
1

Store Atomicity

What does atomicity
really require?

Jan-Willem Maessen (Sun Microsystems)
Based on joint work with Arvind from ISCA’06

From Dataflow to Synthesis
May 18, 2007



Dataflow to Synthesis, May 18, 2007 2

What is atomic memory?

Operational view: instruction at a time
Declarative view: serializability

P P P P

Memory, cache, buffers

Out of order
processors

Monolithic
memory



Dataflow to Synthesis, May 18, 2007 3

The Atomicity Puzzle



Dataflow to Synthesis, May 18, 2007 4

Puzzle 1: Serializability

Many serializations 
exist for a given 
execution

S x 1 S y 2 L x=1L y=2

S x 1S y 2 L x=1L y=2

S x 1S y 2 L x=1L y=2

S x 1S y 2 L x=1 L y=2

S x 1 S y 2 L x=1 L y=2

S x 1 S y 2L x=1 L y=2

source(L)

L

S x 1

L x=1

S y 2

L y=2



Dataflow to Synthesis, May 18, 2007 5

Puzzle 1: Serializability

S x 1 S x 2 L x=1L x=2

S x 1S x 2 L x=1L x=2

S x 1S x 2 L x=1L x=2

S x 1S x 2 L x=1 L x=2

S x 1 S x 2 L x=1 L x=2

S x 1 S x 2L x=1 L x=2

S x 1

L x=1

S x 2

L x=2

Only two serializations 
are possible



Dataflow to Synthesis, May 18, 2007 6

Thread 1 Thread 2
S x,1 S y,3
Fence Fence
S y,2 S x,4
L y L x

Potential violations of 
Serializability: Example 1

= 3 = 1?

S x 1

L y

S y 2 S x 4

S y 3

L x

Predecessor Stores of a Load are ordered before its source



Dataflow to Synthesis, May 18, 2007 7

Potential violations of 
Serializability: Example 2

Thread 1 Thread 2
S x,1 S y,3
S x,2 S y,5
Fence Fence
L y L x= 3 = 1?

S x 1

L y

S x 2 S y 5

S y 3

L x

Successor Stores of a Store are ordered after its observer



Dataflow to Synthesis, May 18, 2007 8

For Serializability we must 
have ...

Successor Stores of a Store are ordered after its observer

S x

L x
S x

S x

Predecessor Stores of a Load are ordered before its source

Surprisingly not enough to ensure serializability!

Recognized by Hangal, Vahia, Manovit, et al. 
[TSOtool, ISCA ‘04]



Dataflow to Synthesis, May 18, 2007 9

Mutual ancestors of unordered Loads are ordered before 
mutual successors of the Stores they observe

Overconstraining rules out legal executions

Must pay attention to pairs of 
unrelated observations ...

L x

S x

In any serialization, one S-L pair must precede the other
Two legal interleavings of these four instructions

S x

L x



Dataflow to Synthesis, May 18, 2007 10

Potential violations of 
Serializability: Example 3

Thread 1 Thread 2 Thread 3
S x,1 S y,2 S y,4
Fence Fence Fence
L y S z,6 L z
L y Fence

S x,8
L x

= 2

= 1?

= 4
= 6

S z 6

S y 2 S y 4

L z

S x 8

L x

S x 1

L y

L y



Dataflow to Synthesis, May 18, 2007 11

Store Atomicity

Successor Stores of a Store are ordered after its observer

S x

L x
S x

S x

Predecessor Stores of a Load are ordered before its source

Mutual ancestors of unordered Loads are ordered before 
mutual successors of the Stores they observe

L x

S x S x

L x

Claim: Store Atomicity guarantees Serializability



Dataflow to Synthesis, May 18, 2007 12

Fence

x≠yx≠yS y, w

x≠yindepindepindepL x

Br

indepindepindepindep+,...

FenceS y, wL yBr+,...2nd →
1st ↓

Instruction Reordering



Dataflow to Synthesis, May 18, 2007 13

Programming Language 
viewpoint

Pointers and array indices give rise 
to dependent loads; these 
operations must be ordered.

r1 = L x
r2 = L [r1]
r3 = r2 + 1
S [r1], r3

L x

L [r1]

r2+1

S [r1],r3

Flow of register
state reflected
in edges of 
graph;
implicit register
renaming



Dataflow to Synthesis, May 18, 2007 14

Address Speculation

Speculation = any decision which may 
break the rules down the line.
Here we relax the reordering axioms.
Behavior consistent with Store Atomicity

observed by [Martin,Sorin,Cain,Hill,Lipasti 01]

S r 7
?

L y

S y 2

S y 4

S x z

r = L x
S r 7 and L y are ordered if r = y

Speculation assumes r ≠ y; if this 
fails, discard the execution

Non-speculative execution must 
wait until r has been computed.



Dataflow to Synthesis, May 18, 2007 15

Optimizations Are Tricky

Ban invention of values “out of thin air”

Permit any other imaginable optimization
[Manson, Pugh, Adve 05]

Thread 1 Thread 2
S x 0 S y 0
r1 = L x = 2 r3 = L y = 2
r2 = L x S x, r3
if (r1 = r2)

S y 2



Dataflow to Synthesis, May 18, 2007 16

TSO is Non-Atomic

S z 3

L y

S z 8

L x

S x 2

S x 1

S y 7

S y 5

L z L z

Satisfy some 
Loads with local 
Stores
Memory order 
ignores them
Makes model 
non-atomic



Dataflow to Synthesis, May 18, 2007 17

Transactional Serializability
Serialize instructions in transaction together.

Clearly atomic
Too strong; can’t interleave independent operations

S x 1 S y 2 L x=1L y=2

S x 1S y 2 L y=2

S x 1S y 2 L x=1L y=2

S x 1S y 2 L y=2

S x 1 S y 2 L x=1 L y=2

S x 1 S y 2 L y=2

S x 1

L x=1

S y 2

L y=2

L x=1

L x=1

L x=1Disllowed executions 
actually are ok for this 
example!



Dataflow to Synthesis, May 18, 2007 18

Ordering and transactions

Trans

Op

Commit

Predecessor operations precede the start of a transaction

Successor operations follow the end of a transaction



Dataflow to Synthesis, May 18, 2007 19

Enumeration of legal behaviors

Find all legal behaviors
Must get the edges right

Find one legal behavior
Can impose unnecessary ordering

Example: invalidation-based cache



Dataflow to Synthesis, May 18, 2007 20

Choosing a candidate 
Store

L y

S y 2 S x 3

S x 1

L x

S x 4

L y

S x 5

L x

Candidate stores for a Load must be:
To same address as that Load
Resolved
Not overwritten

Guarantees Store Atomicity is maintained

S y 6 Unresolved 
instructions

Resolved 
instructions

Frontier

L x

S x 3

S x 4



Dataflow to Synthesis, May 18, 2007 21

Store Atomicity 
Summary

High-level unifying property for 
memory consistency protocols
Separation between processor 
local, memory behavior
Captures ordering dependencies 
which must be enforced by 
memory system
A memory model with no memory



22

Thanks!

JanWillem.Maessen@sun.com



Dataflow to Synthesis, May 18, 2007 23

Implications / Applications

Address Speculation, new 
behaviors but no violation of Store 
Atomicity (SA)
Non-atomic models, e.g., TSO
Properly synchronized programs
Java Memory Model
Transactional memory 



Dataflow to Synthesis, May 18, 2007 24

Permit Aliasing Speculation
New behaviors do not violate 
Store Atomicity
Exploited by current architectures
Banning complicates reordering
Dependency from source of Store address 
to any subsequent Load/Store



Dataflow to Synthesis, May 18, 2007 25

Overview

Serializability, graphs
Instruction Reordering
Store Atomicity
Enumerating behaviors operationally

Putting Store Atomicity to use
Address aliasing speculation
TSO



Dataflow to Synthesis, May 18, 2007 26

Drawbacks of TSO
Complicates memory model

Two kinds of source edges—local, non-local

Must track interaction of these orderings

Definition of candidates(L) is subtle

Problem on multi-core architectures
Separate Load/Store buffer per thread

Each must be large to tolerate latency

Avoid any model which treats some
threads differently from others



Dataflow to Synthesis, May 18, 2007 27

Multithreaded 
Languages

Discipline programmer must follow
Locks in well-synchronized programs
Use of synchronized and volatile in 
the Java™ Programming Language

Obey discipline → Atomicity (SC)
Every model has an atomic aspect:

Lock ordering
Volatile variables



Dataflow to Synthesis, May 18, 2007 28

Looking ahead

Exploit flexible ordering constraints
Cache protocols
Cross-thread speculation

Transactional memory
Serialization which reflects practice

Programmer-level memory models
Well-synchronized programs
Implement language-level models in 
Store Atomic setting



Dataflow to Synthesis, May 18, 2007 29

Programmer’s view
High-level vs. low-level models

Store Atomicity is a very low-level 
property

Specifies what happens
No intuition about “how to program”

Programmer-level models are important
Give a discipline for programming
Strong model (SC) within discipline
Hope: can check compliance
Example: Properly synchronized programs



Dataflow to Synthesis, May 18, 2007 30

Well synchronized programs
[Adve, Hill 90] [Keleher, Cox, Zwaenepoel 92]

Divide the variables in two classes: 
synchronization variables and the 
rest
In a well synchronized program a 
non-synchronizing Load L has only 
one element in candidates(L)!

Atomicity edges can be grouped and drawn lazily



Dataflow to Synthesis, May 18, 2007 31

Commit N/A

x≠yS y, w

x≠yindepindepL x

indepindepindep+,...

CommitS y, wL y+,...2nd →
1st ↓

Instruction Reordering

Partial order (dag) ≺local on local instructions.

Trans

Trans

Fence

Fence

x≠y

N/A



Dataflow to Synthesis, May 18, 2007 32

Resolving Transactional 
Loads in Parallel

Bad speculation introduces cycle
Roll back Load which break cycle
Along with its direct dependencies

S x 1

Trans

Commit

L y

S x 5

S y 2

Trans

Commit

L x

S y 6

We resolve a load in both 
transactions

Observed Stores 
overwritten

Results in a cycle between 
transactions

Roll back some Load which 
breaks cycle 


