marking can exceed bi tokens in Pye Thus
p, must be bounded; in fact, bi is a bound.

QED

Corollary 3.9: If a given marking M can De covered by a reachable marking
M) in a Petri Net, then the coverability tree containg a label La

which covers M.

Proof: By Lemma 3.7 there exists a label La which covers M;, hence

L@ = M1 =M
QED

Corollaries 3.8 and 3.9 are the "only if' parts of Theorems 3.2 and 3.3,

respectively.

What remains to be shown is that W indeed stands for Marbitrarily many
tokens" ag a coordinate in the coverability tree, To produce more than a
given number of tokens in place Pys WE have to repeat the sequence of firings
leading up the first occurence of the corresponding . That sequence ig called

an wi~loup:

Definition: 1If olchP and an mi-backpointer goes from B back to o, then g is
called an mi-100p, the vector Ac ls the corresponding loop change, and
Hy is called the loop hurdle. (See Definitions 1.17 and 1.19 on page 13).

Note that there may be several different wi-loops for the same coordinate i,
which means that sometimes the unboundedness of a place can be confirmed by
different strategies. .

It should also be pointed out that if ¢ is an wi-loop, as a firing sequence
in the Petri Net it may not be firable the first time down the caverability
tree, but only after certain other w-coordinates have been made large enough

to cover the loop hurdle by repeating other wj-loops before.
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For this reason we must also not expect to Find a reachable marking

which equals any given marking agreeing in the finite coordinates with some

label in the coverability tree. But we will show that we can cover any

guch marking in the W-coordinates.

Definition 3.4: An W-composite path in a coverability tree is a sequence of

paths in the tree, linked by w-backpointers,

Lemma 3,10:

For every node y in the reachability tree TkEHb) of a Petri Net,

and for amy target vector VG agreeing with La in the latter's finite

coordinates, there exists a firing sequence g(V ) which is also an
4

W-compoaite path from the root p to node g, such that the marking

d b v o:
reached by c(va) covers o

%[G(VQ)'}MQ & MQ = ch

Proof: By induection along the path from p to a.

basisa:

step:

Vp must equal M, since Lp has only finire coordinates,

Suppose o[t)B, and suppose tharc, for every Va < La’ there exists
a firing sequence g(VQ) whose corresponding w-composite path
ends at o and leads to a marking gﬂ = Vd. We have H& = La;

Mcv = MD + M(Va)' and the three vectors Mcr’ Va, Lce agree in the
finite coordinates of L@'

We wish to find a firing sequence gCVB) capable of reaching
a marking M, which covers a given target vector VB, where VB agrees
with LB in the finite coordinates of LB.

If LB has no more Wecoordinates than Eu’ the situation is
gimple: LB - La - F{(t) + B(t), and to cover VB,
choose Va(i) = (VB + F(t)) (i} for W-coordinates and
Vu(i) = (VB + F(t) - B(t)) (L) for the finite coordinates (which

it is enough to

must agree with the corresponding labels La and L,), and then

B
take c(VB) = c(Vg)t. It is clear that in this case, Ma = F(t)

which makes t firable, and we have:
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MB = Md ~ F(t) + B(t) = vd - F{t) + B(t) = VB.
Also, if the w-compoaitce path g(Va) ends at o, then clearly

G(VB) ends at B.

Now let us assume that L, has one or several more -
coordinates than La’ gsay the ith and jth. We call these the
"new" w-coordinates, as opposed to the "old" w-coordinates
already present in Lu' The Ww-loops corresponding to these new
w-goordinates are o4 and Uj' the corresponding loop changes are
ngi and Agj, the corresponding loop hurdles are Hai and ng.

We shall try a firing sequence of the form:

o®g) = oV ) s te @)+ (o)

B
Now we must prave that there exists a carget VU and two
integers x and y such that this sequence is firable and leads to

a marking MB 2 VB. We know that agi(i) > 1 and agj(j) = 1.
Therefore, if we choose = = Vﬁ(i) and y = VB(j), the above choice

for .:r(’ﬂ’B
coordinates { and j, provided we can find Va such that this se-

) will produce a marking MB which will cover Vs in

quence be firable. In other werds, given x and y as chosen above,

we must find Vd such that tﬁgi)x(cj)y be firable at Ma, where
¥ [ (¥ M :
o o

X ¥y _
We need VQ = H(tﬁgi) ﬁjj) ) = HB

Let us look at the coordinates of this hurdle HB' They are of
three kinds: thoge for which LB
coordinates i and j (W-coordinates in LB but finite in Lu)' and

ig still finite, the new -

the old w-coordinates (W-coordinates in La)'

The finite coordinates are transformed the same way by
w-composite paths for labels and by firing sequences for markings.
The loop change for these coordinates is zero. Therefore, HB
does not exceed LB in the finite coordinates.

The new W-coordinates are also no problem. Indeed, they
are finite in La’ and in La - F(t) + B(t) they strictly exceed
the hurdles of single firings of o and Uj respectively. That is
because, if B[wi)y, then (La - F{t) + BLe})Y (L) > LY(i)’ and as
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far as this coordinate is concerned, a, can be fired from ¥y
back to p. For the second and subsequent firings, the hurdle
coordinate 1 would be even less, and ultimately be zera, since
the loop change is positive for this ceoordinate. If ay and cj
are different gequencesg, then the loop change 1in one coardinate
i iz zero for the other leoop gj and vice versa.

Since Vd must agree with Lu over the finite coordinates of
Va' i.e. those just discusaed, we see that Vml > HB is automatically
satisfied in these coordinates.

For the old w-coordinates, where by induction we can exceed
any bound in a corresponding marking, we can choose a wildly

exaggerated upper bound of HB, like

Tk, La(k) = w3 Vu(i) = Vo) + (F(r) + x«Hg ) +y *H(cj))(i)

B

Having thus established wvalues for x, ¥, VQ, given V,, we

ﬂ’
can now assert that:
- by induction, there exists c(Va) and %& such that:
M
HO[U(VQ)} N
M =V
o o

gfva) is an W-composite path to 4

- at M&, the following holds:
Mz Bt ©)7)
x y
M [EG)" @07 My
x y
Hszﬂa-l'é(t(ci) (cJ) ) EVB
tﬁgi)x ij}y is an W-composite path from o to B.

Therefore, g(V,) = c(va) l:(gi)x(.gj)y ig an w-composite path leading

B
to p and a firing sequence leading to MB = VB.

QED
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We have shown that in order to exceed a target vector Vﬂ < LB’

v (k} = L
g = Ly
preceding B In the coverability tree. Thus regressing along the path

(k) if LB(k) # W, we compute a target vector VQr for the node

p=+ ...+ 2P we map 2 firing strategy to eventually exceed our target
vector. As in Lemma 3.7 the finite coordinates of the labels change éxactly
like the markings. We note that in this strategy, the wi-loops are executed
in the sequence in which the corresponding wi*coordinates are introduced, and
that there is no embedding of the firing sequences corresponding to these
loops even if the loops themselves are embedded. As an example, we show a
coverability tree in Fig. 3.5 (on the next page), and a firing sequence for

exceeding a given target vector.

The if parts of Theorems 3.2 and 3.3 follow immediately from Lemma 3.10.
We have thus proved Theorems 3.2 and 3.3.
And from Theorems 3.1, 3.2 and 3.3 follow the main results of this

chapter:

Theorem 3.11: It is decidable whether a set of places is simultaneously

unbounded,

Proof: We can check whether the coverability tree has a label in which the

coordinates corresponding to these places are all w.
QED

The meaning of "simultanecusly unbounded” becomes clear if we look at
Fig. 3.6. Also see Definition 1,14 on page 12.
P3 and P4
P2 and P, are not simultanecusly unbounded,

3
even though each one is unbounded

are simultaneously unbounded.

individually.

Fig. 3.6
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0 0 Q0 2
™  dead-end
Gead-end

firing sequence| target
segment
2 00
a
0 1 0
b(b)56

d(d)21

21 0 12

Wow ow 1 5 3
loop-end loop-end lecop-end loop-end
target: {1 5 3 1 raraet

0y = b &rq = (0,0,1,0%

oy = d; Hig) = (0,0,2,1) Acy = {1,0,-2,0}
g, = cda; H(UA) = {(1,1,2,0% &c, = {-1,0,-2,15
g, = abeda; H(o,) = ¢(3,0,1,0) Ao, = (-3,1,-1,0)

37 22

Firing sequence to exceed the target: a

b cd " a (cda)z (a.bcda)5 a

Fig. 3.5

marking

2 0 0 1

22 0 13 2

1 7 5 2

marking
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Theorem 3.12: It is decidable whether a Petri Net can reach a marking which

Proof:

Note 1:

N

ote 2t

covers a given marking,

We can check whether the marking to be covered is covered by some
label in the finitely constructible coverability tree,
QED

The decidability results only depend on the set of labels in the
coverability tree. As a matter of fact, we don’'t even need the
coverability tree to find a firing sequence which leads to a covering
marking, because if we know that it exista, we can find it by simply
enumerating all pogsible firing sequences and their resulting markings

until we find one whose resulting marking covers the target marking.

By taking "torally unreasonable'' upper bounds, we can establish a
quick formula for finding a firing sequence which exceeds a given tar-
get vector. Let d be the distance of the target node from the root,
let h be the largest coordinate of all loop hurdles and transition
input vectors (F(t)), and let v be the largest coordinate of the tar-
get vector. We shall consider only those coordinates of a given inter-
mediate target for which the corresponding label has an W-coordinate.

Our first target vector will be replaced by one whose W-coordinates
{remember the restriction mentioned above) are all v. The clogest
antecedent where the last w was introduced into the label is less than
d arcs away, and so we chooge the corresponding tafget to have all its
w=-coordinates equal to v + d - h, which should be large enough. A
similar consideration applies to the path from one W-introduction ko
the next.

Let there be k successive W-introductions. The last w-loop will be
repeated no=v + d* h times, and thus the previous W-coordinates can
be required to exceed the target by h »oy, + d«h. We already see a
recurrence relation in the making: n .y =v deh + hemn

Now let x be the largest of v, d and h. Clearly, we can use:
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Therefore, we simply follow an W-compocsite path leading to the target

node, and in the process we repeat the first w-loop encountered,
k+2
x

" _-1x times, the next one xk+1 times less, ete.
Applied to the example of Fig, 3.5, we have d = 6, 0w = 3, v = 4,
and thus x = 6; we get the following sequence (k = 4):

a b9331 c d1555

a (cda)258 (abed a_]42 a

which results in the marking (1167, 44, 6263, 258),

We can algo use this approximation to show that in a GPN of r
places with an upper bound h on the loop and tramsition hurdles, if a
marking can be covered, there exists a firing sequence to cover it of
& length proportional to the marking to be covered, the factor of

proportionality being on the order of hr+1.

Although the principle of the proof of lemma 3.10 is quite simple,
we went to 30 much detail because, by our own experience, any firing
gtrategy derived from an incomplete proof (which disregards loop
hurdles, for example) has failed on some counterexamples to actually
be firable without producing negative intermediate markinga.

Algo, while the language used in this section iz mostly that of
Vector Addition Systems, we found the graphical intuition provided by
Petri Nets very useful to construct examples and counterexamples, and

to test conjectures and unfinished proofs.
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4. An Undecidable Problem About Petri Nets

When R, Karp and R. Miller [10]introduced Vector Addition Systems to
answer c¢eértain decidability questions about their Parallel Program Schemata,

M. Rabin showed that a particular problem about Vector Addition Systems was un-
decidahle:* is the Reachability Set of one Vector Addition System a subset of the
Reachability Set of gome cther given Vector Addition System, Rabin's first proof
in 1967 used exponential polynomials {2] ; at that time Hilbert's lOth Problem [7]
had not yet been shown to be undecidable.

In 1970, Matijasevi& [13] proved that Hilbert's 10" Problem was undecidable,
and thus permitted a technically simpler proof of Rabin's result. HRabin never
published his proof, but in 1472 he presented his new proof in a talk at MIT, an
account of which can be found in {2] .

S8ince Vector Addition Systems and Petri nets ean fully represent each other,
Rabin's result also gives us an undecideble problem about Petri nets, Further-
more, we believe that the graphical character of the Petri net model permits an

easler exposition of the undecidability result,

Theorem 4.1: Given two Petri nets having the same number of places, each with a
given initial marking, it is undecidable in general whether every marking

reachable in ome net is also reachable in the other.

Proof: We show that, given an arbitrary polynomial P(xl, c ey xr) of r variables

with integer coefficients, there exists a pair of Petri nets such that the
set of reachable markings of one is a subset of the reachable markings of
the other if and only if the polynomial P has an iﬁtegral root. Thus, if
we could decide for any two Petri nets whether in fact the set of reachable
markings of one is a subset of the reachable markings ¢V the other, we could
also decide whether an arbitrary polynemial with integral coefficients has
an integral root., UBut this is Hilbert's 10th Problem, which has been shown

to be undecidable by Matijasevif.

th
Actually, we use the following equivalent form of Hilbert's 10 problem:

*

Rabin was misquoted Iin [10] and [11] : Karp and Miller believed he had shown the
Equality of Reachability Sets to be undecidable; to this auther's knowledge,
this question has not yet been resolved, as of 1973.
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Lemma 4-2:. Given two polynomials of r variables with non-negative integer coefficient
P(x) and Q(X) such that, ¥Z € B : P(x)} = Q(x), it is undecidable whether
there exists a solution X € N° to P(R) = Q(%).

Proof of Lemma 4.2: Let R(%) be an arbitrary polynomial with r variables. Then
R(X) = O has a solution inZ° if and only if one of the 2° pelynomials ob-
tained from R by replacing some of the variahbles by their negative has a
root in N'. Thus a finire number of tests for non-negative inkeger roots
is enough to find any integer root of R.
Now, let Rl(i) be a polynomial for which we check for roots in K'.
Let chi) = (Rl(i))z. Then we have:

¥x € N : Rz(i) = 0, and the rocts of R2 are clearly roots of Ry and vice versza

Now, we separate positive and negative coefficients of Rz:

Ry(R) = P(x) - Q(X) > 0

where P and Q are polynomials with non-negative coefficients and clearly

satisfy the conditions of the Lemma.
First, we shall show how to get a Petri net to behave like a polynomial,

Lemma 4.3: Given a polynomial with non-negative integer coefficients of r variables,
P(xl, ooy xr), there exists a Petri net with r+1 distinguished places such
that the set of all markings reachable in these distinguished places is the

set {(xl,..., x z)|xi €N &0sz<P(x;, ..., x )}

r!
There may be many more places in this Petri net than just these distinguished
places, but for the moment we disregard their markings.

As an example, consider the following net, which can be aeen to correspond
to the polynemial of one variable P(x) = x+1:
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"/‘_'O ’
[ i\@_—l___@ 0 z35 P(x)

e —

distinguished places

Fig. 4.1

The possible markings for the distinguished places are:

X 2
(0, 0) (1, 0 (2, 0
(0, 1) (1, 1) (2, B

(1, 2% {2, 2%
{2, 3 etc.

The relation te the graph of P{x) is obvicus: The reachable markings can be repre-

santed by the integral points below or or the graph:

P(x) = x4+ 1
5 ] _
b -
3 e
2 > @9
1 L3 > L—
0.1 I ; D,
o 1 2 3 4 5
Fig, 4.2

.

mma 4.31: We shall show how to construct such a net, given a polynomial

51
o]
=}
h
|c
LI o)
b

with r variables x P
1 * e

The general structure is shown below:

Van
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“« O

. P(xlg ov-,xr)

"compute"

08 2= P(xl,...,xr)

— e

—
“r
"generateﬂk
P
T

L J

.

a

some
arbitrary
arpument

xl,...,xr_ X
Eos 1
t Py C

digtinguished places

Fig. 4.3

The generation part is easy to build:

Fig. 4.4 "generate"

Each transition £ fires some number (possibly zero) of times, generating a
value for X, in two copies (one for the '"computer,” one for the corresponding
distinguished place), then the "generator™ quits. The '"argument' part of the
distinguished marking is now established, and will not be altered.
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The “computer' is a Petri net which, for a given "argument” Xya vevs Xy
tries to compute P(xl, ...,xr). However, for the marking z of its output

place p P(x xr) is only an upper bound: No firing sequence can

» 3 meus
possibl;+iut moie tokens on 2z, but there exists a firing sequence which
does put P(xl, ety xr) tokens on z, It does not matter if some other
firing sequence kills the net before the bound is reached.

Rabin calls such a computation by upper bounds ‘weak computation,™ and
we are about to show that polynomials with non-negative integer coefficients
are weakly computable by Petri nels.

Polynomials are computed by the operations of addition of two num-
bers, multiplication of two numbers, and substitution of previous results

into one or several new additions or multiplications. Now, since, for

pusitive integers; each of the operations add, multiply, copy i3 non-

deereasing as a function of its arguments, if we substitute a reachable
upper bound for its arguments, the result will also be a reachable upper
bound.

Also, we shall make sure that the reachable upper bound can be ap-
proached one token at a time, so that the possible markings of the "result"
place include all integers from zero tc the bound included.

The add and copy operations can be represented by a Petri net as

follows:

O~
e
(::)_._,+_,—f;2:;1 (;;? L‘\\

in

ofele

"add" out

Copy
Fig. 4.5

And the following Petri net has a reachable upper bound of x .y in its

ocutput place:
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input x O_
input y (::)“

\O 0 € output 5 -y

Fig. 4,6 "multiply"

it can be seen that the following strategy yields x . y tokens at the output,
and that this cannot be exceeded, though it is possible to exhaust x and
thus grind to a halt by firing only t and t', not producing any tokens
at the output. The maximum output strategy is: Transfer all y tokens inte
¥, fire t, transfer all of y into § (ab this point we have y tokens at the
output, ®x -1 at the input), then fire t' and bring all v tokens back o
Y, and repeat this for the remaining x -1 tokems. ¢t can fire only x times,
and at most y tokens can be transferred to the output between firings of t.
Having thus shown that addition, multiplication and substitution are
weakly computable by Petri nets (and argued that substituticon in fact pre-~
serves weak computability), we can now construct a Petri net that weakly
computes a polynomial, say 3x2 + 2xy + y3, by interconnecting the Petri nets

weakly computing add, copy, and multiply, as shown in Fig. 4.7.




Example :

opy

(:::)-icOPY

2%

2 opy

%Q ‘; ES
ot
=
o

Fig. 4.7 "Compute" 3x% + 2xy + y3

3x2+ 2xy

A

QED

resul
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Now we will show how to construct two Petri nets, A and B, such that every
marking reachable by A is also reachable by B if and only if there exists a col-
lection of non-negative integers Ky rres X guch that, for two given polynomials

P and Q as described in Lemma a, we have:

P(xl, ceny xr) = Q(xl, eay xr)

Since P(X) 2 Q(X) and since the polynomials only teke integral values for integral

arguments, we have:
(W& € N')  (P(R) = Q&) <> P@E) < Q@) + 1)

As far as the graphs of P and Q+1 in (r +1) -space are concerned, it means that the

*
graph of P "dips under" the graph of Q+1 if and only if P = Q has a solution:

z F
Q+
point reachable in B, o Q
but not in A
b P=q
X x
no integer solution integer solution
Fig, 4.8

Fow let A' and B' be Petri nets corresponding to the polynomials P and Q + 1 according
to Lemma b, Every marking of the set of r+1 distinguished places of R' is reachable
as a marking of the distinguished set of r +1 places of A’ except if the graph of P
"dips under” the graph of Q, i.e. if there is an integer golution to the equation
P =0, Yet we want to have two Petri nets A and B where every marking of B is
reachable by A if and only if there is no solution to P = Q; we want to compare the
markings of ctwo complete nets, not just for a subset of the places.

What remains to be done is tu modify A' and K' into two nets A and B of same

number of places n, such that every marking of 1} is reachable in A except if the

_—
Enough for the 'dip" (shaded area in Fig.4.8 ) to contaim an integral point.
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marking of the distinguished places of B’ cannot be reached by the distinguished
places of A'.

As a first step, we add enough extra blank places, net connected to any
existing transition, to ome of the nets, in order to get two nets of the same
numher of places n -2, then we add twe more places ¢,f to each net. These are
all the places in A resp. B. In B, let ¢ be blank and B be marked with one token:
neither place is connected to any transition, This completes B, which thus dif-
fers from B' in only a few disconnected places, 1In A, however, we ingert a transi-
tion from ¢ to B, and we let place ¢ be in a self-loop on every transition of A.

We let y be originally marked with one token, and p be initially blank, Thus, as
long as the token is in @, A behaves just like A', but when the roken transfers to
f, all transitions become permanently disabled, and in particular, the marking in
the r +1 distinguished places will be frozen.

Now, for each of the mn-2- (r+1) undistinguished places of A, we add two
transitions, one of which puts a token on the place, the other removes a token from
it; then we put all these new transitions in self-lcops on place B. Thus, after
the token from r is transferred to B, any marking can be reached in the undis-
tinguished places of A by firing these extra transitions a suitable number of times.

To see how this counstruction works, let us see under what conditions every
marking reachable in B can alsc be reached in A,

Let us label the places as follows: Pjs» +++s P, are the places containing

the argument for the polynomial, p contains a partial result of the computation.

These are the r +1 distinguished pE:ies. For the sake of ergument, let the number
of places of B' be the smaller number k, and the number of places of A' be
n-2=>%. We add n-2-k undistinguished places to B'. Let us label the undis-
tinguished places of A and B PLip =+= P 9> and let us label ¢ and B, P, and Pao1e
respectively. (See Fig. 4.9 )

For comparing markings in A and B, we pair the places according to their
labels p.. Now, any marking of B will be, by construction, of the following form,

where z < Q(xl, .y xn) +1:

Py o P Prnr Pry2 -+r Ppo2 PL-1 pn

<x13 ary xr! z’ Y]-’ ey yn_r_32 1’ 0}
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extra
transitions

L] rd
: » ‘\--—
all

transition
of A'

n-2

extra dummy places of B
r to match the size of A

L ]
undistingui- 4 L . pk+1 /
shed places i tee
of A’ : A

undistinguished
> places of B’

O
O
O
-1 I d; Eransitions
O
O
O

Y of Bl .
AT { »
: r \ —
O |
isti i digstinguished
dist hed
pIZc;:gEESA? 4 O Py \ places of B!
* BF
L ]
; O Py J

Fig. 4.9
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To reach this marking in A, we must first try to match Pys s+*s Pyl gince

after we match Po_1 and p s e will have frozen the marking of the distinguished
places of A. Therefore, we first generate the argument X,, ... X, for polynomial
P, then partially compute P(xl, seny xr) in a way that, if completed, wonld
actually yield P(xl, ey xn) tokens in Pi1 of A. But we stop as soon as we reach
z, the marking we Lry Lo match in P of K. This is possible if and only if

P(xl, ey xr) ~ z, which in turn could fail only if z = Q(xl, ceey Kr) + 1 and in
fact P(xl, . xr) = Q(xl, caiy xr). Suppose we could reach = in Poil of A.

As soon as we do, we switch off all transitions of A' by transferring the token from
y(pn) to B(pn_l), at the same time matching the marking in these two places to the
one in B. But now, we can reach any marking we wish in Poyas *=°7 P2 of A, by
firing the extra transitions of A a suitable number of times; in particular, we

can match Yys weno ¥ thus reaching in A the proposed marking of B. As we

n-t-3’
pointed out, this can be carried out for all markings of B except one where we have:

z = Q(xl, ceag xr) +1-= P(xl, ih ey xr) + 1

But such a marking is reachable in B if and only if the above equation does have a

solution in non-negative integers, Thus:

(X € W) P(x) # Q(X) <& every marking reachable in B is also
reachable in A

QED
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5. The Liveness and Reachability Problems for Petri Nets

5.0 Iatroduction

Tna this section we study the recursive reducibilities of several re-
lated decision problems about Petri Nets, and therefore also about Vector
Addition Systems, in view of Section 2,

The main problems are the Liveness Problem and the Reachability
Problem. Both have been conjectured to be undecidable, and the first has
been conjectured by R. Keller [11] to be reducible to the second.

Liveness Problem: GCiven a Petri Net and an initial marking, is it live?

Reachability Problem: Given a Petri Net N, an initial marking MU’ and
a marking M, is M reachable from MO? (Izs M in the marking class
_+
: MEM 2
of Myt MEM or M € R () ?)
We shall prove Keller's reducibility conjecture, as well as the

reducibility of the Reachability Problem to the Liveness Problem:

Theorem 5.1: The Liveness Problem and the Reachability Problem are

recursively equivalent.

Finally, we shall discuss some sufficient conditions for these

problems to be undecidable or to he decidable,

5,1 The Sub-Problems

We shall prove our result by showing various recursive reducibilities

hetween the following problems:

LP: The Liveness Problem.

SLP: The Livenegs Problem for a subset of the transitions of a Petri
Net: Is every transition in a given subset live? (In particular, is
a given transition liveT)

RE: The Reachability Problem: Are Marking Classes recursive?

SRP: The Reachability Problem for a subset of the places of a Petri Net:
Given a marking M, does there exist a marking M' reachable from the
initial marking such that M and M' coincide on the given subget of
places?

ZRP: The Reachability of the zero (empty) marking. {In Vector Addition



-54 -

Systems language: Does the Reachability Set contain the Origin?)
SZRP: The Reachability of the Zero marking for a subset of the places.

5.2 The Becursive Equivalence of LP and SLP

The reducibility of L? to SLP is trivial, since LP is a special case
of SLP. More to the point, if we know how to test for the liveness of
a given transition, we can determine the liveness of a subset of transi-
tions by repeating the test for each transition of the subset.

In fact, we can also construct from a given Petri Net a new net
contzining an extra transition € such that T 1s live {f and only if the

original net is live,

O/’:_: Clearly, T will die if and only if
/,,.vl <:) e — at least ome original transition dies.
<:I;“\~‘_ {(Each transition of the original net
is connected to one of the additional
orlglnal N places)
net h

added compenencts Fig. 5.1

Now we shall show that if we can decide the liveness of a whole Net,
we can decide whether a given subset is live, (Just knowing that a Net
is dead does not tell us which transitions are dead; a non-live Net can

certainly contain live transitions.) Example:

live “ dead Figure 5.2

We shall first prove the following remarkable result:

Lemma 5.2¢ Any Restricted Pecri Net N can be gimulated by a live Petri
Net ﬁ.
That is, we can construcf a net ﬁ such that to every firing sequence of
N there corresponds a distinct set of firing sequences of ﬁ; to every
marking of N there corresponds a distinct set of markipgs aof ﬁ; the
markings reached by corresponding firing sequences alﬁays correspond;
and if two markings correspond to each other, they can be reached by
corresponding firing sequences or not at all. Moreover, the translatiom

is straightforward both ways.
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Proof: Let us first dispel the mystery. The following Net is clearly

N: Figure 5.3
P t

Its firing sequences are: A (the empty string)

non-live:

£
ttt
Lttt

The corregponding live net:ﬂ} must have infinitely many and un-
boundedly long firing sequences. Thug, clearly there must be a set of
firing sequences afﬁ; for each sequence of N. We achleve this by
having &4 transitions a,b,c,d correspond to t, and certain patterns of
firings will correspond to a firing of t; others will correspond to a
non-firing of t. 1In particular, the correspondence will be: {represented

as regular expressions)

A

N N

A (acbd)*

t (acbd)* (zb + acbabd) (achd)*

tt

tee (ab + acb(ab)*d)*® where the number
ttet of occurences of substring ab

is 2,3 and &, respectively.

In other words, every firing of b is represented by the occurence of
the substring ab agalnst a background pattern of’acqﬂﬁCEQagqgr..
The arrows show where the substring may occur (singly or multiply).
The background pattern fires all four transitioms arbitrarily often,
without possibility of deadlock: It is live.

The graph of ﬁ’is shown below:



Figure 5.4

Place 3 corresponds to p; its initial marking ls twice the marking of

p plus one extra token., This extra tokem is what keéps the net alive

when p is empty. It can be geen that a and b remove tokens from B,
whereas ¢ and d put a tokenm back. The "empty" pattern acbd thus
jiggles the extra token back and forth, whereas the pattern ab removes
two tokens from E {corresponding to one token removed by a firing of L
in N) and restores the state of the four additional places. These four

places can be in any of Ffour "phases':

Figure 5.5



-57-

The action of this net can be represented by the following state diagram:

{(ab)* acb(ab)¥*d}*
(ab)*

Figure 5. b

o

We now proceed to the general construction of N, given a Fetri
Net N whose places are pl...pr and whose transitions are t1"'ts‘
o)
N will contain one place $i for each place p; in N, plus, for each

transition tj’ four places ﬂjl’ ﬂj2’ ﬁjS’ ﬁjh and six transitions

tja”"tjf’ plus one additional place which we call the hub. Each

transition tj is replaced by a constructiom like that shown before,

which iz connected to the hub by means of tje and tjf’ and to the

apprepriate Bi places as follows: if there is an arc from P, to

tj in N, there will be two arcs from ﬁi to tja and tjb and two arcs
[ a h 1

from tjc and tjd to p,. 1f there is an arc from tj Lo Pys there wil

je
Thus, the effect of firing tj can be modeled as in the example

N Ll
; d
be two arcs from tja and tjb to Pys and two arcs from Py to t, an

tjd'
before.
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Z'M(pi)+l

Fligure 5.7

. The initial marking of §.c0nsists of twice the marking of Nin P
for ﬁi plus the "steady-state" background marking of ome extra token
for each 3&, and i token in the hub. Whenever the hub is marked, we
say that the net N is at regt. Otherwise, it is active, and is in some

phase aj’ Bj’ Yj orﬁj ag illustreted before. Note that each tramsition
cycle will start and end in phase &; tje starts the cycle for tj’ and
tjf returng the token to the hub, thus permitting some other tranaition

firing to be simulated. This guarantees that all steady state tokens
have been returned to where they were before, switching to some other
transition complex. The only effective marking changes are those due

to an ab firing of tj’ such as tjaFjb’ which transfers a pair of tokens

from an input place {as seen in the original net N) to amn output place

of t..
]

P
The correspondence between markings is simple. If N is at rest or in
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some phase G or y, we have ﬁ= 2M + 1. If ﬁ. ig in phase Bj or éj the
input places to tj lack the steady state token, and the output places
of tj have twi.steady state tokens in addition to 2M. The firing
sequences aof N are clearly of the form: (wl +w, + ...wh)*

where

. £, t, £, )%t ¥,
wi = £y ( YR I

t t
tja ib + tja jctjb ja_ib jd
and each occurence of t, t.. corresponds to a firing of £, in N,
_ja ib j

[
and has the corresponding effect on the marking of N.

QED

It can be gseen that this construction would fail if there were
multiple arcs or self-loops, since it would be impossible to manage the
steady-state tokens. But if we have an arbitrary generalized Petri Net,
we can always transform it into an equivalent self-loop free gingle-are
Petri Net by using the construction shown in Sectiom 2, which does not
affect liveness. The translation would then be a two-step procedure,
but we observe that the combined translation still has the properties

outlined under Lemma 5.2. This gives the following

Corollary 5.3:. Any Ceneralized Petri Net can be simulated (in the sense
of Lemma 5.2) by & live Petri Net.

Remark: In {1] . Baker objects to the fact that the constructions
used in Rabin's proof are neither live nor consistent, whereas all

"nice" systems should only be represemted by live comsistent nets.

(A Petri Wet is said to be consistent if there exists a firing sequence
which fires each transition at least once and returns to the original
marking, i.e., there exists a steady-state behaviour involving all
transitions in the met}. But we can easily apply the method just presented
to congtruct from the two nete A and B of Section &4, two néﬁ nets ? and

§ which are live and consistent (our construction certainly provides

for a consistent steady-atate firing - the one corresponding to no

"real" firings at all) whose reachable markings agree if and omly if those

of A and B agree:
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Corollary 5.4: Given two live, consistent GPN's, it is undecidable

vhether every marking reacheble by ome is also reachable by the other.

Now we are ready to use the construction of Lemma 5.2 to prove the

following Lemma:
Lemma 5,5: LP and SLP are recursively equivalent.
Proof: We have to show that SLP can be reduced to LF.

Suppose we wish to test the liveness of a certein subset of transi-
tions T < {tl,...tm}. say E = {tl,....tk}, in a given Petri Net N.

We construct a new net N' by using the construction of the live
equivalent ﬁ for the transitioms not to be tested for liveness, i.e.,
for {tk+1,...tn}. Remembering that the marking of ﬁ is double that of
N (plus steady-state tokens), we replace the single arcs leading to or
from the transitions to be tested ({tl,...tk]) with double arcs in N'
and call the transitions {?i""?k}' Thus, the effect of firing

P ~
tjatjb or Ei in N'affects the marking of N'similarly by moving pairs

of tokeng in ﬁ'for each token moved correspondingly in N. But we

have to make sure that the steady-state tokens do not interfere. As
long as there is only one, it will not be noticed by the double arcs.
But if the net is in phase B or 8§, there may be two steady-state tokens
in some place, which could cause a false firing of some ?i. To prevent
this, we put each gi in a self-leop through the hub, as showm in the
following example. MNow these transitioms can fire only when the net

£ is "at rest",

Example: N = Py

Test the liveness of
{£s 5}
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a
The corresponding net N' is:

Figure 5.9

~ ~

Now, in N', all transitions except possibly El and t2 are live by
construction. Thus, the whole met is live if and only if [?1,?2] is
live, which gives us a liveness test for {:l,tz1

I in N as soon as we
(st
can test the liveness of the met K'.

QED.
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5.3 The Recursive Equivalence of RP, SRP, ZRP and SZRF

Let us first establish the trivial reducibilities: Both RP and
S2RP are particular cases of SRP, and ZRP is a particular case of RP

and SZRP. Thus ZRP is reducible to bath RP and SZRP, each of which
is reducible to SRP,

fLemma 5.6: RP, SRP, ZRP and SZRP are recursively equivalent.
Proof: We have to show that SRP ia reducible to ZRP to complete the proof.

Suppose we wish to test for the reachability of the submarking (ml,mz,...mkj
of the subset of places {pl,...pk} = {pl,...pr] of some Petri Net N
with a given initial marking. We shall construct a net N obtained from
N by adding
1. an extra transition Bi for each place piE [pk+1,...,pr} in whose
marking we are not interested.
2. two extra transitions ea and eb.
3. two extra places ®, and 7, vhere T is initially marked with one
token and L is blank.
Now we conmnect these extra elements to a copy of ¥ as shown below,
where the size of the bundle from p, to Ba is LI i.e,, the firing of

Ba removes exactly the submarking whose reachability we wish to test.

e vttt ~
/'all places P'_L Pz P Pk+1 pr \\
!.F of N e w N
' all C) »
, transitions - - _—_— = =] -
e :
ttl
P2

o~

l > N
i
(
|
L
|
“ g &F—=p o
~ Jl eb
) -

Figure 5.10
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. self-loops on every tramsition in N. Ga transfers the token from

™ to “b’ which self-loops on every Bj, k+1% j% n, How Ba can
fire if and omly if a marking can be reached which covers the one we
are testing for reachability. Ba can fire at most once; if it does,

it freezes all activity in N by removing the token from T, thus
disabling every transition of N, The marking of {pl,...pk} is now

zero if and only if the tested submarking was reachable. Now the token
in T can pump all other tokens from [pk+1,...pn} via transitions
ek+}f""
of N if and only Lf the tested submarking was reachable in N.

en, and finally exit L via Gb, reaching the all-zero marking

QED.

¢.4 The Reducibility of RP to LP

Lemma 5.7: RP 1is recursively reducible to LP.

Proof: Actually, we prove that ZRP is reducible to SLP. Lemma 5.7 then

follows from the equivalences proved in Lemmas 5.5 and 5.6

We wish to test whether in a given Petri Net N (with its initisl
marking), the zero marking 1s reachable. We construct from it a new
net % in which a certain transition Ba ig live if and only if the zero
marking is not reachable in N. Then a test for the liveness of Ba in
N#* will be a reachability test for N.

We comstruct N¥* as follows, starting with a copy of N, to which we
add:

i, two places ﬂa and T where ﬂa gself-loops on every transition in N.

T ig initially marked with one token; T is hlank.
2. a transition Ga from " to .
3, for every place P in ¥, a transition ei which self-loops on p;

and transfers a token from ﬂb to ﬂa.



_all_places of N all ctransitions of N

Figure 5.11

The token in ﬂ& permits N* to fire exactly like N and generates
the same markings in Ppee Py Once in a while Ga fires and thus
freegzes N by removing this token. The token can get back to ﬁ& if
and only if at least ome 91 is enabled, i.e., the present marking of N
is not zero. It is thus clear that Ba is live if and only if that zero

marking of N is not reachable.

QED.

5.5 The Equivalence of LP and RP

What remains to be proved is that some form of the Liveness Problem
can be reduced to some form of the Reachability Problem. In particular,
we show that the liveness of a transition t (SLP) can be decided by testing
the reachability of a finite mumber of submarkings (SRP) which we call
t-dead submarkings.

Definition 5.1; Given a Petri Net N = (I, ¥, F, B, Mb) with H=={p1, ...,pr}
and 2 transitiom t € 5t

a. A marking M€ N° is said to be t-dead iff, starting from M,

there does not exist a Firing sequence which eventually fires t:

i}
T igs t-dead & ¢t 1is not potentially firable at M
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b. A submarking m of a subset P &1 18 said to be t-dead iff

every marking M which agrees with m (i.e. m = M/P) is t-dead.

(See Definitions 1.9 and 1.10, page 11.)

From the definition of liveness (Definition 1.16), it follows that t
ig live 1f and only if ho t-dead marking is reachable., Now there may be
an infinite number of t-dead markings, but by checking the raachability of
a submarking, we are in fact checking the reachabilicy of an infinite mum-
ber of markings in one step: if the submarking is not reachable, no marking
agreeing with it is reachable. Therefore, if every t-dead marking agrees
with at least one t-dead submarking from a finite set Dt of t-dead sub-
markings, then transition t is live if and only if no submarking in Dt is
reachable: Checking liveness reduces to checking the reachability of a
finite mumber of submarkings.

The following example shows in what context submarkings are considered

for t-deadness. In the net of Fig. 5.12, if Py is blank, no amount of

Py
t) =
&
Py
Fig. 5.12

tokens will make t potentially firable; if P, is blank, it must receive

a token via a firing of s Lo fire t,, and therefore we can see that the
only tl-dead markings are (1, 0%, (2, 0), and all markings of the form

{0, x), where x € W . But these markings {0, x) are precisely all markings
which agree with the submarking p; = 0, or, more formally, the submarking
(o, 0)/{ pl If we are given an initial marking, say M, = [5, 0}, it is
therefore enough to check the reachabilicy of one submarklng Py = 0 and

two markings (1, 0% and {2, 0). As it turms oug, neither of the two

markings ¢1, O} and {2, 0) are reachable, since if €, does not fire, there
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will always be more than 4 tokens in Py» and after £y fires, Py will
always contain at least one token. The submarking P = 0 is also not
reachable since no firing of £y or t, changes the parity of the marking
in P Since Mo(pl) iz odd, we cannot reach a marking with zero tokens
in Py - The conclusion is that t, is live at MU = {5,0).

An important property of t-dead markings is that any marking covered by
a t-dead marking mst also be t-dead. That is because any firing sequence
starting at the smaller marking is also firable at the larger marking.

Now we adopt the following convention for representing a submarking
M/P, where P c I, by a vector V € (N U {a)F.

Definition 5.2: A vector V € (N U {@})’ is said to be a submarking

M/P iff the finite coordinates of V are those of the places in P,
and they agree with M:

vi, lsi<r: P, € P = V(i) = M(pi)

p; €N -P & V(@) =

Example: The t-dead submarkings of the Petri net in Fig. 5.12 are
(1, 0%, (2, 0%, and {0, w).

Now we can compare t-dead markings and submarkinga by means of the
< relation on (N U[w})T, as defined in Section 3.1 page 24,

Le 5.8: If V is a t-dead marking or submarking, and V' < V, then
V' is also t-dead., (v, V' € (W U{w]%),

Proof: If V is & marking, i.e. has no W-ccordinates, then V' is alsoc a
marking. V' is covered by a t-dead marking and hence must be
t-dead. If V is a submarking, then any marking V" which agrees
with V in its finite coordinates is t-dead, by definition, If V'
is smaller than V, then every marking which agrees with V' is
covered by some marking V" which agrees with V, hence must also be
t-dead. Then V' ia t-dead by Definitiom 5.1.

QED
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This lemma justifies our convention for representing submarkings
as vectors 1in (IILJ[U})r. In fact, this convention alsoc permits us to
give a stronger form to Theorem 3.3: A submarking V € (W Y () is

scrongly coverable (see Definition 1.1l1) in a Petri Het N ifE there

exists a label L = V in the coverability tree of N.

Now we are ready to look for a finite set of t-dead submarkings Dt
which is sufficient to decide the liveness of t,

Let f% be the (possibly infinite) set of all t-dead markings and
submarkings. For example,'ﬁ; of the Petri Net in Fig. 5.12 would be the
set {(1, 0), ¢2, 0}, {0, w), (0, 0), €0, 1), (0, 2}, (O, 3%, ... ).

Definition 5.3:
a. A submarking V £ (liLj{w})r is said to be superseded by a
proper submarking V' of V iff every finite coordimate of V!

is equal to the corresponding coordinate of V"
A
V' supersedes V o V' # V & (¥i: V(L) # W= Y(1) = V(1))

b. The set of unnecessary t-dead submarkings is the set

U= (v e (ﬁﬂj(w])r|iv' E‘ﬁ;: V' gupersedes V)

¢. The reduced t-dead set is defined as

/\
b = Dt - U

=

From Lemma 5.8 it is clear that U£ = ﬁ;. The gubmarkings in Ut are
unnecessary for the purpose of testing the liveness of t. Indeed, if
V' supersedes V and V' is reachable, then some t-dead V of which v' is a
gubmarking will be reachable, hence t is not live. If V' is not reachable,
then no V of which V' is a submarking is reachable., In either case, V is
not needed explicitly to establish the liveness of t. Therefore, it is
enough to check the non-reachability of all submarkings in the reduced
t-dead set D_ to establish the liveness of t.

Now we show that D_ must always be finite.
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Lemma 5.9: For a given Petri net and a given transition t, the reduced

Proof:;

t-dead set Dt is finite.

Assume D is infinite., It is certainly demumerable, so let us
arrange it into an infinite sequence of distinct vectors in

(W y{w})¥. By Lemma 3.5, there must be an infinite strictly
increasing (all elements being distinct) subsequence of this se-
quence. Some coordinates in this sequence may be bounded, others
may eventually reach W, after which they must remain at w. After
some finite inicial segment, there remains an infinite tail where
some coordinaktes are constant, the others increase without bound.
Thus an infinite Dt must contain an infinite subset of t-dead
submarkings W whose elements all agree in some set of coordinates,
and take on arbitrarily large finite (non-w} values in the others.
Let V be a vector which agrees with all vectors in W in the
"constant" coordinates, and whose remaining coordinates are W.
Clearly, V denotes a submarking which is not reachable in N only if
no submarking in W is reachable in N. V must algsc be £-dead, be-
cauge if it were not, then some marking which agrees with V in its
finite coordinates would not be t-dead, and yet it would be exceeded
by some vector V' in W, since the coordinates of V' which correspond
to W-eoordinates in V are either W or can be made arbitrarily large
in W. But this contradicts Lemma 5.9. But this wvector V, which is
t-dead and covers all of W, is in ﬁ;, and is a proper submarking of
every element of W. Hence W < Ups which is incompatible with

D_ =D - U_. Thus D_ must be finite.

t t £ t
QED

What we have shown so far is:

Corollary 5.10: The liveness of a transition t can be established by

checking the reachability of a finite set Dt of t-dead submarkings.

What remains to be proved is that Dt can be effectively constructed.
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Lemma 5.11: Given a Petri Net N = (I, £, F, B) and a transition t € I,
it is decidable whether a submarking V € (lilJ[u})r is t-dead.

Proof: (No initial marking is mentionmed for N, since the concept of
t-deadness is independent of the initial marking.) For a marking
M < lfu transition t is potentially firable iff a marking can be
reached which covers F(t), i.e. iff some label in TN(M) COVers
F(t). (Theorem 3.3). The argument can be adapted for submarkings
as follows. We extend the definjtion of a coverability tree
TN(V), where V € (N LJ{w})r, by allowing the label of the root node
to already contain some W-coordinates, without W-backpointers to be
gsure. The definition (Definition 3.1, page 25) need not be changed;
the label of the root node of TN(V) will be Lp =V, and the con-
struction proceeds without modification.

Suppose that V is not t-dead. Then there exists a marking M
which agrees with V in the finite coordinates, from which a firing
sequence leads to a marking which covers F(t), of course,

MV = Lp' By repeating the argument used in the preoof of
lemma 3.7 (page 32), we can see that the firing sequence is also a
A-compogite path to a node ¢ such that La = F{t).

Suppose that there exists a node ¢ such that La 2 F(t). Let
Vﬂl = F(t) be a target for w, i.e. V agrees with La in its finite
coordinates. By using the proof of Lemma 3.10 (page ), we com-
pute a target V for the root node of IN(V); we have VD < V and
Vp agrees with V in the finite coordinates of V, i.e. Vp ig a
marking which agrees with submarking V, and from Vo a marking Md
can be reached such that Ma b Vu = F(E), i.e. t is potentially
firable at Vp' and thus Vp 45 not t-dead. Therefore, submarking
V cannot be t-dead.

Thus, V is t-dead if and only if TN(V) does not contain any
label which covers F(t), which is decidable since the constructicn
of TN(V) ig finite and effective. There is no change to the
finiteness proof in Theorem 3.1 for TN(V).

QED
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Lemms 5.12: For a given Petri Net N and a given transition t, the reduced

t~dead set Dt’ as defined in Definition 5.3, ean be effectively

constructed.

We show how to effectively find an upper bound on the finite co-
ordinates of all vectorsz in Dt' Then there will be a known finite set
from which all vectors in Dt are taken. Since this selection is it-
self an effective procedure, by virtue of Lemma 5.1]1, the comstruc-
tion of Dt is effective,

We shall use the following property of a strict upper bound --
call it a; a € ¥ -- on the finite coordinates in Dt' Because of
lemma 5.8 thiz means that no finite coordinate of any vector in Dt
is equal to a. Now suppose there is a t-dead marking V € ﬁ;, and some
of ita coordinates are equal to a. Then V ¢ Dt' which implies V € Ut'
and hence is superseded by a submarking V' of V which has w-coordinates

where V hag a-coordinates. We write this as:

Vi, 1< i g r: Uw(i) =if V(i) 2 a then a else V(i)

(a is a strict upper bound for

. # - . " )
the finite coordinates in Dt)} = (fv: Vv ¢ Dt = Va,.;m € Dt)

Now we show that the converse i3 true in a stronger form:
Let A € N : i, A(L) = a.
Suppose a ¢ W is such that:

-~

WW o= A VGDt = va-.wEDt

Let Vl € N be a t-dead marking with possibly gome coordinates
greater thano a. Let Vz be the vector whose coordinates are those
of Vl if they are less than g, and which are set equal to a otherwise:

Vi, 1l s 1 g r: Vz(i_) = Evl(i) 2> a then a else Vl(i)

Clearly we have U2 < Vl’ and hence V2 € ﬁt' But we also have
V2 < A, and hence, from our assumption about g:

(V,<A & V,€D) = V €D
2 2 €0 2 c
A}
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But V has w-coordinates where Vl has coordinates greater than

2 g

or equal to a, and if Vl has such coordinates, thern VZ supersedes
a-
Vl, hence Vl € Ut and V, t D, - This shows that no vector im D

has finite coordinates graeater Lhan or equal to a:

a is a strict upper bound on .
the finite coordinates in Dt e YA VK Dt = vaaw € Dt

For a givenqg, only a finite number of questions of the form
vV E Dt and Vaaw [= Dt’ for V < A, have to be answered to establish 2
ag a strict upper bound. By trying for successively higher values
for g, this bound will be effectively found, since it exists
(Dt ig finite by Lemma 5.9).
QED

To summarize this lengthy section:

‘We have shown that by testing the reachability of the elements of an
effectively constructible finite set Dt of submarkings, we can decide the
liveness of t. Thus SLP is reducible to SRP. Together with Lemmas 5.5, 5.6
and 5.7 this proves Thecrem 5.1: LP and RP are recursively equivalent to each

other and to SLP, SRP, ZRP and SZRP.
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5.6 A Sufficient Condition for the Undecidability of the Liveness and

Reachability Problems

In Section 4, we use Petri Nets that behave like polynomials in the

sense that there 1s a place which has a reachable upper bound expressed

by a pelynomial whose argument is the initial marking of some distinguished

set of places, Now we introduce the concept of a reachable lower bound

as a function of the initial marking in some distinguished se: of places.

Definition 5.4: In a Petri Net with a given initial marking MO’ a place P,
is said to have a reachable guaranteed minimum (rgm) bi iff,
from every marking M, in the marking class, we can reach a
marking H2 guch that H2(Pi) = bi’ and there algo exists a

marking H3€R(Hb) such that M3(pi) = bi and VM4€R{M3),

M&(pi) < bi'

Bagically, this means that no matter what firing sequence has already
happened, it can always be continued until bi is reached or exceeded,
but there also exists a firing sequence after which bi cannot be
exceeded anymore (but can gtill be reached).

A reachable guaranteed minimum is of course not a bound, but it is po-
tentially a lower bound. This is in contrast to the reachable upper bound
{(rub); this latter of course is 2 bound, No firing sequence can exceed the
rub, but there exists a firing sequence which reaches it.

Now suppose instead of e rub-polynomial "computer" as in Section 4,
we had an rgm-polynomial "computer"., Then, given two polynomials with
non-negative coefficients P and Q satisfying the conditions of Lemma 4.1,
let us construct a rub-computer for Q and anrgm-computer for P (assuming
this can be done, which is by no means certain), and then let us connect

them together in the following way:

(If A is a gquantity, we indicate that it is a reachable upper
bound by writingrz; if it is a reachable guaranteed minimum, we

write A,)
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LX) - QX),
rgm - computer
for P(¥X) ~
IRG)
¢ P
ruk - computer
for Q(%) - note:
r-E:? YEEW " ¢
= P (R)2Q (%)

Figure 5.13

It can be seen that transition @ can remove at most Q(X) tokens from
the output of the rgmcomputer for P(3), and thus the whole construction
above is s rgm-computer for P(X) - Q(X¥). Therefore, if there iz no
integer root to the equatlion P(X} - Q) = 0, the output place is
guaranteed to eventually get a token, and therefore transition P
will be live, whereas, if there exists such a root™ , for that input
there will be a firing sequence such that both the rgh-computer for
P(¥X) and the rub-computer for Q{X) will actually reach their bound (and
the rgm-computer will be unable to exceed it), and since they are equal,
repeated firings of transition O will exhaust all tokens in the output
place of the P-"compurer", thus effectively killing transition B.

Thus, if we connect a "generator"” to the input of the rgm-computer for
P-Q, (See Fig.5.14), we get a Petri Net where a given transition B is live iff
there exists an integer root for P{&) - Q(¥) = 0, which 1s undecidable ac-

cording to Lemma 4.2 We state this as:

Lemma 5.13 If it is poasible to construct a Petri Net which admits in one
of its places a reachable guaranteed minimum which is a polynomial
function (with non-negative coefficlents) of the initilal
marking in a subset of its places, then the Liveneas and

Reachability Problems are undecidable.
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Igm - computer

for ""'@ijj[:}%zjb
P(x) - Q(X)

Figure 5.14

We can actually restrict the condition for undecidability as follows:

Theorem 5.14: 1If there exists a Petri Net with two distinguished places

Proof:

a2 and b and sn initial marking which places ¥ tokens in 2 and
zero tokens in b such that a reschable guaranteed minimum for

place b is::z, then the Liveness and Reachability Problems
atre undecidable.

We show that, given an rgm-computer for'xz, we can construct an
rgm-computer for any polynomial with non-negative coefficients.
As in the proof of Lemma 4.3, we show that we could construct

such an rgm-computer out of the operatioms add, copy and multiply.

For each of these operations, if the inputs are reachable lower

bounda, the output will be too. We can use the same construction

for add and copy. Then we would construct our multiplier as
follows::

_Tgm ~ squarer

Pl —
(:::F_— by {hypothetical)
® rub - squarer
=l m—
X
: rub - squarer
y . — -
y

Figure 5,15: An rgm - multiplier
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The rgm-square computer generates (x -+y2-+2xy) as a reachable
guaranteed minimum; from this, o subtracts &t most (xvay ) rokens,
leaving a reachable guaranteed minimum ©Ff 2xy, thus producing the
desired rgm of x.y at the output.

QED

5.7 Conclugion: Decidable or Undecidable?

Consider the length of the shortest firing sequence to kill a tramsition
t or to reach the zero marking. This length can alsc be interpreted as the
reachable guaranteed minimum number of tokens in an additional place which
collects one token from each transition firing.

In the light of rhe preceding subsection (5.6), we see that the liveness
and reachability problems would be undecidable if the lemgth af such a
shortest firing sequence increased like the square cf the initial marking
for some net.

This suggests that the decidability might follow from the fact that the
length of, say, the shortest killing sequence as a function of the initial
marking, is a linear function. After some preliminary analysis of this ques-
tion it ig this author's belief that this is the case, and that the constant
of proportionality is bounded by a factor of the order of the product, over
all trangitions, of the number of input arcs of transitionms. This is similar
to the bound indicated for firing sequences used to cover a given marking,

as shown at the end of Section 3, page 40
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APPENDIX

Konig's Infinity Lemma: Let Hl, HZ’ H3 ... ad infinitum be a denumerably

Praof :

infinite sequence of mutually distinct finite sets of points. Let
these points be the vertices of a graph G. If G has the property

that each point of Hn+l is connected to one point of Hn by an edge

of G, then G possesses a forwards infinite path PIPZPH s+s ad infinitum

where, for each n, Pn is a point of nn'

A finite path in G will be called an S-path if its successive ver-

tices belong to Mys Tps *o%s I There are infinitely many S-paths

in G sinece every vertex which Es not a point of HI is the second end-
point of an S-path. Each S-path begins with an edge which connects a
point P1 of Hl to a point Kz of “2- Since there are only finitely
many such edges, there must be cne such edge, say Ple, which occcurs
in infinitely many S-paths. All these S-paths now have as a second
edge one of the finitely many edges P2x3, where x3 belongs to H3,
hence there must exist in n3 a point P3 such that infinitely many

S-paths that start with P,P, also contain F,P,. Continuing in this

172
manner we define a point P4 of H4, ?5 of “s' ete. This procedure does
not terminate and generates an infinite path PleP3 +.« with the de-

sired property.
QED

(K&nig points out that this proof requires the Axiom of Choice.)

{Translated by the author from pp. 81-82 of f121.)
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