
© Bluespec, Inc., 2006

or
Arvind goes commercial

Joe Stoy, May 18 2007

ADM

Internet data center
Servers

LAN

LAN

Managed
Switch/Router

Servers

Workstations

Enterprise

ADM

LAN

ADM

ADM

Metropolitan Area or
Regional Area Service

Provider

Servers

Storage
Arrays

SAN

SAN
Storage
Arrays

Remote back-office
Storage

Managed
Switch/Router

Managed
Switch/Router

Downtown
Financial District

High tech
Center

Professional
Park

Network evolution: “IP Sprawl”

ADM

Internet data center
Servers

LAN

LAN

Managed
Switch/Router

Servers

Workstations

Enterprise

ADM

LAN

ADM

ADM

Metropolitan Area or
Regional Area Service

Provider

Servers

Storage
Arrays

SAN

SAN
Storage
Arrays

Remote back-office
Storage

Managed
Switch/Router

Managed
Switch/Router

Downtown
Financial District

High tech
Center

Professional
Park

Network evolution: “IP Sprawl”

4
Packet Processing

IPv4, MPLS & Ethernet
Packet Forwarding

500K IP entries
1M MPLS labels
1000 Layer 2/3/4 rules

Forwarding

Engine

(FE)

Route table
Line Card Fabric Card

Bandwidth

Manager

(BM)

Traffic Mgmt & Switching

Traffic Management
DiffServ model
Policing/Scheduling/Shaping

Packet Switching
single store & forward
1 to 64 10G ports
Global bandwidth control functions

Queuing

Engine

(QE)

Packet Buffer

HIBEAM: Packet-Switch Architecture

5

Delivering Efficient switch fabrics and building
blocks for 10G IP differentiated services…

… higher port density
… lower cost

…less power

6

..by rewriting the rules for
semiconductor development

Design Complexity (gates)

D
ev

el
op

m
en

t t
im

e
(m

on
th

s)

Sandburst’s
revolutionary
BlueSpecTM

technology reduces
ASIC development
time by up to 50%!

7

What is BlueSpec

A language for hardware description
Based on TRS (term rewriting systems)
Syntax and type system based on
Haskell
Run-time execution model quite unlike
Haskell’s
Compiled to structural Verilog
. . . or C
. . . or FPGAs.

8

Bluespec at Sandburst

Lennart Augustsson designed the Bluespec
language

Notation, type system, and static abstraction
mechanisms borrow heavily from Haskell

Designed and implemented the compiler
v1 circa 7/2000, v2 circa 9/2000, v3 11/2001
Mieszko Lis implemented the scheduler
Initially produced just Verilog

Process/execute with std. Verilog tools
Later (10/2000) also produced C

C code is "cycle accurate" to the Verilog

Can mix Bluespec-generated code with other
code (hand-written Verilog, legacy Verilog,
imported IP, ...)

9

The Bluespec team
Rishiyur Nikhil, Director (DEC/Compaq Research, MIT)
Lennart Augustsson (CRT, Chalmers)
Stephen Bailey (DEC, startups)
Joe Stoy (Oxford)
Mieszko Lis (MIT)
Jacob Schwartz (MIT)
Dan Rosenband (MIT)

plus Arvind

Consultants
Professor James Hoe (CMU)
Professor Krste Asanovic (MIT)
Professor Srini Devadas (MIT)
Niklas Rojemo (Sweden)

10

BlueSpecTM Advantage:

Q2'01 Q3'01 Q1’02 Q2’02

HIBEAM Development

Cycle accurate C
and Verilog models
for all four chips and
the system

Model generation enables early customer engagements

11

Bluespec use at Sandburst

HIBEAM chip set system model for
performance analysis

close to 15K lines of Bluespec
April 2001 through the present

Mesa "pathfinding" project
Goal: flesh out the Bluespec "design flow"
Understand how Bluespec design fits into
the larger picture of the full ASIC design
process
6/2001 through 11/2001

12

FE2
More rules?
IP Storage?

Development Roadmap

Jan ‘02 Jan ‘04Jul ‘02 Oct ‘02 Jan ‘03 Apr ‘03 Jul ‘03 Oct ‘03Apr ‘02

Xbar-16

BM-16

QE

FE1

HIBEAM™ Xbar-32
(ADI)

BM-32

Xbar-64
(ADI)

BM-64

Mesa
BlueSpec
Trailblazer

Verilog coding

BlueSpec coding

QE2
For SAN?

FE2
Duplex?

13

Sandburst Corp: 10Gb/s core router ASICs
(Bluespec: further technology development)

Bluespec, Inc. background

Research@MIT on high-level synthesis & verification

Technology

TechnologyVC funding

VC funding

~1996 2000 2003

Bluespec, Inc.: high-
level design and syn-
thesis tool
(SystemVerilog-based)

14

15

The Bluespec team
Rishiyur Nikhil, Director (DEC/Compaq Research, MIT)
Lennart Augustsson (CRT, Chalmers)
Stephen Bailey (DEC, startups)
Joe Stoy (Oxford)
Mieszko Lis (MIT)
Jacob Schwartz (MIT)
Dan Rosenband (MIT)

plus Arvind

16

Evolution of HDLs
(Hardware Description Languages)

Hand-drawn
circuit
diagrams
(schematics)

Schematic
Capture
(automated)

~1985
Text-based
RTL langs:
Verilog &
VHDL

time

IEEE Verilog standards
(also VHDL standards)

2004
SystemVerilog

(Accellera)

1995 2001 2005

2005
IEEE

(RTL = Register-Transfer Level)

?

17
Fully synthesizable – without compromise!

Bluespec: Better Design Accelerates
Everything!

Architecture

Design

Verification and Test

Physical Design

More architectural
flexibility during

design

50% reduction
in errors, faster

correction

50% reduction from
design to verified

netlist

Architectural
exploration

Early
executable

models

Early
executable

models

Better reuse

Faster fixes, to
achieve closure

18

S
tru

ct
ur

al

B
eh

av
io

ra
l

Bluespec SystemVerilog™
A one slide overview

Rules and Rule-based Interfaces

For complex concurrency and
control, across multiple shared
resources, across module
boundaries

Two dimensions raising
the level of abstraction
(fully synthesizable)

VHDL/Verilog/SystemVerilog/SystemC

Bluespec SystemVerilog

High-level abstract types
Powerful static checking

Powerful parameterization
Powerful static elaboration

Advanced clock management

19

S
tru

ct
ur

al

B
eh

av
io

ra
l

Bluespec SystemVerilog™
A one-slide overview

Rules and Rule-based Interfaces

For complex concurrency and
control, across multiple shared
resources, across module
boundaries

Two dimensions raising
the level of abstraction
(fully synthesizable)

VHDL/Verilog/SystemVerilog/SystemC

Bluespec SystemVerilog

High-level abstract types
Powerful static checking

Powerful parameterization
Powerful static elaboration

Advanced clock management

20

One-at-a-time intuitions
Untimed rule semantics are one-rule-at-a-time steps
The Bluespec compiler schedules multiple rule steps
into each clock, producing a timed semantics and
resolving non-determinism
But before we go there, let’s build some HW intuitions
based on one-rule-at-a-time
We’ll use the following example

(Can you guess what it computes? Hint: “Euclid”)

rule decr (x <= y && y != 0);
y <= y - x;

endrule : decr

rule swap (x > y && y != 0);
x <= y; y <= x;

endrule: swap

Answer: Euclid’s algorithm for
computing GCD (Greatest
Common Divisor) of initial values
in x and y registers; result is in x

21

Suppose we want to
execute just one rule

The HW would be quite simple
rule decr (x <= y && y != 0);

y <= y - x;
endrule : decr

y

D Q

EN

x

D Q

EN

(x<=y && y!=0)

(y-x)

rule decr
(all comb. logic) state

rule body

rule cond

current
state

next
state

22

Two mutually exclusive rules

(Later: what to do if they’re not mutually
exclusive)

rule decr (x <= y && y != 0);
y <= y - x;

endrule : decr

rule swap (x > y && y != 0);
x <= y; y <= x;

endrule: swap

y

D Q

EN

x

D Q

EN

decr

state

cond

—

swap

cond
scheduler

data
select

23

Practical rule composition
In practice, we only do restricted rule compositions

Every rule executes entirely within one cycle

A rule fires at most once in a cycle (no Rule1<Rule1)

Greedy: as many rules as possible per clock cycle

Rule1 body does not feed into Rule2 cond
Therefore, rule conds can be evaluated based on state at
beginning of cycle

Rule1 body does not feed into Rule2 body
Therefore, Rule2 can use state from beginning of cycle

24

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

Practical Rule Composition

No intra-cycle communication between rules, in the HW

Correctness: HW scheduler only allows rules Ri, Rj, …, Rk to
execute concurrently when net state change is equivalent to
Ri<Rj<…<Rk

Thus, never get into inconsistent state (no race conditions)
Every state in the HW exists in the one-rule-at-a-time semantics

25

Multiple Rules and Conflicts

If two rules are enabled in a particular
cycle, what prevents them from
executing concurrently?
Answer: conflicts

Since state read/write ordering is different
in rule-at-a-time semantics compared to
concurrent execution, certain concurrent
executions would result in inconsistent
states
Certain resource sharings prevent
concurrency

26

rule r1 (c1);
x <= y + 1;

endrule

rule r2 (c2);
y <= x + 2;

endrule

Rule untimed semantics:
r1 and then r2 (“r1<r2”), or
r2 and then r1 (“r2<r1”)

HW: concurrent execution of r1 and r2
Each rule reads state (y,x) at start of cycle
Each rule updates state (y+1, x+2) at end of cycle

Conflict

Net HW state change ≠ any order (r1<r2 or r2<r1)
not ok to execute concurrently

A rule is not a Verilog “always” block!
Bluespec HW scheduler will prevent these firing together

2010
yx

1221

1213

2321

27

CAN_FIRE and WILL_FIRE

Scheduler incorporates conflict analysis by compiler
CAN_FIRE is False WILL_FIRE is False
CAN_FIRE is True WILL_FIRE is

True if not precluded by conflicts with other rules
False otherwise (the rule is blocked for this cycle)

Scheduler

Rule1
cond

RuleN
cond

CAN_FIREs WILL_FIREs
current
state controls data

muxing and
state ENables

28

S
tru

ct
ur

al

B
eh

av
io

ra
l

Bluespec SystemVerilog™
A one-slide overview

Rules and Rule-based Interfaces

For complex concurrency and
control, across multiple shared
resources, across module
boundaries

Two dimensions raising
the level of abstraction
(fully synthesizable)

VHDL/Verilog/SystemVerilog/SystemC

Bluespec SystemVerilog

High-level abstract types
Powerful static checking

Powerful parameterization
Powerful static elaboration

Advanced clock management

29

Modules, rules, interfaces,
methods

The big picture: modules contain rules which use
methods that are provided by sub-modules in their
interfaces. Methods, too, can use other methods.interface

state

rule

module

30

interface Mult_ifc;
method Action start (Tin x, Tin y);
method Tout result ();

endinterface: Mult_ifc

module mkTest ();

Reg#(int) state <- mkReg(0);
Mult_ifc m <- mkMult1();

rule go (state == 0);
m.start (9, 5);
state <= 1;

endrule

rule finish (state == 1);
$display (“Product = %d”,m.result());
state <= 2;

endrule

endmodule: mkTest

module mkMult1 (Mult_ifc);
Reg#(Tout) product <- mkReg(0);
Reg#(Tout) d <- mkReg(0);
Reg#(Tin) r <- mkReg(0);

rule cycle (r != 0);
if (r[0] == 1) product <= product + d;
d <= d << 1;
r <= r >> 1;

endrule

method Action start (x,y) if (r == 0);
d <= x; r <= y; product <= 0;

endmethod

method result () if (r == 0);
return product;

endmethod

endmodule: mkMult1

Multiplier Example

31

interface Mult_ifc =
start :: Tin ->Tin -> Action
result :: Tout

mkTest :: Module Empty
mkTest =

module
state :: Reg int
state <- mkReg 0

m :: Mult_ifc
m <- mkMult1

rules
“go” : when state == 0 ==>

m.start (9, 5)
state := 1

“finish” : when state == 1 ==>
$display (“Product = %d”,m.result())
state := 2

mkMult1 :: Module Mult_ifc
mkMult1 =

module
product :: Reg Tout
product <- mkReg 0
d :: Reg Tout
d <- mkReg 0
r :: Reg Tin
r <- mkReg 0
rules
“cycle”: when r /= 0 ==>

if r[0] == 1
product := product + d

d := d << 1
r := r >> 1

interface
start x y = action { d:=x; r:=y; }

when r == 0
result = product

when r == 0

Multiplier Example

32

ESL_INTERFACE (Mult_ifc) {
ESL_ACTION_METHOD_INTERFACE

(start, Tin x,Tin y);
ESL_VALUE_METHOD_INTERFACE (result, Tout);

}

ESL_MODULE (mkTest, ESL_EMPTY) {
esl_reg<int> state;
Mult_ifc * m;

ESL_RULE (go, state == 0) {
m->start (9, 5);
state = 1;

}

ESL_RULE (finish, state == 1) {
cout << “Product = ” << m->result()

<< endl;
state = 2;

}

ESL_CTOR (mkTest) {
ESL_NEW_REG(state, int, 0);
m = new mkMult1();
ESL_END_CTOR;

}
}

Multiplier Example

33

Concern: the “learning curve”

Hardware designers:
“Atomic” means (if anything) “in the same
clock cycle”

Bluespec:
Many atomic actions in same cycle, as if
they happened one at a time

34

Concern: the “learning curve”

Hardware designers:
Begin by designing the overall finite state
machine to control the design

Bluespec:
Design little rules locally: the compiler will
generate the overall logic

35

Simple example with
concurrency and shared resources

Process 0: increments register x when cond0

Process 1: transfers a unit from register x to
register y when cond1

Process 2: decrements register y when cond2

Each register can only be updated by one process
on each clock. Priority: 2 > 1 > 0

Just like real applications, e.g.:
Packet arrives, is processed, departs

0 1 2
x y

+1 -1 +1 -1

Process priority: 2 > 1 > 0

cond0 cond1 cond2

36

Which one
is correct?

What’s required to verify that they’re correct?
What if the priorities changed: cond1 > cond2 > cond0?
What if the processes are in different modules?

always @(posedge CLK) begin
if (!cond2 || cond1)
x <= x – 1;

else if (cond0)
x <= x + 1;

if (cond2)
y <= y – 1;

else if (cond1)
y <= y + 1;

end

0 1 2
x y

+1 -1 +1 -1 Process priority: 2 > 1 > 0

cond0 cond1 cond2

always @(posedge CLK) begin
if (!cond2 && cond1)
x <= x – 1;

else if (cond0)
x <= x + 1;

if (cond2)
y <= y – 1;

else if (cond1)
y <= y + 1;

end

37

With Bluespec, the design is direct

(* descending_urgency = “proc2, proc1, proc0” *)

rule proc0 (cond0);
x <= x + 1;

endrule

rule proc1 (cond1);
y <= y + 1;
x <= x – 1;

endrule

rule proc2 (cond2);
y <= y – 1;

endrule

Hand-written RTL:
Complexity due to:

State-centric (for synthesizability)
Scheduling clutter

BSV:
Functional correctness follows directly
from rule semantics

Executable spec (operation-centric)

Automatic handling of shared resource
mux logic

Same hardware as the RTL

0 1 2
x y

+1 -1 +1 -1

Process priority: 2 > 1 > 0

cond0 cond1 cond2

38

Now, let’s make a small change: add
a new process and insert its priority

0
1

2

x y

+1

-1 +1

-1

Process priority: 2 > 3 > 1 > 0

cond0 cond1 cond2

3+2 -2

cond3

39

Process priority: 2 > 3 > 1 > 0

Changing the Bluespec design

0
1

2

x y

+1

-1 +1

-1

cond0 cond1 cond2

3+2 -2

cond3

(* descending_urgency = “proc2, proc1, proc0” *)

rule proc0 (cond0);
x <= x + 1;

endrule

rule proc1 (cond1);
y <= y + 1;
x <= x – 1;

endrule

rule proc2 (cond2);
y <= y – 1;

endrule

(* descending_urgency = "proc2, proc3, proc1, proc0" *)

rule proc0 (cond0);
x <= x + 1;

endrule

rule proc1 (cond1);
y <= y + 1;
x <= x - 1;

endrule

rule proc2 (cond2);
y <= y - 1;
x <= x + 1;

endrule

rule proc3 (cond3);
y <= y - 2;
x <= x + 2;

endrule

Pre-Change

?

40

Process priority: 2 > 3 > 1 > 0

Changing the Verilog design

0
1

2

x y

+1

-1 +1

-1

cond0 cond1 cond2

3+2 -2

cond3

always @(posedge CLK) begin
if (!cond2 && cond1)
x <= x – 1;

else if (cond0)
x <= x + 1;

if (cond2)
y <= y – 1;

else if (cond1)
y <= y + 1;

end

always @(posedge CLK) begin
if ((cond2 && cond0) || (cond0 && !cond1 && !cond3))
x <= x + 1;

else if (cond3 && !cond2)
x <= x + 2;

else if (cond1 && !cond2)
x <= x - 1

if (cond2)
y <= y - 1;

else if (cond3)
y <= y - 2;

else if (cond1)
y <= y + 1;

end

Pre-Change

?

41

Concern: the “learning curve”

Other ways to make customers
immediately productive

Offer generic IP they can use “off the shelf”
with very little training
They can customize

But then they’ll have to learn more, to do so

42

So how does Arvind
fit into this?

Board member

Provides longer-term view of the
technical development

43

A FIFO problem
module mkFifo(Fifo#(t))

provisos(Bits#(t,ts));
Reg#(t) dta <- mkRegU;
Reg#(Bool) full <- mkReg(False);

method push(t x) if (!full);
full <= True; dta <= x;

endmethod

method t pop() if (full);
full <= False; return dta;

endmethod
endmodule

44

A FIFO problem

Immediate solution (Bluespec)
Invent “wires”

Wires similar to registers, but:
Registers:

Read “early” in clock cycle, written at end

Wires:
Written first, read later
Value goes away at end of cycle

45

A FIFO problem

Immediate solution (Bluespec)
New primitive: no great upheaval to
language
Methods set wires; an internal rule makes
the appropriate state change
Allows the “problem” to be overcome by
enhancing the FIFO’s design

46

A FIFO problem

Immediate solution (Bluespec)
But:

Separating method from state change
breaks atomicity – needs care to get
internal behavior right
Leads users into bad practices, and
spaghetti-like designs

47

A FIFO problem

Longer-term solution (Arvind)
Extend language: allow designers to
specify scheduling requirements

Performance Guarantees
“Allow pop before push in same cycle”
Compiler generates necessary hardware

Cleaner; more robust
Need more intuition about what the
compiler will do

48

A Final Concern

Has Arvind’s fame spread far and wide?

49

c:\users\stoy>finger arvind@mit.edu

[mit.edu]

Student data loaded as of May 17, Staff data loaded as of May 17.

Notify Personnel or use WebSIS as appropriate to change your information.

Our on-line help system describes

How to change data, how the directory works, where to get more info.

For a listing of help topics, enter finger help@mit.edu. Try finger help_about@mit.edu to read about how the directory works.

Directory bluepages may be found at http://mit.edu/communications/bp.

There were 3 matches to your request.

Complete information will be shown only when one individual matches your query. Resubmit your query with more information.

For example, use both firstname and lastname or use the alias field.

name: Arvind, Amarnath

department: System Design And Management

year: G

alias: A-arvind

name: Jairam, Arvind

department: Lincoln Laboratory

title: LL - Associate Staff

alias: A-jairam

name: Arvind

department: Dept of Electrical Engineering & Computer Science

title: Charles W & Jennifer C Johnson Professor in CS Eng

alias: arvind

c:\users\stoy>

1

50

c:\users\stoy>finger arvind@mit.edu

[mit.edu]

Student data loaded as of May 17, Staff data loaded as of May 17.

Notify Personnel or use WebSIS as appropriate to change your information.

Our on-line help system describes

How to change data, how the directory works, where to get more info.

For a listing of help topics, enter finger help@mit.edu. Try finger help_about@mit.edu to read about how the directory works.

Directory bluepages may be found at http://mit.edu/communications/bp.

There were 3 matches to your request.

Complete information will be shown only when one individual matches your query. Resubmit your query with more information.

For example, use both firstname and lastname or use the alias field.

name: Arvind, Amarnath

department: System Design And Management

year: G

alias: A-arvind

name: Jairam, Arvind

department: Lincoln Laboratory

title: LL - Associate Staff

alias: A-jairam

name: Arvind

department: Dept of Electrical Engineering & Computer Science

title: Charles W & Jennifer C Johnson Professor in CS Eng

alias: arvind

c:\users\stoy>

2

51

Conclusion:

Arvind is recursively impossible.

