From Prototyping to Emulation: The StarT (*T) Era (1992-1999)

Derek Chiou

(Dataflow-StarT-Synthesis Era occupant)

The University of Texas at Austin

Machine Building In CSG 1992-1999

- 88110MP-based
- StarT-NG (Next Generation)
 - PowerPC 620-based
- StarT-Voyager
 - PowerPC 604-based
- StarT-X, StarT-Jr
 - x86 PCI-based
- Moving forward: RAMP

Dataflow Machines Looked Impractical

- Monsoon worked well, but
 - IBM RS/6000 donated at the same time was about as fast as 8 node Monsoon machine
- Could we leverage commercial processors?

*T: Integrated Building Blocks for Parallel Computing

Greg Papadopoulos, Andy Boughton, Robert Greiner, Michael J. Beckerle MIT and Motorola

*T: Motorola 88110MP

- Integrates NIU onto Motorola 88110 core
 A functional unit
- Send/Receive instructions to access NIU
 - Use general-purpose registers
- Asymmetric message passing performance
 - Dual issue means 4 read ports, 2 write ports
- Motorola was doing the implementation
 - Many visits to Phoenix
- We grumbled
 - 6 cycles to send a message, 12 cycles to receive????
 - Monsoon was much better

And Then Arvind Has a Meeting

- And comes back with some news
- IBM/Motorola/Apple alliance
 - Out goes 88110
 - In comes PowerPC
- **▼** *Re-***T*?
- PowerPC 620 selected as base processor
 - Not yet implemented, very aggressive 64b processor
- StarT-NG was born

StarT-NG: Delivering Seamless Parallel Computing

Derek Chiou, Boon S. Ang, Robert Greiner, Arvind, James Hoe, Michael J. Beckerle, James E. Hicks, and Andy Boughton **MIT and Motorola**

http://www.csg.lcs.mit.edu:8001/StarT-NG

Prototyping to Emulation

StarT-NG

A parallel machine providing

- Low-latency, high-bandwidth message passing
 - » Extremely low overhead
 - » User-level
 - » Time and space shared network
- coherent shared memory test-bed
 - » Software implemented, configurable
 - » Extremely simple hardware
- Used aggressive, next-gen commercial systems
 - PowerPC 620-based SMPs
 - AIX 4.1

8

A StarT-NG Site

Arctic Switch Fabric

- 32-leaf full-bandwidth fat tree
 200MB/sec/direction
- Differential ECL links to endpoints
- Modular, scalable design

8-Site StarT-NG

Network Interface Unit (NIU)

- 620 provides a *coprocessor interface* to L2
 - accesses to specific region of memory go directly to L2 coprocessor
 - » bypass L2 cache interface
 - still cacheable within L1, if desired
- NIU attached to L2 coprocessor interface

NIU Implementation

128 bits @ 1/2 processor clock

Attempted Full Performance

Address Capture Device (ACD)

- Allows an SMP 620 (sP) to service bus ops
 Support shared memory
- ACD is simple hardware on L3 bus
 - "captures" global memory bus transactions
- sP communicates with ACD over L3 bus
 - Reads captured accesses to global address
 - Services requests using message passing
 - Writes back returned cache-lines to ACD
 - depends on out-of-order 620 bus
- If not needed, sP becomes an aP

ACD Example

Status

(from EuroPar 95 talk)

- Hardware & Software design completed
 implementations in progress
- Hardware will be available soon after the 620 SMP is available

Then, in 1996, Arvind has a meeting

- PowerPC 620 indefinitely delayed
 - Look for another processor
- Lesson to current grad students
 - Don't let Arvind go to meetings
- PowerPC 604e chosen
 Available off the shelf

The StarT-Voyager Parallel System

Derek Chiou, Boon S. Ang, Dan Rosenband, Mike Ehrlich, Larry Rudolph, Arvind, *MIT Laboratory for Computer Science*

Scalable SMP cluster

- IBM 604e-based SMP building blocks
- Custom Network Endpoint Subsystem (NES) connects SMP to network via memory bus
- Intended Research
 - network sharing
 - communication mechanisms
 - architecture
 - system and application software

Network Endpoint Subsystem

Derek Chiou

Prototyping to Emulation

Why Share Network?

- Single network
 - Different Services
 - message passing (MP)
 - coherence protocol
 - file system....
 - Multiple processors/node
 - multiple network jobs
 - multiple services/processor

StarT-Voyager Network Sharing

Multiple Queues

- Fixed number hdw queues
- Service Processor (sP) emulates infinite queues
 - sP controls/uses NES
- Critical queues use hdw queues (resident), others emulated by sP (non-resident)
- Application oblivious
 - switch queues without app knowledge or support (VM)
- Synchronization
- Flow control

Virtualized Destination

message

Memory with Weird Semantics: Message Passing Mechanisms

- Four mechanisms
 - Basic Message
 - Express Message
 - Tag-on Message
 - DMA
- 512 msg queues
 - 16 resident
- Protected user-level access
 - Multi-tasking (space / time)
 - No strict gang scheduling required

Express Messages

- For small messages, e.g. Acks:
 - Payload: 32 + 5 bits
- Uncached access to message queues
- Advantages:
 - Avoid weak memory model's SYNC
 - No coherence maintenance for msg queue space

S-COMA Shared Memory

- Global mem mapped to local physical mem
 - Page granularity allocation
 - cache-line granularity protection
- Accesses to global mem snooped by NES
 - legal access completes against local RAM
 - illegal access passed to sP for servicing
 - » aP bus operation retried until sP fixes

S-COMA Hardware Support

- NES hdw snoops part of physical memory
- F(Bus Operation, HAL State) -> Action
 - Proceed
 - Proceed & Forward to sP
 - Retry & Forward to sP
- sP only entity that can modify HAL state
 simplicity at slight restriction on functionality

Accessing S-COMA Memory

Derek Chiou

Prototyping to Emulation

Implementation

- It worked!
- NESChip implemented in Chip Express technology
 - laser-cut gate array prototyping (1 week)
- TxU/RxU implemented in FPGA's
- Buffers implemented by dual-ported SRAM's and FIFO's
- Implemented by students and staff

StarT-X/StarT-Jr

James Hoe, Mike Ehrlich

Prototyping to Emulation

StarT-X: A Real Success

Heterogeneous Network of Workstations StarT-X PCI-Arctic network interface Integrated network processor

Derek Chiou

StarT-Hyades Cluster

- Our system
 - 16 2-way Pentium-II SMPs running Linux
 - Fast Ethernet (LAN)
 - Even faster system area network (StarT-X)
 - Owned by a single research group
- Application: MITgcmUV
 - Coupled atmosphere and ocean simulation for climate research
 - Traditionally relied on shared Big Irons

Application Performance

Processor	Machine	Sustained	Normalized
Count		Performance	Performance
		(Gflop/s)	1-proc C90
1	Hyades	0.054	<0.1
16	Hyades	0.9	1.5
32	Hyades	1.8	3.0
1	Cray C90	0.6	1.0
4	Cray C90	2.2	3.7
1	NEC-SX4	0.7	1.2
4	NEC-SX4	2.7	4.5

Modern Day: RAMP: MPP on FPGAs

- ▼ Goal 1000-CPU system for \$100K early next year
 - Not intended to be prototype
- ▼ \approx 16 CPUs will fit in Field Programmable Gate Array (FPGA)
 - Need about 64 FPGAs
 - ≈ 8 32-bit simple "soft core" RISC at 100MHz in 2004 (Virtex-II)
- HW research community shares logic design ("gate shareware") to create out-of-the-box, MPP
 - Use off-the-shelf processor IP (simple processors, ~150MHz)
 - RAMPants: Arvind (MIT), Krste Asanovíc (MIT), Derek Chiou (Texas), James Hoe (CMU), Christos Kozyrakis (Stanford), Shih-Lien Lu (Intel), Mark Oskin (Washington), David Patterson (Berkeley, Co-PI), Jan Rabaey (Berkeley), and John Wawrzynek (Berkeley, PI)
- "Research Accelerator for Multiple Processors"

RAMP-White Reference Platform

- Very flexible shared memory platform
 - Different components/policies/parameters
- Uses StarT-Voyager-like bus retry
- 3 Phase Approach:
 - » Phase 1: Incoherent global shared memory
 - All accesses to main memory
 - No caches
 - » Phase 2: Snoopy-based coherency over a ring
 - Adds coherent cache
 - » Phase 3: Directory-based coherency over network
 - Adds directory

36

RAMP-White Phases

Intersection Unit (in Bluespec)

Prototyping to Emulation

Conclusions

- Ideas recycle
 - RAMP-White \approx StarT-Voyager
- Don't be too implementation-ambitious
 - Matching industry is impossible
 - Balance between implementation effort and accuracy
- Delicate balance between rolling your own and depending on others
 - Reuse whatever you can (Arctic)
- Thanks Arvind!
 - Using what I learned in grad school daily
 - Bluespec

39