
1

“TTDA, MEF, Id/pH,

Monsoon, P-RISC”
(roughly 1978-1991)

A personal recollection

Rishiyur S. Nikhil

at “Dataflow to Synthesis Retrospective”

in celebration of Arvind’s 60th

May 18, 2007

Intersection of “Nick Hill’s” career with that of

“Arvind Johnson/ Johnson Arvind”

UC Irvine; U-Interpreter; Preliminary Id Report

Joined MIT (Dennis’ CSG group)

Organized FPCA conference, Portsmouth NH

Arvind forms “FLA” group (Functional Languages

and Architectures) for dynamic dataflow work

Jack Dennis’ original CSG group shuts down

Arvind renames group to “CSG”

Left MIT

Created Sandburst

Joined MIT, FLA group in LCS

1978

1981

1984

1991

2000

2003

Attended FPCA conference, Portsmouth NH

PhD work on using functional languages for

database query

~1989

Continued collaboration on Id/pH

Joined Sandburst

Co-founded Bluespec, Inc.

Collaborated on

Id, pH,

TTDA, Monsoon, P-RISC, early *T

Arvind Nikhil

2

Sequential source

(Fortran, C, …)

Sequential

CFG

Parallel

CDFG

Sequential

machine

code

Tomasulo, Reorder

buffers, Register

Renaming, …

Implicitly parallel source

(Val, Sisal, Id, pH, …)

Parallel

DFG

Parallel

machine

code

Execute (large) DFG

Trad. high performance computing The Dataflow approach

Execute (small) DFG

Dependency analysis;

transform

Schedule

Parse, …

Transform,

optimize,

schedule

Parse, …

C
o
d
in
g
,
c
o
m
p
il
a
ti
o
n

E
x
e
c
u
ti
o
n

Exploit

locality

Dataflow Graphs
{x = a + b;
y = b * 7

in

(x-y) * (x+y)}

a b

+ *7

- +

*

y
x

1 2

3 4

5

• Values in dataflow graphs are

represented as tokens

• An operator executes when all its

input tokens are present; copies of

the result token are distributed to

the destination operators

token < ip , p , v >

instruction ptr port data

ip = 3

p = L

no separate control flow

3

1, May 1898

An early dataflow quote

May 18

“You may fire when ready, Gridley”

Commodore George Dewey

USS Olympia, Battle of Manila Bay

Dataflow Operators

• A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

⇒

4

Well Behaved Schemas

Before After

• • •

P

• • •

• • •

P

• • •

T F

f g

T F

Conditional

one-in-one-out
& self cleaning

f

p

T F

T F F

Loop

Function call: f (a1,…,an)

f

get context extract tag

change Tag 0

change Tag 0

Graph for body of f

change Tag 1

a1

1:

change Tag n

an

n:

...

change Tag 1

Forktoken context

token data

5

Non-strictness

Still one-in-one-out
& self cleaning!

Function can execute, and even
return results, before args
available. Results can even be fed
back as args.

f (x, y)

x y

yz

z,y =

Non-strictness: pro and con

• Pro: unleashes even more parallelism

• Con: results in even less locality

– In traditional sequential computing, we are familiar

with the notion of a stack of frames, of which only the

topmost frame is “active”

– In the dataflow model, functions can be called in

parallel � tree of frames

– Because of non-strictness, all the frames can be

simultaneously active

Less locality � more resources

6

Pure DFG approach to

“throttling” parallelism

f

p

T F

T F F

LoopBounded Loop

f

p

T F

T F F

Loop

[Switch to TTDA slides from

Supercomputing 93 tutorial

on “Multithreaded Architectures”]

(Slides 1-7 of ArvindFest_Nikhil_PDF.pdf)

7

One has a Waiting-Matching

Section and the other has a

Mating-Watching section

What’s the difference between a dataflow machine

and a peep show?

MEF

the Multiprocessor Emulation Facility

• The TTDA was never built

– “Similar” machines were built elsewhere: Manchester,

ETL Japan (Sigma-1)

• In Arvind’s group, the TTDA was studied on the

MEF, one of the first large-scale “computing

clusters”

– Originally planned to be Symbolics Lisp Machines

(“Slimebollix”, in LCS jargon)

– Actually used TI Explorer Lisp Machines

(“Exploders”, in CSG jargon)

8

ETS: Explicit Token Stores

• The TTDA’s Waiting-Matching section required a
large, fast, associative memory to hold and
lookup waiting tokens

• The Explicit Token Store replaced it with a
directly-addressed memory, by organizing token
storage into conventional “stack” frames
– (actually a “tree” of frames, as described earlier)

A Frame in Dynamic Dataflow
1

2

3

4

5

Program+

*

-

+

3

1

2

4

5

3L, 4L

3R, 4R

5L

5R

out*

1

2

4

5

7

a b

+ *7

- +

*

y
x

1 2

3 4

5

Need to provide storage for only one operand/operator

<fp, ip, p , v>

3

Frame

9

Monsoon Processor
Greg Papadopoulos

Instruction
Fetch

Operand
Fetch

ip

fp+r

Network Network

Frames

op r d1,d2

Code

Form
Token

ALU

Token
Queue

Introducing threading

and thread-lifetime register sets

Register set

Unbroken threads
of instructions,

During a thread,
instructions can
communicate
via register set

Robert Iannucci

“Hybrid Dataflow/
von Neumann
Architecture”

10

Temporary Registers & Threads
in Monsoon

Registers evaporate
when an instruction
thread is broken

n sets of
registers
(n = pipeline

depth)

Instruction
Fetch

Operand
Fetch

Network Network

Frames

op r S1,S2

Code

Form

Token

ALU

Token
Queue

Registers

Registers are also
used for exceptions &
interrupts

Unix Box

The Monsoon Project
Motorola Cambridge Research Center + MIT

MIT-Motorola collaboration 1988-91
Research Prototypes

16 2-node systems (MIT, LANL, Motorola,
Colorado, Oregon, McGill, USC, ...)

2 16-node systems (MIT, LANL)

Id World Software

I-structure
Monsoon
Processor
64-bit

10M tokens/sec 4M 64-bit words
100 MB/sec

16-node
Fat Tree

Tony Dahbura

11

Id World people
• Rishiyur Nikhil,

• Keshav Pingali,

• Vinod Kathail,

• David Culler

• Ken Traub

• Steve Heller,

• Richard Soley,

• Dinart Mores

• Jamey Hicks,

• Alex Caro,

• Andy Shaw,

• Boon Ang

• Shail Anditya

• R Paul Johnson

• Paul Barth

• Jan Maessen

• Christine Flood

• Jonathan Young

• Derek Chiou

• Arun Iyangar

• Zena Ariola

• Mike Bekerle

• K. Eknadham (IBM)

• Wim Bohm (Colorado)

• Joe Stoy (Oxford)

• ...

Steve Heller

Ken TraubR.S. Nikhil Keshav Pingali David Culler

Boon S. Ang Derek ChiouJamey Hicks

Id Applications on Monsoon @ MIT
• Numerical

– Hydrodynamics - SIMPLE

– Global Circulation Model - GCM

– Photon-Neutron Transport code -GAMTEB

– N-body problem

• Symbolic
– Combinatorics - free tree matching,Paraffins

– Id-in-Id compiler

• System
– I/O Library

– Heap Storage Allocator on Monsoon

• Fun and Games
– Breakout

– Life

– Spreadsheet

12

The Monsoon Experience

• Performance of implicitly parallel Id programs

scaled effortlessly.

• Id programs on a single-processor Monsoon

took 2 to 3 times as many cycles as Fortran/C

on a modern workstation.

– Can certainly be improved

• Effort to develop the invisible software (loaders,

simulators, I/O libraries,....) dominated the effort

to develop the visible software (compilers...)

After the Monsoon

P-RISC: “RISCifying” dataflow

(Nikhil & Arvind ISCA 89)

+

join 2 x

c = b+a

fork L

Ordinary

frame variable

�no more

“full/empty”

bits in frame

memrory

Traditional

3-address

instruction

More instructions

can be added

into the thread

(and, can use

registers)

Just like

“jump L”

13

From P-RISC to *T (“starT”)

[Nikhil, Papadopoulos, Arvind, 1991]

• P-RISC, in turn, led to the idea of

augmenting a standard processor with a

“synchronizing” processor that simply took

care of the “dataflow” instructions:

– Join, fork, split-phase loads, …

• Derek Chiou will explore this in more detail

in the next talk

[See Unification slide from

Supercomputing 93 tutorial

on “Multithreaded Architectures”]

(Slide 8 of ArvindFest_Nikhil_PDF.pdf)

14

“Sinned was I ere I saw Dennis”

What did the palindrome-loving computer architect say

when he understood the dataflow approach?

Multiple threads of research in

FLA/CSG
Architectures

Threading, for locality

(Hybrid, Monsoon, P-RISC)

Unification/integration

into traditional processors

(*T)

“Pure” dataflow

(TTDA)

Formally defined

abstract machines

Synchronizing memory

(I- and M-structures

Parallel Functional
Languages (Id, pH) and Compilation

DFG semantics,

efficient demand-driven evaluation

“Full featured” language

Parallel synchronizing data structures:

I-structures (confluent) and M-structures (not)

Programming environment for studying parallelism

(Id World)

Thread formation under non-strictness

Optimal reduction in lambda calculus

Formal Semantics using Rewrite Rules

(P-TAC, Lambda-S, …)

Resource-bounded DFGs

15

The many versions of Id

• The (preliminary) Id Report [Arvind, Gostelow and Plouffe 78, UC
Irvine]
– Textual language “derived” from dataflow graphs

• Id/83s [Nikhil & Arvind 85], Id Nouveau [Nikhil, Pingali & Arvind 86]
– Major redesign for teaching 6.83s summer course

– Functional subset inspired by ML

– Plus, incorporate loops, I-structures, from original Id

– Operational semantics defined with DFGs, graph-reduction, and rewrite
rules

• Id 88.0, Id 88.1 [Nikhil 88]
– Hindley-Milner polymorphic types, pattern matching

• Id 90.0 [Nikhil 90], Id 90.1 [Nikhil 91]
– Overloading, array comprehensions, accumulators, abstract types,

explicit sequencing, M-structures, delayed evaluation, bounded loops,
pragmas, I/O, “systems programming” features

From Id to pH

• In 1990, many functional programming research groups had their
own “lazy functional programming language”
– All the same, modulo silly syntactic differences

• The functional subset of Id had the same non-strict semantics as
lazy languages, although it did not use lazy evaluation because of I-
and M-structures

• We, along with researchers from many of these groups decided to
“standardize” on a common non-strict functional language. This is
what became todays Haskell

• In CSG, we worked on a variant called pH, for “parallel Haskell”,
which had Haskell syntax, extensions for I- and M-structures and
sequencing, and dataflow execution

16

Morgan Kaufmann 2001

Arvind and I started

writing this book ~1988!

Dataflow: Passing the Token
Arvind keynote talk at ISCA 2005, Madison, WI

Summary

It’s been a terrifically exciting time at CSG/FLA/CSG

The dataflow approach was beautiful,

and still captures the interest of the research

communities in high performance computing and

declarative languages.

Perhaps, as we now move into the era of multi-cores

and SoCs, it’s time to evaluate some of these ideas again!

Why do they invite a dataflow person to ISCA?

Because they need a token minority

17

Thank you!

