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COMPUTATION STRUC: [RES

Ressarch in computation structures during the past year
has concantrated an the development of models and analytie |
tools far systems of asynchronous interacting units, and the
atudy of semantic foundations for modular and structured
programring. Work on asynchronous systems includes analysis
o failure probability for circuits that perform the functien
o arbitration or. synchronizatien, a general approach for
determining whether systems with concurrent activity are Iree
&Ff pertain possibilities of deadlock, the use of Petri nets as
a model for analysis of system toroughput, and contributiens
to the thecry of Petri nets. Work on semantic foundations
censists of contributiens on formal schemas of programs,
study of the semantics of data base systems in terms of
sbstract models, and the development of semantic models that
provide a suitable base for modular and structured programming.
In addition, an unusual architecture has been concaived for a
highiy parallel stored program computer applicable ta an
interesting special class of computations.

1, Arbiters and Synchromizers

An arbiter is a devica that mediates indepcndent reguests
for use of a shared resource [52, %3], Tt appears that no
shysical realization of an arbiter is possible that responds
to each reguest situation in bounded tinc, MNevertheless, we
reported last year [52] on a methed of pascading primitive
arbiter circuits to achieve as low 2 propability of error as
desired.

A synchronizer is reguired to coordinate communication
Lelween two systems controlled by unrelated timing signals.
Ir is easily shown that the exicstence of a synchronizer that
responds within a fixed rnumber of clock cycles implies the
realizability of a perfect arbkiter with baunded response tims.
Hence no perfect realization of a synchronizer is likely to
exist,

The €ailures of svnchronizers and arbiters stem from the
presence of a meta-stable state in the circuit (often a flip-
flop! used as the elementary decision element of an arbiter
or synchronizer. The quality of an arbiter depends on the
structure employed in realizing it and the guality of the
elemcatary decision elements. patil has developed some measures
for the yualirty of Elip-fleps and other circuits used as
decision elemants in synchronizers and arbiters [54]. The
Teasures arc:

1. The propagation delay ED, which is the mermal time

for the circuit to respond when no critical eperation
of the circuit is involved.

2. A time comstant 1, which is a measure of how guickly
a dec.sion elament leaves its meta-stable state.
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3. The conflict window Wc' which measures the likeli-

hood of the decision element entering its meta-stable
state,

The measure 60 of propagatian delay is zasily understood, but
the two other measures need some explanation.

-The processes governing the exit of a circuit from a
meta-stable state are probabilistis, and one can represcnt
this by a plot againgt time t cf the Probability that the
circuit is in itg meta-stable state at time t given that the
circuit was in its meta-stable state at time 6. This distri-
bution curve is obeservead experimentally to be exponential --
as one should expect since the Probahility density for leaving
the meta-stable state at time t is likelv to be independent of
E. The time constant of this exponential is the ncasure T,

The probability that a decision element enters its mera-
stable state is a function of the temporal separation of the
conflicting events; for example, the change of input signal
and a c¢lock pulse in the case of a synchronizar. a plat

the likxelihood of the deciszion element entering its meta-stakle
state. For most purposes, we may characterize this function

by a single parameter called tha conflict window. The econfligt
window Wc has dimension time ana is aqual to the areaz urder the

probability curve just daseribed. The conflict windaw ho. rae
broperty that if the separation of conflicting events is
distributed uniformly over the interval from ~T/2 to T/2, the
fraction of times the meta-stakle state will result 1is WC/T.

If other parameters are fixed, the narrower thes conflict window
the better the decisian element,

In terms of this characterization of decision elements,
one can analyze the freguency of faulty operation of arbiter
and synchronizer cireuits. Tha quality of ap arbiter or
synchronizer ig expressed by an error window We' The interpre-

tation of the errar window is that if the separation of conflict=~
ingy evente is distributed uniformly over the interval from
-T/2 to T/2, then the probability of faulty cperation is WQ/T.

We have compared the twe synchronizer structures shown
in Figure 1. fThe error window of the n-stage synchronizer is
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and the errer window of a two-etage synchronizer having the
same overall norxmal delay is
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Figure 1. Comparison of synchronizer structuras.
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The ratio of the error windows of the two structures is
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If the guantity p = T/Wc e 0 } is greater than one, the n-stage

arrangement will yield the smaller error window. Thus p isg a
useful figure of merit for the decisicon elements of arbiters and
synchronizces,

The requirements of an arbiter in an asynchronous speed
independent system are differcat from those in a synchronous
system becausc an asynchronous speed independent system can
teclerate variations in delay. Therefore, to be called a perfect
arbiter, an arbiter used in such Systems need only resolve con-
flicts unambiguously one way or angther in whatever time it
neads to do so -- the arbiter Is not required te resolve con-
flicts within a fixed length of time, From a practical viewpoint
such an arbiter would be satisfactory if its average perfarmance
is very geood. We have invented what we belicve is the sSimpicut
circuit for a perfect asynchronous arbiter., The circuit, shown
in Figure 2, conzists of cne £lip-flop and two threshold NOT
gates which connect the output of the flip-flop to the output
terminals of the arbiter, :

Initially both inputs of the arbiter aro zerc, and the out-
pPuts of the NAND gates are at one. If both inputs to the
arbiter change to one simul taneously, causing the flip-flop te
enter its meta-stable state, no signal change will appear at
the arbiter qutput terminals until the flip-flop has definitaly
left the meta-stable state.

2. The Balaqgg Property for pParallel Computaticons

In a sequential computation the passing of control from
instruction to instructicn may be represented by the movement
of a “"contrel token” in the fluw chart of the program. 1In a
parallel computation, many control tokens nay be present in
the flow chart indicating that many instructions are executable
concurrently. Furtharmore, a parallel computation is cften
organized as a collection of independent flow charts which
communicate via nessage huffers, The message buffers may be
modeled by the exchange of "message tokens' betwean pairs of
Separate flow charts. For a parallel computation to be froe
from the possibility of deadlock, there must be a kxind of bal-
ance in the flow of control and message tokens during the
computation.
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Figure 2. Reatization ol a perfect asynchronous arbiler,
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Figure 3. The fork primitive as a fixed module.

Bruce Tester and Suhas Patil have developed a general model
for parallel computations in terms of which the potion of
balance may be made precise, and have studicd necegsary condi—
tions for liveness (freedom from deadiock) of parallel computa-
tions [35]. A parallel computation is represented by an inter-
connection of two types of medules —-— fixed modules and Lo
modules, These modulces are characteriZéd in Cerms of the “lgw
of tokéns at their terminals, 1f a is a terminal of a module,
then fa] denotes the tatal number of tokens that have passed
through the terminal since some arbitrarily chosen origin of
tinme,

For a fixed module, the following condition must always
be satisfied for each pair of terminals (a, b);

Rab + la] - Cl < [bl < Rab + [a] + Cz

where Rab' Cl' C2 are fixed positive constants. Figure 2

shows how the fork primitive of parallecl programming may be
represented as a tixed module. For each control token that
enters at terminal a, one tcoken is sent out at terminal b

and one at terminal ¢. Since [a] and [b] must have a long-

term ratio of 1:1, we must set Rab = 1. Similarly Rac = 1.
If we assume that putput and input of tokens by a fork
module are distinet events, we must have €y = 1 and C2 =0,

gince [a] may be one greater than [b].
We say that an intcrconnection of “ived modules is
balanced if the product of ratios Rab arcund each simplc cir-

cult is exactly one. We have shown that any interconnzction
of fixed modules that is not balanced will becoms deadlocked.
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Figure 4. A mailbox as a union maodule,

A union module behaves as a buffer gr storehouse faor
tokens. A module is = union module if jt+s terminals can be
separated into disdoint sets a and H such that

(Al - ¢, < [B] < (a] + C,, where [a] denotesggg la].

The set A contains the input terminals and the set B contains
the output terminals of the union modale,  The mailbox shown
. Taure 4 T ——— s

in Flgure 4 15 an eéxample of a unien module. gRe constant

C2 =1 =11 is the number of m2ssage tokens initially in the
mailbox; Cy =C =1 is the initial unuseq capacity of the mailbox,

The ¢lasses of fixed modules z-d unian modules are cloged
unéer interconnection. Therefore, an interconnecticn of fixed
ard union modules is equivalent to g bipartite interconnacticn
in which each union medule touches only fixed modules, Let F,

be one of the fixed modules andg it Gi ke some unicn madule in a
bipartite interconnaction. Lei tj be chosen as a reference ter-
rinal for module Fj' Then the total number af tokens transmitted

from Fj to Gi may be written as

aij[tj]

where

aij :k%% Rt x vey Rt
: 95 iy ¥

in whigh xi' is thu set of terminals of F, that connecr ko
input terminals of Gi and Yij is the set af terminals of Fj
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1

pme s — — e gl

e e T
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that connect te output terminals of Gi. Suppose there are n

fixed modules and m union modules, let A be the m % n matrix
of coefficients aij’ and letb X = (xl, ey xn), where xj is

interprcted as [tj]‘ Trnen we say the interceonnection of

modules is balancé@_if the systam AX = 0 has a solution with
X » 6, i =1, ..., n. Again, any interconnection that is not

balanced will eventually become deadlocked, eithcr becanse some
union module runs out of reguired tokens, ar because a union
becomas filled to capacity and cannot receive mare tokens.

Figure 5 illustrates an unbalanced computation. Each of
the three flow charts is an interconnection of fixed modulzs
and is thercfore a Fixed module by the closure property for
fixed modiles. Rolerence terminals for the flow charts are

lakeled tl’ t2, t3. Modules A, B and C act as finitc capacity

mailboxes and are therefore union modules., The conditions for
balance are:

1+1 -1 0 X 2xl-x2
AX = 1 -1 L] - Xy = x1~x2+x3 ., X=0
-1 1 0 X, -xl+x2

Since this system has no solution with X > 0, the computatien
in Figure 5 is unbalanced and will daadlock.

3, Aralys:is of Computa

Rate

fthander Ramchandani has shown hew computation rate analysis
ueing timed marked graphs {LB] can be applicd to systems
moceled by two morc general classes of timed Petri nets [57,
58]. Consider the production system ilinstrated in Figure 6.
The process performed at station 1 produces parts that are del!lv-
erad alternately to stations 2 and 3 for use in fabricating
two products A arnd B. We wish to determine the maximum rate of
operation possible under the assunption that no limitation is
imposed by the source of materials or the storing of products.

Figure 7 shows how this production system can be modeled
a5 a timed Petri net. Each companent of the preduction system
that performs time-consuming actions is represented by a transi-
tion t, having an zssociated Zfiring time Ty that represents the

time reguired by the component te preocess one item. In & timed
Petri net the firing of transition t comprises two events -- &n
initiation event at which one token is removed Irom each input
place and a terminaticn zvent at which one token is added to each
cutput placeT Tie termination event always ocgours T time units
after the associated initiation event. A transition having no
gpecified firing time is regarded as having & firing time of
zero, that is, the initiation and termination events coincide,

In Figure 7 transitions t,, t, and t3 correspond to processing

stations 1, 2 and 3 in Figure &,
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Figure 7

Timed Petsi net



The token distribution shown in Figure 7 is an example of
a marking of a Petri net that is live, safe and persistent,
Liveress and safety are familiar properties of marked Petri
nets; a marking is persistent if ne firing sequence ever dis-
ables any transition except by firing it. For any such marked
Tetri net N, one can construct a marked graph G that mimics

the behavior of W, 1In general the marxed graph will have several

transitions whose firings represent firings of some particular.
transirion £ of N; all of these transitions in & will be given
tne samc label t. Figure 8 gives a marked graph that mimics the
marked Petri net in Figure 7.

O
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Figure 8
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Multiply labe!led marked graph derived from Figure 7

The computation rate p of a marked graph is hounded by the
rate tokans gan flow arcund each simple circuit Ck in the

marked graph:



IOl M e w4

whare ., is the number of tokens on places in circuit Ck, and
Ty is the sum of the firing times of *he transitiohs of circuit

C Thus

"
M

p <min =k =1, ..., m
Ty

This upper bound on computation rate is known to be achiewvahle
158, 591.

In view of the correspondence of marked graphs to Petri
aets illustrated by Figures 7 and B, this resnolt applies
directly to determining the maximum computation rate of anv
timed Perri net with a live, safe and rersistent marking.
For example, suppose we have

in Figure 7. The maximum computation rate of the associated
marked graph is

1 !
i1 5=t

and thereforc the maximum firing rates for transitions tl, t2

p o= min(E 3

and t3 are

This shows that processing station 3 is the bottlereck of the
production system, Throughput of the profiction system could
be increased by including several identiecal processing units
at station 3. This is modeled by putting several tokens in
rlace By of the timed Petri net in Figure 7. Although this

new marxing is not safe, one can construct a madified net with
a live, safe and persistent marking that has thc same fastast
schedule of initiation and termination evenlLs. ience tho

same analysis method may be used. For example, if station 3
has two processing units, rates of




for the threes processing statiens can be achieved.

Now reconsider the production system of Figure b where
cach part produced at station 1 is awvailable to either statiun
?2 or station 3. This situation is modeled by the Petri net cf
Figure 7 with places Py and Pg deleted. The new Petri net

i {(Figure 9a) may be regarded as composed of three simpler nets,
as shawn in Figqure 9b, where each component net is a state
machine in which each transition has exactly one input place
and one output =lace. Such a Petri net is said to be sgtate-
machine decomposable. Hack has shown [60] that for a Subclass
oFf these Potrl nets known as state-machine allocatable nets,
one can associate a nonzero rate of token flow @y with e.ch

. transition such that token flow is conserved at each place of
‘ the net, any such consistent flow assignment characterizes
some possible steady state mode of behavior of the Petri net.

(b) Sy

Figure 9

Petri net with a consistent flow assignment and its
dacomposition inko state-machine companeants

_36ﬁ




Suppose S§., ..., Sm are the state-machine components af a
state-machine allocatable net, and let Nk be the number of
tokens on places of Sy in a specified initial marking of the net.
We have shown that the computation rate pj of each transition
tj must satisfy the condition

. < g
lﬁ]_,\fjp
where My [
- El.
p = min <T~.d =1, ..., m
| Tx!

and

where the sum is over all transitions ti of state machine Sk.

For example, if we =et

and therefores

1
F3 1 g

Wl =

1
PL 27 P 2

This means that no periodic firing schedule for the Petri net
of Figure 9a can yield a higher computation rats while giving
the specified distribution ef teken flow. In fact, an exact
analysis shows that the mawimum achievable computation rate is
1/7 or 6/7 of the bound. This exact value is found by consi-
dering each periodiec pattcrn of activity of the state machine
componants that satisfies the flow requirement. Each such
pattern corresponds to a marked graph from which am achievable
computation rate may be determined. For our example, one
marked graph that yields the best performance is shown in
Figure 10. The circuit drawn with heavy lines determines the
limiting rate of L1/7.

-37-=




Figure 10

Marked graph for one periogic behavior of the net in Figure 9
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4, Behavior-pPresexrving Transformations of Petri Mets

Petri nets represent the sequencing of ecvents; therefore,
if we define the language ©f a Petri net to be the set of
sequences of events allawed by the net, then the equivalence
problem of Petri net languages is to decide whether two given
Petri nets have the same language., This egquivalence problem
is st1l1l epen. Henry Baker {61] has discovered a large class
of transformations of Petri nets which preserve their languages.

Ta study the egquivaleancc of Petri nets it i1sg useful to have
simple characterizations of their associated languages. FPigure
1 shows a Petri net representad as a bipartite directed graph
in which each node is either a place of a transition. The
initial marking of the net is shown by the presence of tokens
on the places, Henry Baker and Michael Hack have found it
convenient to study the belavicr of Petri ncts in terme of
vectors and matrices whose elements are nonnegative integers.
Let N = {0, 1, 2, ...}. We can represant a Petri net as

(p, T, F, B, MD)
where
P ig the set of places
T is the set of transiticons (POT = ¢)
Fr P =2 T + X iz the forward incidence matrix of arcs:

F ={l if there is an arc from place i to transitinn 4
0 otherwise

B: P x T+ N is the backward incidence matrix of arcs:
={l if rhere is an arc from transition j to place i;

b | 0 otherwise
My: P+ N i3 the initial marking wvector:
Mo{i) = number of tokens initially on place i
b
placa: 1,2
1
transitionsa; a,h, ¢,
a— [ — ¢
2

Figure 11

A Petri net
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For the Petri net in Figure 11, we have

A marking of a petri net is a function, or vector

M: P+ N

that associates a nonnegative integer M{p) with gach place p.

A trznsition t is enabled for marking M if

M= F zach p € P.

P pt’

The result of firing t is the newW marking M' where

Mé = MP + Bpt - Fnt' gach p £ P

More generally we may consider markings that result from
multiple firings of transitions. A k-fold firing of transition
t is possible if

M_ >k F

o 2 Pt each p e P

or a maltiple firing in whieh each transition t. is Eired k;

times, is possible if

> .
M"J '"Ej_: leptl, each » € P

1f wea represcnt a multiple firing by =2 ]Ti* 1 vector X, where
X. is the numbecr of times transition t is fired (Xt =0 if t

is not fired}, then the Petri net firing rule may be expressed
in matrix noktation as:

-40-



Firing X is possible if and only if M »F « X
The resulting marking is M' = M + (R - F} - x

Here, the dot denotes matrix multiplication,

The matrix 84 = (B -F) is rcalled the delta matrix of the
Pektri net since it expresses the change in marking for any
firing. The firing of g single transition is denated by a
vector X in which the scle nonzero compeonent is egqual to one.

Let us write A : B to mean the matrix formed by adjoining
the columns of B to the columns cf A, Then a firing sequence
¢ is a matrix

in which each column is some multiple firing of tramsitions.
Similarly, a histogz H is a matrix

1 HE IR n

in whiech the coalumns are the successive markings cenerated by
some firing sequence, IF history H is generated by the firing
sequence o, woe must Mave

F v X, <M,
i - i-1

if X, is a pessible firing for Mi-l' Therefore
F o« gz <,

But each column M. of H is the sum @f the changsas in marking
due to all prior firings X,, ..., X.. Wo can write

H = M0 ML

where 1 is the A-component row vactor of ones and ¢ is an a1~ m
progressive summing matrix

Vif i o= 4
2y =

0 otherwise

-4]1-
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T -

Frao<M, -1+ (B -T) + o0+ 1L

held if and only i1f an integer matrix o is a firing sequence
of the net. Hence thesz conditions completely characterize
tne language of the Pelri net.

Transformacion of a Petri net with places F into a net with
places P’ corresponds to premultiplying the matrices F, B and
My by a |p*|x|P| transfermation matrix. So long as this
transform matrix is integer and nornnegative, the set of firing
sequences of the new Petri net will include the set of firing

sequences of the old Petri net.

As an illustration, the Petri net in Figure 1l2a is trans-
formed ints the net of Figure 1l2¢ by the transformation matrix
Z. Each firing seguence of .the original net is also a firing
sequence of the transformed net.

{a) original net

a 1 b 2 < 3 d

4
0100 10600 1
0010 - fo1o00 N
F=1oo01 B=loo01a0 v 1o
1000 90601 0
(b) tracsformation matrix
123 4
rfl 001
5 = 2|1 100
- 3|lo11l1l0D
a0 011l

-t d—-



= 7 + B

(==l
(=Rl ol =]
o= O o
- oo

Figare 12, Example of a behavior-preserving transformation.

5. Reduction of Generalized Petri Nets

A genoralized Petri net has places and transitions, dao
does an ordinary Petri net, but each place/transition rair may
"have any number of forward and backward arcs, as illustrated in

Figure 13.
(
g ;"‘—“ﬂ—-_.ﬂ -
-!—-———-__\\\

Figure 13

A generalized Petri net

Firing a transition in suech a net claims one token from a placse
for each forward arc joining the place ta the transition, ana
adds onc token to a place fer each hackward arc joining the

place to the transition., Mike Hack has shown how any generalized
Petri net may be canverted into an eguivalent ardinary net,

where equiwvalence means, as above, that both nets permit the

same sequences of transition firing.
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Since there is a direct correspondence between generaligzes
Petri nets and the vector replacement system studied by Keller
[62], this result shews that each vector replacement svstenm
corresponds to a vector addition system in which each vecto-
component is ecither +1, 0, or -1.

Figure 14 illustrates the transformation, which is done by
performing the follcwing steps for each place p of any general-
ized net P to obtain an grdinary net P' in which no transition
has backward and forward arcs to the same place:

1. Let k be the maximum number of arcs in P connecting
place p with any trarnsition.

2. Replace place p with a ring of k places interconnsctesd

transitions labeled A, (The Eirings of i-transitiecns
are to be ignored in comparing the behavior of two
nets.)

3. Asslign the arces originally connected to place p to
places in the ring se that each arc going to or from
a transition connects to a distinet place in the ring,

4. Dlace tokens on places of the ring so that the total
over all places in the ring equals the original marking
of place p.

Figure 14

Reducing a generalized Petri net



No matter how the transformation is earried out, the

* tokens can always arrange themselves in the ring chrdugh firing

of the A-transitions so any firing sequence of P is, ignoring
the fixing of A-transitions, alsa a firing sequence of P',
Since the converse is alse truc, P and B' are equivalent.

5. 5 Counterexamgle

We have bcen able to construct a counterexanple to twe
conjectures which, until now, had not been seriously challenged:

1. 1Is= it true that if a Petri net has a l:.ve,' bounded
marking class, then every marking class is bounded?

2. Is 1t true that if a Petri net has a live marking,
ther it has live markings with arbitrarily many tokaens?

For most “reasonable™ Petri neots hoth implications are true.
However, the generalized Petri net in Figure 15 has. exactly -

five live, bounded markings, and all other markings are either
unbounded and non-live, or completely dead for lack of sufficient
tokens.

iooo0) (01 0) 0,0,0!}

B

ico1) (oo 2) (0,2,0)

i H

1 (2,00)~—01,1,00%

. AN — ail cther

I | ' markings =
: (0.3,0}e—1t0,11] | | _unbounded
: gnd not live
]
!

~—_ ____,.I-"'“'
‘ //;ve and !

1
1
{00,3) bounded: ;

Figure 15

A counter example tg twe conjectures abaut Petri nels




7. Semantic Foundations for Procedures and Datg Structurec

We have set for ourselves the goal or developing a
"common base language" for procedures and data structures .,
This base language must be able to 2Xpress the important
SeMantic constructs on whick the correctness of applicatianp
programs depends -- including aspects, such as cancurrency,
data basgs, and security, which often fall cutside the domaip
of the lanqguage designer. Through this research we expoct te
ain a better understanding of how cormputer systems may be
specified and built to give mere direct support to the
semantic requirements of user programs.

Some early ideas appeared in (631, and a possible rudi-
mentary form for the base languags was presented in (647,
The work begun in [64] on the translation of block-structureg
language was reviewed in [65]. This work has been expanded
in the master's thesis of Nimal Amerasinghe [66] which gives
precise rules for translating programs expresscd in a represen-
tative block-structured ifanguage into a slight extension of the
base language of [647. Although the base lanquace does not
directly support the potiens of nonloecal identifiers or
closures of procedures, the translation rules correctly handle
procedure values and nonlocal assignments, In addition, studies
in progress concern the representation of procedures involving
values that are "references" ta other values, and the choice
of basc language semantics structures for parallel computation.

8. Computation Schemas

Study of the schemes of programs is cof interest for the
insight they provide regarding the choice of fundamental
semantic constructs for the Lepresentation of algeorithms and
data structures, In particular, the current work on a data-
flow formulation for the base language stems frem an investiga-
tion of the formal Properties of "data-flow schemas" [67].

This study led ta the discovery of a procedure for deciding
equivalence of any pair of output variables in any free program
schema using only nested if ... then ... else ,.. ang whi le

<+« @2 ... control structires,

John Linderman has completed his study [68) of necessary
cenditiopns for the'functionality af the input=gutput mappings
defined by parallel Frogram schemas with distinguished input
and output cells. This work is based on a formal model which
is at once a generalization and a simplification of the parallel
pregram schemas of Karp and Miller 169], and was described in
last year's report [9g]. Tn particular, sets af operatars
or deeiders may bear the same funetion letter, .indirating
that they must have the sane asscciated function ar predicate
in any intcrpretation. Linderman defines an operator or decider
to be productive if there exists an interpretation such that
the output values resulting from some computation depend on the
actions of the operator or decider. The main result is that
under frequently inpased conditions (e.q., repetition freeness
and persistence), ahscnce of conilict between cperators at the
memory colls is a nercessary conditbian as well as a sufficient
cendition for functionality whenewver each aperator and decider

-dh-



of a gchema is productive.

Dennis Kfoury has studied the guestien of whether Lthe

knownt decisicn procedures of first-order logic could have
important application to the thecry of pregram schemas developed
by Luckham, Park and Paterson [71], One question is whether,

. for any given schema S, there exist first-order conditions such”
that, for any interpretation satisfying the conditionsa, schema
5 defines a total function (72]. Since any program schema
without itération defines a total function, the answer tc the
guestion is "yes" for these schemas. In géneral, we have shawn
that, if the answer is "yes" for some scheme S, then 5 is equi-
valent tc some p ogram schema without iteration. Thus, con-
straining interpretations by first-order conditions cannot
ensure totality of a pregram schema without also making the
iterations in the schema superfluous.

8. BEemantics of Data Base Systems

Igor Hawryszkiewyez has completed a thesis [73) in which xx
the semantics of data base systems is studied in relation to
an underlying semantic model derived from our base language
effort. Two objectives were socught in this work: The first
was to develop appropriate semantics for data base systems
where several users of the system are able to share access to
data bases, and concurrent actions by the system on behalf of
its . users are allowed. The second chjective was to show how
concurrency of user actions may best be expleited in an iy e
mentation. The approach used was to develop a precise cor=-
respondence between the execution of commands of the data
base systcm and sequences of actions in the underlying semantic
model.

For this study, Codd's relational model [74, 75] was
adopted as the starting peint for the semantics of data base
systems. A data base consists of relatiens defined on n-tuplcs

of domains., "If dy. --., d are domains, then an n-ary relation

on these domains is a set of n-tuples

leys onn, en}

where sach ey iz an element of domain di.

As an exanple of a relation consider the order informuticn
displayed helow:

item descripntion quanti Ly

shoe black 2
shoo brown 4
ccak brown 1

A5 a relation this information involves three domains:



= {'coat"', ‘hat', 'shoe'}
colaor = {'red’', ‘brown’, 'blaci'}
= (0,1, 2, ..

We shall illustrate the commands of our data basc system hy
showing how a relation representing this informatien would he
entered into the system. For the moment, suppose the system
Knows the three domains listed above, The first Step is +gy
¢reate and name a new relation variable. As in the displayeg
information, it is valuable to let the data base designer
choose names for the fields of a relation independent of the
names given to the domains., Therefore, the command to create
the relation variable is

declare relation (order, {{item, article), tdescription,
calor], quantity, integar)))

This command states that the relation called 'order' will have
three fields where, for example, the first fielq i& named 'jtam'
and in each member or instance x of the relation, its First
component will be callad tha value in the ‘item'-field of x

and will be an element of domain 'article', After execution

of this command, the value of relation variable 'order' is the
empty set. Instances are added to the relation value by use

af the command add ri (for “adg relation instance") ;

add ri (order (descripticn, shoes), {color, black),
{quantity, 4))

4dd ri {crder (description, shoes), (color, brown),
"7 (quantity, 2}

add ri (order (description, coat) ., (color, brewnd,
{quantity, 1)) .

The data base system ingludes Commands to delete spacific
instances, and to retrieve instanceg af a relation having
specified domain elements in certgin fields,

Domains are established by first creating a unary relaticn:

-

declare relatiqﬂ {artiele, string}

The format of this command is simpier sinee no field names

are needed for 5 Unary relation, Executing the command createsg

4 relation variable named '"article' ana declares that the

instances of itg relation value will b2 elements of the

Ratural domain strinp » which contains all strings constructed
Tom some standaird alphabet of symbols. The natural domains

¢l strings and of irtegers are permanently accessible to alj
users of the data base system.  The secand step is to epter the

degired elements:

Y-



add ri (article, shoe}

add ri (article, coat)
add ri (artiecle, hat)

Finally, the relation is made to be the value of a newly declared
domain: .

declare domalin (arti;le, article)

For investigating isswes of sharing and concurrency in
implementations of data base systems we need a semantiec medel
in which all access paths to information in the data base may
be represented explicitly and directly. 1In addition, the model
should be machine independent so it is applicable over a
variety of computer systems; yet the model must have a reason-—
ably straightforward relationship to practical computer systens
threugh such implementation tools as hierarchical directories
and hash=-coding technigues.

We decided to use the directed acyelic graphs adopted as
the fundamental data structures for the base language develop-~
ment. Thus domain values and relaticn values are represented
by directed acyclic graphs and the representations are designed
sp directed paths in the graphs correspond to access paths in
the data bases,

The representation of a relation value is illustrated in
Figure 16 and has three parts: Ths domain value gtructure
links the representation of the relation value ta the graphs
that represent the domailn values associated with each field
of the relation. The desecription gtructure contains data
indicating how the presence of relation instances is repre-
sented in tha assogiation structure, and, in particular, which
modes of access to the relation instances are directly repre-
sented by paths, .

5
l I |

'dom’ ‘des’ 'assoc'’
domain description association
valug structure structure

struclure
Figure 16

Parts of an abstract reiation value
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Associalion structure for one mode of access

Figure 17 shows how the 'order' relaticon is represented
by an association structure, where only access aceording to the
value in the first field of the relation is reyuired. The
association structure has one component for aach element of the
domain ‘'artigle' that ocours in some instance of the relation.
This structure is called a directory object since it directs
acness ta a subset of relatlan Instances naving specified values
in certain fields == in this case a specified element in the i
first field. Since there may be wmany relatien instances satis-
fying the specificatiens, each component of a directory objeect .
is an order gkject that gives access to the relation insatances ;
according to some arbitrary ordering of them. ;

The components of =ach order object are relation instance
ghiects that contain the domain elements of the 1nstance accessed
by field number. In this example, the domain elements are given
only for fields 2 and 1 since the only access to the relation ;

is by means of field 1, nence the field 1 valuc is known to the
computation.

Figure 18 illustrates the form of the association struc-
ture when several access paths are provided -~ by field 1 or
by field 2 in this example. In this structure each order object
has as its components all relation instances that have the
“same value in fieid 1 and the same value in field 2. sSince
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Figure 1B
Association Structure for two access modes
there is at most one instance in the relation 'aorder' for each

combination of values, the order cbijects have ane component

each.

The two levels of dircctory objeets provide for access

to the order objects by making the first access by field 1 or

by field 2.

The data base model includes the commands share domain
and share relation through which a user may make any <
domain wvalues and relation variables accessible to designated

users of the system.

15

The commands borrow domain and borrow

relation are given by the borrowing user to name and estaolish

access to a borrewed domain or relation.

When a relation is

borrowed, both users get the ability to acress the relation




using commands to add, delaete and retrieve relation instances.
When a domain is borrowed, subseguent changes tu the domain
value made by the owner are not permitted to affect the value
seen by the borrower.

In the relational data base medel, the meaning of each
command is specified in terms of the changes made to set
thearetic compcnents of the data base state. Feor the study
of implementation issues of access paths and concurrency,
each command is alsoc expressed as an algorithmic procedure
that performs a corresponding transformation of the abstract

state. Let 52 denote the data base state resulting Fron giving

command ¢ with the data base system in state 8q:

R

51 2

The corresponding transformation of the abstract state is the
saries of transformations making up executicn of the semantic
procedure for command c:

s a
) n

a1

where abstract states a1 and an represent 5, and 52, respeg-
tively.

Supposea commands < and ¢, are given ccncurrently by two

users of the data base system. Since the ccmmands may refer
to the same relation value the resulting data base state may
depend on the order in which the corresponding transformations
areaapplied to the data base state:

<y c, C, <
50 ——--------------—l-.'s:L 50—— —I--S2
States 8, and &, both represent correct responses by the

ralational model. In the abstract model, correctness of the

semantic procedures means that concurrent execution of the seman-

tic procedures Por commands c and o) is guaranteed to yield

a final abstract state that correspornds to one of the two valid
data base states.

We illustrate the methods used in constructing the abstract

model hy presenting one i the simpler semantic preocedures, the
procedure for the command )

declare domain (n-1, n-2)

“5a
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As dimolissed earlier, this command creates a new domain variable
for the user, gives it the name 'n-1' and gives it a value equal
to the current value of the unary relation named 'n-27, To
define the command in terms of transformation of the relational
data base state, we must identify the relevant companents af

the state:

U - set of user nanes

D - set of demain variables

R -~ set of relation variables

Rl - set of unary relation variables (Rl < Ri.

W, — set of unary relation values (wjw C strings uJ integers)

¥y - set of demain names

NR - set pf relation names

AD: {U = ND) +~ D - domain acoess functiom:
({'u', 'n'y, d} & Ay means that user 'u' has acgess to
domain variable r by the name 'n‘t

Ap: (U x NR)_+ R - relation access function;

{('u', '‘n"), r) € AR means that user '"u’' has accass o

relation variable r by the name 'n'
-

V.: D~ W1 - domain value functien: associates a unary
relation value with cach domain variable

VR: R +~ W - relation value function: associates a
relation value with each relation variable

The relational model definition of declare deomain is given in
Figure 1% where 'u' is the name of The user giving the command.

Th2 semantic procedure for declare domain is given in
Figure 20. The statement principal > p IR Iine 2 assigns to
variable p the name of the user for whem the procedure is being
performed. The variables P, DOM, REL are pointer variabhles
whose values identify specific nedes in the abstract state,

In line 3 of the procedure, the dbts dencte selection of a com-
penent of the abstract data structure denoted by the expression
to the left, Here P refers to the root node of the abstract
state. If p has the value ‘u’, the value of P - p is.a pointer
te the 'u'-~companent of the state, and DOM is assigned a pointer
to the 'domain'-component of this data structura, as shown in
Figure 2)}. The primitive predicate selt {(DOM, a?) tests whether
the structure to which DOM refers has a component having the
value of variable a2 as its selector. The transformation per-
formed by this semantic procedure is illustrated in Figqure 21
and results in the inscrtion of the two branches enclosed by the
dashed boundary,




1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

declare domain ('n-1', 'n-2'):
if ADI.’('u', 'a-1">) is undefined
and A {{'u', 'n=2'2) = r
and r € R,
then effective completion with

D' D U {d}, where d is a new domain variable
5 = Ap U {<<'u', "'n-1%'>, d>:

Vo= VU (<d, Vo (r)))

else ineffective completion

]

Figure 19. Relaticnal definition of the command
daaglare domain.

procadure declare domain (al, a2);
principal + p;
P+ p +* 'domains' + DOM:
P« p + '"relaticns' + REL;
iz gelt (DOM, al) = false
and selt (REL, a2) = true
and val [REL * a2 + 'access' : ’'size') = 1
then begin link (DOM - al, REL - a2 « 'value', ‘value'):

return true; end

else return false;

end

Figure 20. Semantic prpcedure for the declare domain command.

-5d-
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Figure 21

Whenevexr a relation of the data hase is accessible to more
than one user, concurrent reqguests to add, delete, and retrieve
relation instances for the same relaticn variable may ccour.

For this general case, the semantic procedures are considered

correct if and only if the abstract State resulting frem each

potsible computation by the semantic pProcedures is a consistent b
representation of the pew data base state defined by some merging

of the corresponding user command Sequences. Igor Hawryszkiewycz

has shown how the semantic procedures may be augmented so that

correct concurrent execution of commands is realized [73]. xx
Furthermore, the pProcedures are designed so that actionsg on

behalf of distinct users can proceed independently except




where arbitrary sequencing of user computatiens would allow
inconsistent abstract states to result. This is accomplished
by establishing a gueue for suspended computations at a node

of the abstract state whenever some user computation must

wait for another computation to complete its work on the struc~
ture associated with the node. When a computation complates
its access to a structure, it awakens some process in the
associated queus if there is a queue and it is nonempty. In
this way, add commands and delete commands for the same relation
variable ihterfere with eachi other only if their access paths
intersect in the asscociation structure.

Trom this work, we can conclude that any implementation
of the abstract model provides a correct realization of the
relational data base system.

10. Modular and Structured Procramming

We are etudying the implications of the concepts of medular
programming and struectured programming for the design of pro-
gramming languages and computer systems. The goal of this
research is to understand just what program and data structures
are desirable for kuilding correct and reliable programs. We
intend to apply the knowledge gained from this effort to the
development of the bhase language. Work is underway on three
interrelated subjects: the design of a formal model of a
computer system that meets all requirements for modular program—
ming; the design of a programming language with appropriate
facilities for structured programming; the development of a
formalism for expressing desired properties of new data types’
and operations in a representation-independent manner.

11. Modular Programning

An important property of a programmning system or language
is the ability to support modular programming: one should be
able o build new program modulee by c¢ombining medules developed
by other programmers without knowledge of their internal design
[76]. A computer system that supports modular programming
should ensure that program modules may be readily combined and
that their behavior is predictable and independent of their
context of use. A computer or programming system that meets
these goals is said to have the property of modularity.

D. Austin Henderson, Jr. iz studying a mecdel of a compu-
tation system in which modularity can be achieved. One aspect
of programming languages which ¢an lead te unpredictable
behavior is the use of free variables. A free variable of a
program is an identifier in the program which derives its mean-
ing from the meaning of that identifier in the context in which
the program is used. For example, the Algol "non-local variable"
takes the meaning it has in the encleosing block.

Consider a procedure that implements a linear transforma-
tien on integers:
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procedure f(x): integer x;
integer Vi
Y 1= axx+b
£ o=y
return
end;

Notice that the behavicr of procedure £ {g unpredictahle because
it depends on the values of a2 and b in the precedure within
which £ appears.

One means of achieving predigtable behavicr is to demand
that all free variables be added to the parametor list; the
example becomes

procedure f(x, a, b} ; integer X, a, b;
integer v
integer a X x + b

end
This solution has the drawback thar rprocedure £ cannot

be viewad acs an operator implementing a single linear
transformation. To achieve that effect, the particular values
of a and b must be Passed around with £ tgo all programs
wishing to use the linear transformatien Ope&rator. (In more
complicated cases, the information contained in free variaghles
may be gensitive, and the "definer" may wish to make it
inaccessible to users.)

The solution chosen in our model is to Substitute a notigp
of funecticnal for the conventional notion of Procedure, ang
int¥educe = mechanism for incremental binding. To illustrate,
let us follow the creation of 2 linear transformation operator

We start with a piece of code-

1. f{x, a, b

2. declare ('y', a x x + b)
3. Yesult ig (yf
1. } -

In line 1 of this code, jdentifiers ¥, 4, and b are specified

el



as being externmal (they precede the '|' symbel), This means
that tha Values associated with these identifiers will be
determined sutside the operater. In line 2 of the code identi-
fiar y is declared to ke local to the code and is given the
value denoted by the expression "a % x + b". :

The code is introduced into the system as a string constant
{let us call it c). This string is used to create a functiconal
which is the result of applying the primitive install to c©:

tt = install {(c)

The value of install {(g) is a functional in which no values are
assocciated with any of its external identifiers. We picture
such a functional as in Figure 22. The stub to the right
represents the binding of external identifiers and shows, in
this case, that none have associatad values.

It —

Figure 22

A tunctional

To create a functional which implements a pazticular linear
tranaformation, values are "bound” to the axternals of 2t using
the primitive operator bind: :

-

t = bind {2t, 'a', 3}
31 = bind (¢, 'B', -2}

We uee t and &l to denote the values preduced by bind at each
stage: a8 in Figure 23 they are functionals with one and two
of their externals bound. Notice that &t has not been altered
by bind. Consequently it may be used again to produce different
linear transformations. For example

12 = bind (bind{it, 'b", 3), ‘a', -13)

i o e, s A
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Incremental binding
Functionals 21 and 22 may be used in any context without loss
¢f meaning. Each has predictable behavigr.

To use either af these operators, the external identifier
®x must be bound, and the resulting functional evaluated:

u = bind (21, 'x*', 72)
¥ = eval (u)

Evaluation of a functional is done by creating an activation,
An activation is the bundle of information necessary to carrcy
out the actions specified in the functional.

Figure 24 shows the two rleces of an activation of the
functional r: the C~component is the cade of the functional:
the E-component holds the valucs bound to the external identi-
fiers., As identifiers are encounteved during evaluation of the
functional they are replaced by their values as specified by the
E-component of the activation., The eXpression "a x x + b"
vields 214. Hence "local™ identiFier ¥ 1s associated with
this value (Figure 25). The statement resygle is v indicates

the completion of evaluation and specifiss the value that is

the result of the functiopnal. Thus eval(r) denctes the value
214.

Incremental binding is a modular alternative to the use
of free variables. 1In the example ygiven here all values
used were constants, Ancther source of unpredictshle behavier
is intreduced if “variable" values (values with meMory, or
gtate} are permitted. It wauld, therefore, be nice teo exclude
them, but unfortunately that restriction would greatly reduce
the utility of our medel. Fertunately, large classes aof
predictahly—behaving operatoers can be identified even when
variable values are permitted. Ancther source of unpredictabil-
ity is concurrent computation using shared values, It appears
that this source can also be controlled,
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Figure 24

Compenants ol an activation

Figure 25

Result of evaluation




The madel is being used to study these sources of unpre-
dictahility. Some concepts adequate to control the unpredicta-
bility arising fram these sources, and means of expressing
thote concepts in the model are being isclated. The model
with these expressive tocls included will permit the construc-
tion of predictable operators, thus alding in the achievemant
of modularity..

12, Structured Programming

Structured pregramming is a programming discipline intendedq
to support the preduction of correct, understandable programs
which are masy to madify and maintain., While modular programming
addresses the problem of how to facilitate one Programmer's use
ef another Programmer's program, structured Frogramming addreasses
the problem of building preograms. To support the production of
reliable scftware, a system supporting modular Programming
should be designed to meet the requirements of struetured pro-
gramming. Our research on structured programming is directed
toward discovering the nature of these requirements and how
they may be met in the design of programming language and
systems,

The term “structured programming” has becn applied to many
different coding and design technigues; three different inter-
pretations may be distinguished in +=he literature:

Ml} Structured Programming jis goto-free prograMminq 1771,

M2}  Structureqd Programming is top-down programming
{control conly) {78].

M3}  Structured programming is top-down Programming {79,
80]. '

Only M1 and M2 are really well defined. The third intarpreta-
tion M3 is not supparted by any existing programming language,

thing, M3 is really a philaosophy about how pragramming ought

to be done -- an issue net vet resolved, For anpther, thgose
parts of M3 which are understood APpear to regquire new program-
ming language construcks for their Support, and many Programming
language issues must be rethought {block structure, for example
{821y. The thres interpretations are ralated:

Ml & M2 «— M3

in the sense of containing ideas or concepts; the reasunsg M1
is necessary in ecach case are discussed in [83].x

Top-down pProgramning (both M2 anmd M3) invelves the
following: The first code written is the very "top" of the
system or program: it describes the relationship among the
major functicnai comporents of the program, This code
constitutes a structured Proegram segment. Each component will
éventually be described by a structured program scgment, and
is referenced in the top segment by its sggmant name. The

ERriL.




code of aach segment is itself expressed in a very limited
repertoire of basic cantrol structures, The only structures
permitted are: concatenation, execution of a statement

based on the testing of a condition, and iteration. Selection
of the next statement by a goto is not permitted.

beoin
integer relation;
bpoléan must_Sc<an;
string symbol:
stack parse_stack;
must _scan == true:
'push'[parse_stack. eof_entry}:
while not 'finished' (parse_stack) do
begin
£§ must scan then symbol ::'scan;pext_symbol'( 1
relaticn := ‘precedence_pelation'{'top'(parse_ﬁtack),symbol);
'pérform_pperationapased_pn_;elatian'(relation, parse_stack,
symbol, must_scan) ;
end
end

Figure 26. An example of a structured program segment.
The segment names appear in quotes.
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Figure 26 iz an example of a structured program segment
which is the "top" of an operator pracedence compiler. The
example, written in an Algol-like notation, uses many Segment
names inecluding 'scan next symbal', 'precsdence relation',
ete. The segment shown is™a complete descriptidn of the com-
piler in the sense that if we had @ machine with all the seq-
ment names as primitives, it would run. Bowever, such a
machine is unlikely ta exist, so the next step 1s to select
4 segment name and to cods tha segment which explains it in
terms of other segment names. The process will eontinue until
all segments have been defined by code.

8o far, the deseripticn and example could fit either M2
or M3. The difference between them may be illustrated by
cohsidering the segment name 'push' and the data type stack,
The two are obvicusly related: stack is a set of abstract
data objects to be operated on by the abstract ocperaktor ‘push',
The M2 approach is concernad only with control; it ignores
the problem of how to handle a data tyre such as stack and
instead permits ad hoc solurions {for example, stack could ba
defined on the spot in torms of the data type array). In the
M3 interpretation of structured programming the code of a
Ssegment must not have any implicaticon on the choice of repre=-
sentation for abstract data types such as stack. Furthermore,
only segménts that define operations on a data type (such as
‘push', 'finished', and 'top' in the example) should have
access to representations of objects of the type. These ideas
are not supported by existing programming languages.

The regquirsments of M3 interpretation may be summea up .n
two criteria:

Cl) It must be possible to make use of an abstract data
type without specifying its representatien.

C2) o©Only these segmenfs which perform meaningful opera-
tions on an abstract dSata type should have knowledge
of the way objects of the data t¥pe are represented.

These criteria are being used to guide an investigation intc
the adequacy of some axisting languages to support M3 struc-
tured programming. The languages being considered in this
study are PL/I, EL [B4), Pacecal {85), and Simula 67 {86, B71.

13. A Structured Programming Language

B. Liskov is designing a language to support and encourage
M3 structured programming. This language will be based on the
concept of a function cluster; the concept was developed as
the result of the analysis of the need for abstract data types
in a structured programming language and satigfies the two
abstract data criteria C1 and c3.

A function cluster, or cluster for short, exists to
support an abstractien found useful in conceiving the desigr
of a program. The abstraction represented by a3 cluster is an
abstract data type together with the operations which may be
rerformed on objects of the data type. A cluster consists of
a8 group of related functions which share a local envirenment
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of data belonging te the cluster. The local environment

of a eluster is private and may not be accessed from outside

of the cluster. To use a cluster, a variable is declared

to be of the abstract type supported by the cluster; then the
functlions of the cluster are used to perform operations on th.
variable. No other way of operating on the variable is possible.

We believe clusters provide a very good way of incorporating
abstract data types in a lanquage, and we intend clusters to
be a fundamental construct of our structured programming
language. The cluster will bc a syntactic entity of the
language, so that clusters may be defined and used. In addition,
the language will be strongly typed so that a variable of some
abstract type may only be operated on by the functions of the
cluster supporting that type. For example, a cluster defining
stack as an abstract data type would econtain segrments ‘push',
Ttcp', etc. that define these operations on stacks. The
representations.chasen for atack would be implicit in the declar-
ation of data in the lecal environment of the cluster and the
content of segments 'push', 'top', ete. From ocutside the
cluster for stack, this information will be accessible anly
through applicatian of the stack operations ©f the cluster to
some cbject of type stack.

The concept of a function cluster does -net appear in any
existing programming language, but the language Simula 67 [B&]
contains & similar concept in its glass construct. Like a
cluster, a Simula 67 class gathers together all information
about an abstract data type. This infeormation consists of
both declaraticns describing the representation of the abstract
data objects and definitions of the funetiong which perform
operatiens on the abstract data objects. The most important
distinction between Simula 67 classes and function clusters
is that in Simula 67, the functions in the class and the infor-
mation about the representation cf the abstract objects are
equally accessible. Therafore Simula 67 dAces not satisfy our
seecond criterion for abstract data.

although developed through considarations of structured
programming, the concept of a function cluster is useful for
modular programming because it appears to provide a very
gatisfactory form for a program module.

14. A Fearmalism for Data Structures

Steve Zilles is developing a formal treatment of data
structures which will allow a representation independent formal
definition of data types and will also yield a framework for
proving thes correctness of particular representations. The
primary goal of this wark is to facilitate structured and
medular programming by providing a language in which to specify
the meaning of function clusters that represent structured data
types.

A secondary goal is to be able to define data in a way
which is suitable for automatic programming. The main point
is that one should not be forced inte making unneécessary
representation commitments in expressing a solution to a
problém. This allows operations to be expressed more naarly

.
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in terms of the ariginal problem demain. Then a wide range of
possible representations can be explored to find the one which
is most efficient for the given problems without requiring

any changes in the high level problen reprecentaticon,

Consider the approach to defining data structures proposed

by T. A. Standish [8B]. Standish defines a data system M to

be 6-tuple M = {s, A, C, A, o, a; whers S 1is 3 non-empty set

of selectors, A is a set of elementary chjects, C is a set of
compound objects, A is a distinguished null object. Letting
O=2AaA0C, 0 Is amap O x § + O which speCifles the aperation
©of selection on objects. Thus o(o, s} is the camponent object
of object o chosen by selector s, The map @: O X § x Q0 + [

specifies the operation of appending. Thus alo, 8, 0o} 18 the
compound object obtained by making object o' the g-component
-of o.

A data system M must satisfy the following axioms.

1. axiom for Elementary Cbjects
If o is an elementary object then c{o, 8) = A for
each g £ 5.

2. Bxiem for the Null Cbject
AE AU

3. Axiom for Equality of Compound Chjects
For any tweo compound chiects €1 €y € C; if for all

5 € 8, G(Cl, 5] = G(cl s} then € = e,

4. Axiom for Assignment
For any Sy, S5, £ 5 and Oy 026t3= if s, = 8, then
U(o(ol, 51’ 02), 52] = a, else if sy # s, then

c{a(ol, S1r 03} 8,) = U(ol. 8,)

The purpose of the axioms is to formally characterize the
operations of sslection (o) and component -wise update (a) that
are applicable to many if not most data structurss.

A particular data structure class (i.e., data type} would
be defined by augmenting the above axioms with additional
axioms which would limit and define the domain of the selector
set B, limit and defipe the purpose and equality of the elemncn-
tary cbjects A, and alse limit the range of modifications that
are possible via a. Any particular class of data structures
would be a model for the axioms if it is consistent with the
axioms., i

Steve Zilles has studied the class of models for the
above axioms. A characterization of the class of models was
developed to determine which data structures satisfy the axioms,
The second aspect of the research was to extend “he ideas used
to define the axioms to define other classes of data structures.
With respect to the class of mudels, the following have been
shown z



Theorem: Let M = (s, A, T, A, g7 a) ke a model for the data
axions. If |s| > 2 and fcl » 2o I8l 21 and|al > 2
then the cardipality of © is at least denumerable.

Thaorem: Every finite model of a data system m= (5, A, T, A,
T, a) has |5} = Al =1 and for eac% o Fhere is a one-to-

one correspondence hetween nadels having |c] =n + 1 and

the set of permutations on n distinct symbols.

These results have as a corollary the fact that it is
possible to simulate Peanc arithmetic using the primitives of
any unbpunded model of a data systen.

¢ further restrict tre class of medels to those that can
be constructively generated, we add an axiom that correaponds
to Peano's principle of induction.

5, Let X be a set of glements in C such that:

a. acX

n. u{ol, S, 02) & ¥ whenever ©;. 9; = %X and 5 € 8.

Then X = 0.

One can Show that gach model for axloms 1. thoough 5.
is isomorphic to a sek of finite rooted trees with labeled
edges. One can alsc show that the abjects defined for the
yienna Definition Language {g9] =satisfy these five axioms.
mherefore, the data systems inductively define the claga of
tree structured data gtructures.

Not all data structures f£it naturally into the above class.

For axample, a set is a data structure without selectors for
jts elements. Howaver, the apprecach used to define the class
of trea structured data structures can be modified te apply

to othar data types in a form that matches the concept of
function clusters defined abeve. Thus an abstract data type
will consist of a set of objects and a finite set of funetions
that define the operations of the data type. Formally, we
represent an abstract data type as {p, T, O, ¥} where D is the
set of objects, and F is the set of functions. The components

1 and O contain sets which are auxiliary input and output domains, -

respectively, of the functions in FP. Each element f. of F is
eithar a query furction with functionality i

or an update functicn with functionality

where Ii is a direct preduct of damains in I and 0i is a domain

in 0. Although scme oparations on data types (such as the

5 .,Im




next-record function of a cluster for sequential files) perform
Eoth modification or update, and an chservation, such

combined functions can be defined in terms of separate update
and query functions.

The definition of an abstract data type is cormpleted by
a set of recursive eguations which assert relationships between
the guery and update functions, The effect of an update
function on an cbiect is specified by the changes that are
observed in subseguent applicatiens ef functions te that cbject.
The equations always include specification of the result of
applying each guery function to each of a set C of distinguished
objects in D. The result of each guery function for cobjects
not in € can usually he spacified by egquations which specify
the result of applving each gquery function to an update of an
arbitrary member of D. This approach is similar to but more xx
general than the paradigm recently exposited by Parnas [390].

As an example, we show how a data type integer set would
be defined. Lot D be the sct of integer sets, I be the set of
integers, O ke the set {true, false}l, and F be {insert,
remove, has}, The query functicn is

hag: D x I + O
and the update functions are

insert: D

o]
remove: D o

x I =
®*x I -
The defining eguations for these functions make use of a single
distingquished object, the ampty set @, and are as follows:

R;:  haslinsert(s, i), 3} = if i =3 then T

else has (5, J)
Rz: has(remove(5, i), jJ) = if i = j then F

Zise has (5, i}

R3: has{@, j} = F for all j € I

The eguations (Rl, Rz, RB) complete the definition of the

type integer set. The similarity in style between the equations
and £ axioms for a data system should be apparent.

The next phase of this research is to develop a proof
technique for showing the correctness of representations of
abstract data types that are defined in the manner outlined
above. In conjunction with this waork, the appropriate use of
protectinon mechanisms for data will be demonstrated.

15. A Highly Parallel Frocessor

Highly parallel computers such as the Illiac IV and the
CDC Star achieve their processing speed by imposing constraints
on the structure of the data baing processed. Both of these
machines are organized to perform very well for data represented
as vectors. To realize its potential, computation unsing the
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Illiac IV must be organized to exploit the machine's abkility
to execute simultanecusly the same operation for many sets of
cperands. In the case of the CDC Star, the maximum processing
rates of the pipelined processing unit is approached only

if the computation is organized to make effective use of
streaming operations on very leng vectors. In both machines
the programmer is forced to use unusual and intricate data
representaticons if highly parallel execution is to be achieved.
Thus these machines are developments contrary to what is
generally seen as one of the most important issues in contem-
porary ceomputer practice == the difficulty of developing ceorrect
programs. BEven such an important notion as the use of subrou-
tines is inadequately supported in these machines,

The Computation Structures Group is developing a computer
organization that can yield highly concurrent operation with no
sacrifice in the generality of programming that can be supported.
The ultimate goal of this work is to develop a machine organiza-
tion that can directly support programs exprassed in terms of
the base language also under development by the Group., A general
idea of the concepts expected to be employed in the design
of such a machine has been given by Dennis [£3]. Unusual
features include a memary system designed to support tree-
structured objects as the basic means for data and program
representaticon, and instruction sequencing based on the avail-
ability of the reguired operands.

A Fundamental problem in the design aof a highly parallel
computer is to devise a means of efficiently moving instructions
and their operands from the memery system to appropriate func-
tional units for execution. In response to an interesting
application requiring highly parallel, signal-processing compu-
tations, Jack Dennis and David Misunas have developad an elegant
solution to the memcry/processar interconnection problem for
this specialized class of programs. These programs correspond
to data flow schemas in which each actor is an operator. 1In
computations specified by such programs all operators are
executed equally many times. Digital signal processing compu-
tations involving waveform generatien, summing, modulation, and
filtering are well suited tc specification as programs in this
class., The design of a highly parallel processor for these
programs is described briefly in the following paragraphs. In
future work we expect toc further develcp these ideas and
develop principles for highly parallel machines that execute
more general classes of programs based cn data flow models of
computation. :

Sa operation of the proposed machine may be readily under-
stopd we shall use the data flow schema in Piqure 27 as tha
basis for an illustrative program. This schena represents the
computation required for a second-order recyrsive digital
filter

y(t} = Ax(t) = By{t = 1) + Cy(t = 2)

where x(t] and y{t) denote input and cutput samples for time
t. In thig schema operators l, 2 and 3 are unary operators
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Figure 27

pata How schema for secand ordet filter

that multiply by the fixed paramsters A, B and C, Operators

4 and 5 are binary operators that perferm addition and sub-
traction, and operator § is an identity operator that
transmits its input values unchanged. The solid dots show

the presence of values at certain input arcs of aperators and
define the initial configquration of the schema. An operator
with values present on each of its input arcs is ready te act,
and doss so by removing values from its input arcs and placing
the result of its application on the input arc of each
successor operator.

The general crganization of the propesed processor is shown
in Figure 28; there are four major sections:

memory section
arbitration network
functional units
distribution network

The design is conceived to make advantageous application of

our knowledge of asynchronous modular systems [91, 92]. There
are no signals or circuits having timing as their sole function,
Each connection between sections of the machine {and most
connections betwsen smaller units as well) are independently
coordinated using an acknowledge signal for cach unit of data
sent over the connection,

P



distribution arbitration

netwaork = network
cell n—1 =

functional
unit 9

| junctional
unit 2

Figure 2B

Genaral organization of the processar

The information units transmitted through the arbitratiaon
network from the memary section to the functional unite are
instruction packets: each instruction packet gpeaifies one unit
Sf work Tor the ZTuncticnal unit to wnich it is directed. The
information units sent through the distribution network from
functional units to the memory =section are result packels; aach
result packat delivers a newly computed valie to a specific
value holding register in the memory section.

The memory section of the processor holds a representation

‘of the program and holde computed values awalting use. The

memory is a collection of cells: each aperator in the program
is assogiated with some cell of the memory. Each cell (Figure
29} contains three registers —— Oné register to hold an

jmstruction which encodes the type of operater and its connections
fo other operators of the prograni, and twe registers that receive

operand values for use in the next execution of the instruction.
fach operand register may ke set to behave as a constant or

ag a variable. If set to act as a variable, an operand register
expects to receive a result packet centaining the operand value
through the distribution network; if set to act as a constant,
an opperand register retains the value delivered to it when the
pragram was loaded into the menory. when both ocperand registers
contain values, the cell is said to be enabled and the contents
of the three registers {instruction and two Gcperand values)

form an instruction packet which is presented to the arbitratien
network.

-30-
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instruction

gperand 1

result packet instruction
‘packet 2

operand 2
_result packet | _,l

Figure 29

Registers of a memory cell

operation code

destination 1 ——I

destination 2

Figures 30

Instruction format
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FPigure 30 shows the instruction format. The oparation
sode has a field (of two bits, say} which specifies the func-
tional unit required {(out of four, say), and a field that
indicates which capability of the functicnal unit is to be
gsed. Each destination field specifies a memory cell and which
of its operand registers iz to receive one copy of gach result
generated by the imstructien. The initial contents of memory
gells for the digital filter example is shown in Figure 31l.

cell 1: cell &
muk | a1 | - add | 5/2 | -
X —> x(0) ()
A ()
call 2. cell 5
[out | s | - sb | €M | —>
{}) {1}
B ()
cell 3: cell 6:
mdt | a2 | - dent | 311 | 2/)
yi-2) vi-1}
c -
Figura 31

Initial contants of memory for the second order filter computation

Empty parentheses indicate an operand register waiting to
ceceive a value. In Figure 31 cell 1 is enabled and presents
the instruction packet

muit, 4/1, -| ' |
x (0} ‘
A

to the arbitration network. Scme functional unit will compute
z = A x(0) : 1

and send the result packet

)

through the distribution network and eperand register 1 of
cell 4 will receiwve the value z.

~77-



functional unit . n
e Tat identity pipe /. result
1 packet
Q¥
instruction identity pipe
packat I
computation . resuft
Y pipeline packat
@ 2@y
Figure 32

Operation of a funclional unit

Ag illustrated in Figure 132, each functional unit .
receives from the arbitration network all instruction packets
directed to it by their operation codes, and, in gensral, deli-
vers two result packets to the distribution network. To
realize maximum throughput, each functional unit is constructed
as three pipelines: -one pipeline performs the computaticon
of the result value z = x & y where x and ¥ are the vperands
from the instruction packst. fThe second and third pipelines
earry the destination codes dl and d2 so these may be associated
with the result z when it emerges from the computational pipeline.

Since the data flow form of a program expresses most of
the possibilities for concurrent executicn of instructions,
we can expect that many cells in the memary section of the pro=-
cessor will be enabled at once. As the functional units have
high potential throughput, we must show how the arbitration
and distribution networks can be crganized to handle many
packets concurrently so all sections of the processor are
effectively utilized. The arbitration network is designed so
many instruction packets may Elow inte it concurrently from cells
of the mémory system, and merge into four streams of packets --
one for each functional unit. The network is built of the four
types of modules shown .n Fiqure 33.

The arbitration module passcs to its output port ¢ packets
arriving at input ports a and b, one-at-a~time, using a round-
robin discipline to resolve any ambiguity about which packet
should be sent next. The switch module assigns packets arriving
at port a to ports b or o according to some property of the
packet. In the arbitration network switch modules separate
instruction packets into four categories, one for =ach
functional unit, by testing the operation cedec of the instruc-—
tions they contain. Figure 34 shows how arbitration and switch
modules might be arranged into an arbitration network. This
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a._switch module b. arbitration module

from memory calls

®

buf

serial —to — parallel

#

e,

parallel —to—gerial

¢. convarters d. huffar moduis

Figura 33
Module for the arbitration and distribution netwarks

T
Squn Jeuo Uy 0}

Figure 34

Primitive arbitratian network
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network contains a path for instruction packets from each
memory cell to each functional unit,

Since the arbitration nest has many input ports and only
four output ports, the rate of packet flow will be much greater
at the output ports. Thus a serial representation of packets
is appropriate at the input ports to minimize the number of
connections to the memory section, but a more parasllel repre-
sentation is reqguired at the output ports sa gz high throughput
may be achieved, Evidently, serial~to-parallel conversion is
reguired within the arbitraticn network, and conversion modules
(Figure 33c) must be incluyded. 1In addition, a packet emerging
from a conversion module must be prevented from engaging a
subsequent arbitration modyle until the serial pracket has been
completely abecrbed by the conversion module. Thus buffer
Storage modules are needed at the output cof each converter,
Figure 3% shows an improved arbitration network inecluding
conversion modules and buffers, .

larb s/

Figure 35

Improved arbitration network

prs f— caelo
2 » . . {operand 1
E 0 hid . . arb! Sv
™ —_— cell g
5 . N {operand 2 g
g : - 2
= — n :

- m
5 . arb q . =
b buf
Figure 36

Distribution network




fThe distribution network is slmilarly organized. as shown
in Figure 36, many switch modules route rasult packets to the
operand registers specified by their destination codes, A few
arbitration modules are reguired so result packets with different
destination codes may enter the distribution network concurrently
and share use of the secend rank of switch modules.

We have found this new concept of computer organizations a
very attractive appliecation for our work on speed-independent
logic design. David Misunas has developed preliminary designs
for many parts of the propoesed machine [93], and his paper on
this work [94] tied for second place in the 1872 ACM student
paper competition. The use of Petri nets as a formal notation
for spacifying the behavior of asynchronous modules has becr
very impoertant to the success of this work. Some examples af
useful asynchronous modules are shown in Figqures 37 through 39.

In thegse modules reset signalling [92] is used; that is,

transitions from 0 te 1 dencte significant events and must be

followad by transitions from 1 to 0 called reset events, The

Muller C-elament is discussed in [92]. The data switch allows

avents representing bits of data to be forwarded To a particular
destination under control of events occurring on wire a. Data
switches are alse used in combination as in Figure 38. The values

of control bits arriving at control port d determine which of

data output ports b and ¢ is to receive each data bit arriving

at data input port a. This circuit is speed independent in

that arbitrary delays may be inserted in any external connection -
witheut interfering with its coxrect operation. Internally, ’
the cireuit is insensitive to the speed af operation of its

active elements. Figure 38 shows the bit pipeline which is the

speed independent counterpart of the conventilcnal shift

register and has a natural application in the registers of the

memory system. )

1 11 1
— o
DS o 00 o
—0 a O}— '
' a
a

i
:
E
a. module b, Petri net c. circuit |

Figure 37

Data swilch module . : - '
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= 1
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Figure 38
Speed independant module built from data switches
1 31
a€ a
0 >0

R

Figure 39

A section of bit pipeline
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