The Hunt for Right Abstractions

Keshav Pingali
Department of Computer Science
University of Texas, Austin
Overview

- Abstraction means different things in different areas
 - mathematics/sciences: ignoring some properties of an object so as to focus on the important ones
 - art: representation of object that may be as interesting as the object itself
- Abstractions in Computer Science
 - have something in common with both of these kinds of abstractions
 - abstractions for parallelism in irregular programs
- Good and bad abstractions
 - abstractions can be very powerful and beautiful
 - but they can be misleading if they are the wrong abstractions
Abstraction in Mathematics

- **Bridges of Konigsberg**
 - town in Prussia
 - now named Kaliningrad in Russia

- **Problem:**
 - Is there a walk that crosses each bridge exactly once?

- **Citizens of Konigsberg in the 17th and 18th centuries spent lots of time trying to solve this problem**
Solution by Euler

- Key insight: connectivity between land masses is what is important, not the actual distances or the orientations of the bridges
- Create an abstraction: graph
 - One node for each land mass
 - Edge between two nodes if there is a bridge connecting the two land masses
- Graph has nodes of odd degree, so there is no walk with desired property
- Led to field we now call topology
Abstraction in Mathematics/science

- Problem-solving technique
 - the act or process of leaving out of consideration one or more properties of a complex object so as to focus on others
 - (e.g.) Euler left out distances and orientations
 - a general concept formed by extracting common features from specific examples
 - (e.g.) Topology is an abstraction of geometry

Bridges of Madison County (Iowa)
Abstraction in art

• “That it was a haystack the catalogue informed me. I could not recognize it. This non-recognition was painful to me. I considered that the painter had no right to paint indistinctly. I dully felt that the object of the painting was missing. And I noticed with surprise and confusion that the picture not only gripped me, but impressed itself ineradicably on my memory. Painting took on a fairy-tale power and splendour.”

 – Wassily Kandinsky

Raphael: Madonna and Child

Claude Monet: Haystacks
Abstraction in art: luminance

• How we see objects
 – what: contrast
 – where: luminance

• Impressionists abstracted away objects and exploited how light is perceived by the eye and brain
 – eye has difficulty finding edges of objects if object and background have the same luminance

• Human-centered abstraction: how the human eye/brain sees the representation of an object may be as interesting as the object itself
Abstraction in literature

Shorter Moby Dick (Ben Hoyle, Times April 14, 2007)

Moby-Dick Ishmael: Whaling’s cool.
Queequeg: Tattoos are cool.
Starbuck: Coffee’s cool.
Ahab: Fools! Stop yer philosophizin’ and help me fight this fish.
Moby-Dick (rising from waves): Screw you, Pegleg!
All: At last! Some action!
Moby-Dick: [Crash! Chomp! Blow!]
All: Aaargh!
Ishmael (later, alone, clinging to wreckage): Whaling’s cool.
Bad abstractions

• Abstraction is bad if it has thrown away some essential feature of the problem
 – topologist is someone who does not know the difference between a doughnut and coffee-cup

• What is essential depends on the use you intend to make of the abstraction

“Naked Blue IV” Henri Matisse (1952)
Abstractions in PL

• My opinion: most important advances in PL have introduced new abstractions

• Examples:
 – Procedures (1950?)
 • abstraction: parameterized code module (λ-abstraction)
 • abstracted away: implementation code
 – Instruction-set architecture (IBM 360)
 • abstraction: machine language
 • abstracted away: micro-architecture
 – FORTRAN I (1957)
 • abstraction: high-level programming language
 • abstracted away: machine language
Abstractions in PL (contd.)

- **Examples (contd.):**
 - Structured programming (1967)
 - abstraction: structured control-flow constructs like if-then-else, while-loops, for-loops etc.
 - abstracted away: conditional jumps (machine language relic)
 - Object-oriented programming (1970-)
 - abstraction: abstract data type
 - abstracted away: representation of data type
 - Automatic storage management (1960-)
 - abstraction: objects
 - abstracted away: machine addresses (pointers)
Abstractions for parallelism

- Irregular programs:
 - pointer-based data structures
 - parallelism is organized around worklists
 - kind of data-parallelism but more complex than array-based data parallelism
 - parallelism may be very data-dependent
 - whether or not two worklist elements can be processed in parallel may depend on input data
 - purely compile-time parallelization cannot work
 - runtime dependence checks are needed
Delaunay Mesh Refinement

- Bad triangles with non-overlapping cavities can be processed in parallel
- Whether or not two cavities overlap depends on the mesh: need speculation
- However, thread-level speculation (TLS) however has high abort ratio
Sequential Algorithm

Mesh m = /* read in mesh */
WorkList wl;
wl.append(mesh.badTriangles());

while (true) {
 if (wl.empty()) break; //done

 Element e = wl.get-first();
 if (e no longer in mesh) continue;

 Cavity c = new Cavity(e); //determine new cavity
 c.expand(); //determine affected triangles
 c.retriangulate(); //re-triangulate region
 m.update(c); //update mesh
 wl.append(c.badTriangles()); //add new bad triangles
}
Agglomerative Clustering

- **Input:**
 - Set of data points
 - Measure of “distance” (similarity) between them
- **Output:** dendrogram
 - Tree that exposes similarity hierarchy
- **Applications:**
 - Data mining
 - Graphics: lightcuts for rendering with large numbers of light sources
Clustering algorithm

- **Sequential algorithm: iterative**
 - Find two closest points in data set
 - Cluster them in dendrogram
 - Replace pair in data set with a “supernode” that represents pair
 - Placement of supernode: use heuristics like center of mass
 - Repeat until there is only one point left
- **Key data structure: priority queue**
Solution: set iterators

- for each e in Set S do B(e)
 - evaluate block B(e) for each element in set S
 - sequential implementation
 - set elements are unordered, so no a priori order on iterations
 - there may be dependences between iterations
 - set S may get new elements during execution

- for each e in PoSet S do B(e)
 - evaluate block B(e) for each element in set S
 - sequential implementation
 - perform iterations in order specified by poSet
 - there may be dependences between iterations
 - set S may get new elements during execution

- PLDI 2007 paper: “Optimistic Parallelism Requires Abstractions”
Bad abstractions in PL?

- Abstractions that are
 - difficult to reason about
 - hard to implement efficiently
- Example: functional languages for parallel programming
 - Abstract away the notion of storage: only values and functions on values
 - Elegant parallel execution models: reduction, dataflow
 - Big problems:
 - data structure manipulation can be very inefficient if you view data structures as values
 - hard to get a handle on locality
 - Unfortunately, parallelism in algorithms is mostly data parallelism 😞
 - Notion of storage might be an essential feature of program execution that should not be abstracted away by the programming language
Summary

• Abstraction means different things in different areas
 – mathematics/sciences: ignoring some properties of an object so as to focus on the important ones
 – art: representation of object that may be as interesting as the object itself

• Abstractions in Computer Science
 – have something in common with both of these kinds of abstractions

• How I learnt to value abstraction
 – most of the world is hostile to abstractions
 – working with Arvind, Jack and the dataflow group taught me the power and the perils of abstraction
The Hunt For Right Abstractions