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What is atomic memory?

Operational view: instruction at a time
Declarative view: serializability

P P P P

Memory, cache, buffers

Out of order
processors

Monolithic
memory
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The Atomicity Puzzle
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Puzzle 1: Serializability

Many serializations 
exist for a given 
execution

S x 1 S y 2 L x=1L y=2

S x 1S y 2 L x=1L y=2

S x 1S y 2 L x=1L y=2

S x 1S y 2 L x=1 L y=2

S x 1 S y 2 L x=1 L y=2

S x 1 S y 2L x=1 L y=2

source(L)

L

S x 1

L x=1

S y 2

L y=2
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Puzzle 1: Serializability

S x 1 S x 2 L x=1L x=2

S x 1S x 2 L x=1L x=2

S x 1S x 2 L x=1L x=2

S x 1S x 2 L x=1 L x=2

S x 1 S x 2 L x=1 L x=2

S x 1 S x 2L x=1 L x=2

S x 1

L x=1

S x 2

L x=2

Only two serializations 
are possible



Dataflow to Synthesis, May 18, 2007 6

Thread 1 Thread 2
S x,1 S y,3
Fence Fence
S y,2 S x,4
L y L x

Potential violations of 
Serializability: Example 1

= 3 = 1?

S x 1

L y

S y 2 S x 4

S y 3

L x

Predecessor Stores of a Load are ordered before its source
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Potential violations of 
Serializability: Example 2

Thread 1 Thread 2
S x,1 S y,3
S x,2 S y,5
Fence Fence
L y L x= 3 = 1?

S x 1

L y

S x 2 S y 5

S y 3

L x

Successor Stores of a Store are ordered after its observer
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For Serializability we must 
have ...

Successor Stores of a Store are ordered after its observer

S x

L x
S x

S x

Predecessor Stores of a Load are ordered before its source

Surprisingly not enough to ensure serializability!

Recognized by Hangal, Vahia, Manovit, et al. 
[TSOtool, ISCA ‘04]
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Mutual ancestors of unordered Loads are ordered before 
mutual successors of the Stores they observe

Overconstraining rules out legal executions

Must pay attention to pairs of 
unrelated observations ...

L x

S x

In any serialization, one S-L pair must precede the other
Two legal interleavings of these four instructions

S x

L x
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Potential violations of 
Serializability: Example 3

Thread 1 Thread 2 Thread 3
S x,1 S y,2 S y,4
Fence Fence Fence
L y S z,6 L z
L y Fence

S x,8
L x

= 2

= 1?

= 4
= 6

S z 6

S y 2 S y 4

L z

S x 8

L x

S x 1

L y

L y
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Store Atomicity

Successor Stores of a Store are ordered after its observer

S x

L x
S x

S x

Predecessor Stores of a Load are ordered before its source

Mutual ancestors of unordered Loads are ordered before 
mutual successors of the Stores they observe

L x

S x S x

L x

Claim: Store Atomicity guarantees Serializability
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Fence

x≠yx≠yS y, w

x≠yindepindepindepL x

Br

indepindepindepindep+,...

FenceS y, wL yBr+,...2nd →
1st ↓

Instruction Reordering
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Programming Language 
viewpoint

Pointers and array indices give rise 
to dependent loads; these 
operations must be ordered.

r1 = L x
r2 = L [r1]
r3 = r2 + 1
S [r1], r3

L x

L [r1]

r2+1

S [r1],r3

Flow of register
state reflected
in edges of 
graph;
implicit register
renaming



Dataflow to Synthesis, May 18, 2007 14

Address Speculation

Speculation = any decision which may 
break the rules down the line.
Here we relax the reordering axioms.
Behavior consistent with Store Atomicity

observed by [Martin,Sorin,Cain,Hill,Lipasti 01]

S r 7
?

L y

S y 2

S y 4

S x z

r = L x
S r 7 and L y are ordered if r = y

Speculation assumes r ≠ y; if this 
fails, discard the execution

Non-speculative execution must 
wait until r has been computed.
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Optimizations Are Tricky

Ban invention of values “out of thin air”

Permit any other imaginable optimization
[Manson, Pugh, Adve 05]

Thread 1 Thread 2
S x 0 S y 0
r1 = L x = 2 r3 = L y = 2
r2 = L x S x, r3
if (r1 = r2)

S y 2
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TSO is Non-Atomic

S z 3

L y

S z 8

L x

S x 2

S x 1

S y 7

S y 5

L z L z

Satisfy some 
Loads with local 
Stores
Memory order 
ignores them
Makes model 
non-atomic
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Transactional Serializability
Serialize instructions in transaction together.

Clearly atomic
Too strong; can’t interleave independent operations

S x 1 S y 2 L x=1L y=2

S x 1S y 2 L y=2

S x 1S y 2 L x=1L y=2

S x 1S y 2 L y=2

S x 1 S y 2 L x=1 L y=2

S x 1 S y 2 L y=2

S x 1

L x=1

S y 2

L y=2

L x=1

L x=1

L x=1Disllowed executions 
actually are ok for this 
example!



Dataflow to Synthesis, May 18, 2007 18

Ordering and transactions

Trans

Op

Commit

Predecessor operations precede the start of a transaction

Successor operations follow the end of a transaction
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Enumeration of legal behaviors

Find all legal behaviors
Must get the edges right

Find one legal behavior
Can impose unnecessary ordering

Example: invalidation-based cache
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Choosing a candidate 
Store

L y

S y 2 S x 3

S x 1

L x

S x 4

L y

S x 5

L x

Candidate stores for a Load must be:
To same address as that Load
Resolved
Not overwritten

Guarantees Store Atomicity is maintained

S y 6 Unresolved 
instructions

Resolved 
instructions

Frontier

L x

S x 3

S x 4
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Store Atomicity 
Summary

High-level unifying property for 
memory consistency protocols
Separation between processor 
local, memory behavior
Captures ordering dependencies 
which must be enforced by 
memory system
A memory model with no memory
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Thanks!

JanWillem.Maessen@sun.com
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Implications / Applications

Address Speculation, new 
behaviors but no violation of Store 
Atomicity (SA)
Non-atomic models, e.g., TSO
Properly synchronized programs
Java Memory Model
Transactional memory 
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Permit Aliasing Speculation
New behaviors do not violate 
Store Atomicity
Exploited by current architectures
Banning complicates reordering
Dependency from source of Store address 
to any subsequent Load/Store
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Overview

Serializability, graphs
Instruction Reordering
Store Atomicity
Enumerating behaviors operationally

Putting Store Atomicity to use
Address aliasing speculation
TSO
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Drawbacks of TSO
Complicates memory model

Two kinds of source edges—local, non-local

Must track interaction of these orderings

Definition of candidates(L) is subtle

Problem on multi-core architectures
Separate Load/Store buffer per thread

Each must be large to tolerate latency

Avoid any model which treats some
threads differently from others
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Multithreaded 
Languages

Discipline programmer must follow
Locks in well-synchronized programs
Use of synchronized and volatile in 
the Java™ Programming Language

Obey discipline → Atomicity (SC)
Every model has an atomic aspect:

Lock ordering
Volatile variables
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Looking ahead

Exploit flexible ordering constraints
Cache protocols
Cross-thread speculation

Transactional memory
Serialization which reflects practice

Programmer-level memory models
Well-synchronized programs
Implement language-level models in 
Store Atomic setting
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Programmer’s view
High-level vs. low-level models

Store Atomicity is a very low-level 
property

Specifies what happens
No intuition about “how to program”

Programmer-level models are important
Give a discipline for programming
Strong model (SC) within discipline
Hope: can check compliance
Example: Properly synchronized programs
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Well synchronized programs
[Adve, Hill 90] [Keleher, Cox, Zwaenepoel 92]

Divide the variables in two classes: 
synchronization variables and the 
rest
In a well synchronized program a 
non-synchronizing Load L has only 
one element in candidates(L)!

Atomicity edges can be grouped and drawn lazily
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Commit N/A

x≠yS y, w

x≠yindepindepL x

indepindepindep+,...

CommitS y, wL y+,...2nd →
1st ↓

Instruction Reordering

Partial order (dag) ≺local on local instructions.

Trans

Trans

Fence

Fence

x≠y

N/A
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Resolving Transactional 
Loads in Parallel

Bad speculation introduces cycle
Roll back Load which break cycle
Along with its direct dependencies

S x 1

Trans

Commit

L y

S x 5

S y 2

Trans

Commit

L x

S y 6

We resolve a load in both 
transactions

Observed Stores 
overwritten

Results in a cycle between 
transactions

Roll back some Load which 
breaks cycle 


