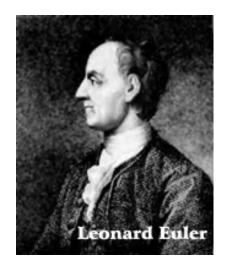
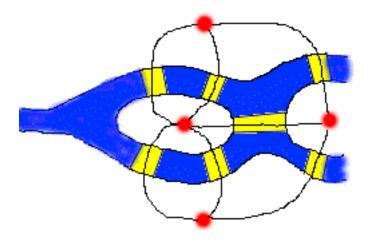

The Hunt for Right Abstractions

Keshav Pingali Department of Computer Science University of Texas, Austin


- Abstraction means different things in different areas
 - mathematics/sciences: ignoring some properties of an object so as to focus on the important ones
 - art: representation of object that may be as interesting as the object itself
- Abstractions in Computer Science
 - have something in common with both of these kinds of abstractions
 - abstractions for parallelism in irregular programs
- Good and bad abstractions
 - abstractions can be very powerful and beautiful
 - but they can be misleading if they are the wrong abstractions


Abstraction in Mathematics

- Bridges of Konigsberg
 - town in Prussia
 - now named Kaliningrad in Russia
- Problem:
 - Is there a walk that crosses each bridge exactly once?
- Citizens of Konigsberg in the 17th and 18th centuries spent lots of time trying to solve this problem

Solution by Euler

- Key insight: connectivity between land masses is what is important, not the actual distances or the orientations of the bridges
- Create an abstraction: graph
 - One node for each land mass
 - Edge between two nodes if there is a bridge connecting the two land masses
- Graph has nodes of odd degree, so there is no walk with desired property
- Led to field we now call topology

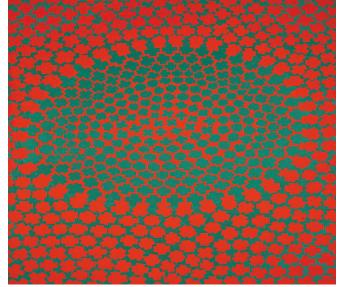
Abstraction in Mathematics/science

Bridges of Madison County (Iowa)

- Problem-solving technique
 - the act or process of leaving out of consideration one or more properties of a complex object so as to focus on others
 - (e.g.) Euler left out distances and orientations
 - a general concept formed by extracting common features from specific examples
 - (e.g.) Topology is an abstraction of geometry

Abstraction in art

Raphael : Madonna and Child


Claude Monet: Haystacks

- "That it was a haystack the catalogue informed me. I could not recognize it. This nonrecognition was painful to me. I considered that the painter had no right to paint indistinctly. I dully felt that the object of the painting was missing. And I noticed with surprise and confusion that the picture not only gripped me, but impressed itself ineradicably on my memory. Painting took on a fairy-tale power and splendour."
 - Wassily Kandinsky

Abstraction in art: luminance

Claude Monet: Impression Sunrise

Richard Anuszkiewicz: Plus Reversed

- How we see objects
 - what: contrast
 - where: luminance
- Impressionists abstracted away objects and exploited how light is perceived by the eye and brain
 - eye has difficulty finding edges of objects if object and background have the same luminance
- Human-centered abstraction: how the human eye/brain sees the representation of an object may be as interesting as the object itself

Abstraction in literature

Shorter Moby Dick (Ben Hoyle, Times April 14, 2007)

Moby-Dick Ishmael: Whaling's cool.

Queequeg: Tattoos are cool.

Starbuck: Coffee's cool.

Ahab: Fools! Stop yer philosophizin' and help me fight this fish.

Moby-Dick (rising from waves): Screw you, Pegleg!

All: At last! Some action!

Moby-Dick: [Crash! Chomp! Blow!]

All: Aaargh!

Ishmael (later, alone, clinging to wreckage): Whaling's cool.

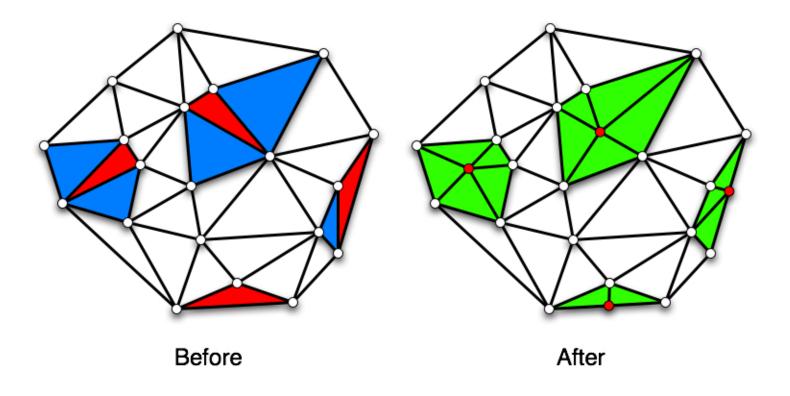
Bad abstractions

"Naked Blue IV" Henri Matisse (1952)

- Abstraction is bad if it has thrown away some essential feature of the problem
 - topologist is someone who does not know the difference between a doughnut and coffee-cup
- What is essential depends on the use you intend to make of the abstraction

Abstractions in PL

- My opinion: most important advances in PL have introduced new abstractions
- Examples:
 - Procedures (1950?)
 - abstraction: parameterized code module (λ -abstraction)
 - abstracted away: implementation code
 - Instruction-set architecture (IBM 360)
 - abstraction: machine language
 - abstracted away: micro-architecture
 - FORTRAN I (1957)
 - abstraction: high-level programming language
 - abstracted away: machine language


Abstractions in PL (contd.)

- Examples (contd.):
 - Structured programming (1967)
 - abstraction: structured control-flow constructs like if-thenelse, while-loops, for-loops etc.
 - abstracted away: conditional jumps (machine language relic)
 - Object-oriented programming (1970-)
 - abstraction: abstract data type
 - abstracted away: representation of data type
 - Automatic storage management (1960-)
 - abstraction: objects
 - abstracted away: machine addresses (pointers)

Abstractions for parallelism

- Irregular programs:
 - pointer-based data structures
 - parallelism is organized around worklists
 - kind of data-parallelism but more complex than array-based data parallelism
 - parallelism may be very data-dependent
 - whether or not two worklist elements can be processed in parallel may depend on input data
 - →purely compile-time parallelization cannot work
 - →runtime dependence checks are needed

Delaunay Mesh Refinement

- Bad triangles with non-overlapping cavities can be processed in parallel
- Whether or not two cavities overlap depends on the mesh: need speculation
- However, thread-level speculation (TLS) however has high abort ratio

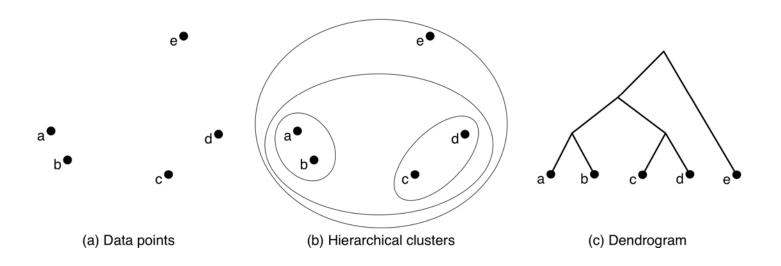
Sequential Algorithm

```
Mesh m = /* read in mesh */
WorkList wl;
wl.append(mesh.badTriangles());
```


}

```
while (true) {
    if ( wl.empty() ) break; //done
```

```
Element e = wl.get-first();
if (e no longer in mesh) continue;
```


```
Cavity c = new Cavity(e);//determine new cavity
c.expand(); //determine affected triangles
c.retriangulate(); //re-triangulate region
m.update(c); //update mesh
wl.append(c.badTriangles()); //add new bad triangles
```

Agglomerative Clustering

- Input:
 - Set of data points
 - Measure of "distance" (similarity) between them
- Output: dendrogram
 - Tree that exposes similarity hierarchy
- Applications:
 - Data mining
 - Graphics: lightcuts for rendering with large numbers of light sources

Clustering algorithm

• Sequential algorithm: iterative

- Find two closest points in data set
- Cluster them in dendrogram
- Replace pair in data set with a "supernode" that represents pair
 - Placement of supernode: use heuristics like center of mass
- Repeat until there is only one point left
- Key data structure: priority queue

Solution: set iterators

- for each e in Set S do B(e)
 - evaluate block B(e) for each element in set S
 - sequential implementation
 - set elements are unordered, so no a priori order on iterations
 - there may be dependences between iterations
 - set S may get new elements during execution
- for each e in PoSet S do B(e)
 - evaluate block B(e) for each element in set S
 - sequential implementation
 - perform iterations in order specified by poSet
 - there may be dependences between iterations
 - set S may get new elements during execution
- PLDI 2007 paper: "Optimistic Parallelism Requires Abstractions"

Bad abstractions in PL?

- Abstractions that are
 - difficult to reason about
 - hard to implement efficiently
- Example: functional languages for parallel programming
 - Abstract away the notion of storage: only values and functions on values
 - Elegant parallel execution models: reduction, dataflow
 - Big problems:
 - data structure manipulation can be very inefficient if you view data structures as values
 - hard to get a handle on locality
 - Unfortunately, parallelism in algorithms is mostly data parallelism
 Image: Image of the second second
 - Notion of storage might be an essential feature of program execution that should not be abstracted away by the programming language

<u>Summary</u>

- Abstraction means different things in different areas
 - mathematics/sciences: ignoring some properties of an object so as to focus on the important ones
 - art: representation of object that may be as interesting as the object itself
- Abstractions in Computer Science
 - have something in common with both of these kinds of abstractions
- How I learnt to value abstraction
 - most of the world is hostile to abstractions
 - working with Arvind, Jack and the dataflow group taught me the power and the perils of abstraction

