
Relating Dataflow and Lambda-calculus

Zena M. Ariola
University of Oregon

18 May 2007

CSG in 80’s

World leaders inDataflow

Not quite world leaders but extremely in-
terested inTRS’sandλ-calculus

Token Pushing Semantics

Operational semantics of ID

Compilation of Id

Optimizations of Id

were expressed in terms of

Dataflow Graphs

Dataflow Graph

Transformations On Dataflow Graphs

Common Subexpression Elimination

Arvind, Pingali, Kathail: Graph

Reduction

(λx.x + x)(2 + 2) → (2 + 2) + (2 + 2)

@

λ x +

+ 2 2

x x

→

+

+

2 2

Sharing of Maximal Free Expressions

Wadsworth: do not repeat some obvious computa-

tion

fun f x = (2 + 2) + x

should you recompute2+2 every time you apply

f?

ExtractMaximal Free Expressionsat compile time

(Arvind, Keshav, Pingali HLCA 1984)

Optimality

How much do we have to share to be op-

timal? Lévy theory of optimality

How do you implement that theory?

Vinod why aren’t you here?

In 1985 Corrado B̈ohm invites Arvind to

the First International Workshop on Re-

duction Machines in Ustica

What is Henk Barendregt trying to
explain?

Again.... Arvind and Henk Barendregt

Discussions on TRS’s with Jan Willem
Klop were obviously enjoyable

Don’t worry - Gita was there!

Don’t Panic!

After Ustica

Arvind came back speakingλ-calculus and

TRS’s.....

Why not applying these ideas to Id?

Can we use TRS’s andλ-calculus for Id?

I-structure: Logic Variables

We need to take sharing into account

We introduced an INNOVATIVE system called

Contextual Rewriting System (CRS)

Klop, L évy =⇒ Graph Rewriting System

Graph Rewriting

Categorical approach: single or double pushouts –Too abstract

Implementation approach: allocations of nodes and redirections –Too

low level

Equational Graph Rewriting System

TRS’s + Letrec

λ-calculus + Letrec

Equational GRS

Give a name to each node of the graph and write down the intercon-

nections via a system ofrecursive equations

x: +

y: +

2 2

〈x | x = y + y, y = 2 + 2〉
〈x | x = y + y, y = z + w, z = 2, w = 2〉

〈y + y | y = 2 + 2〉

Graph Reduction

double x → x + x

〈z | z = double y, y = 2 + 2〉 → 〈z | z = y + y, y = 2 + 2〉

double

+

2 2

→
+

+

2 2

Two Intermediate Languages
P-TAC - Parallel Three Address Code - TRS + Letrec (FPCA’89)
Kid - Kernel Id -λ-calculus + Letrec (PEPM’91)
aaaaaaa

Id

KId

P_TAC

dataflow graphs

Optimizations as rewrite rules

Algebraic identities

True ∧ x → x

False ∨ x → x

x + 0 → x

x ∗ 1 → x

False ∧ x → False

True ∨ x → True

x = x → True

y < x → True if x = y + m

y = x → False if x = y + m

Correctness of optimizations

We based the notion ofcorrectnesson thesyntactic structureof terms: Optimiza-
tions are correct if they preserve the answer of a program (RTA’93, TCS ’95)

True ∧ x → x

False ∨ x → x

x + 0 → x

x ∗ 1 → x

False ∧ x → False

True ∨ x → True

x = x → True

y < x → True if x = y + m

y = x → False if x = y + m

〈z | x = Ω, y = True ∧ x, z = if y then 5 else 7〉 →
〈z | x = Ω, y = True, z = if y then 5 else 7〉 −→→
〈z | x = Ω, y = True, z = 5〉 −→→
5

Confluence of Optimizations

y < x → True x = y + m

y < x → False y = x + m

〈z | x = y + 3, y = x + 2, z = x < y〉 → 〈z | x = y + 3, y = x + 2, z = False〉
↓

〈z | x = y + 3, y = x + 2, z = True〉

Optimizations and Termination

Can lifting free expressions impact termination?

〈a 1 | a = λy.a 0〉 → 〈(λy.a 0) 1 | a = λy.a 0〉 → 〈a 0 | a = λy.a 0〉 → · · ·
↓lifting

〈a 1 | a = λy.b, b = a 0〉
↓inlining

〈a 1 | a = λy.b, b = (λy.b) 0〉
↓

〈a 1 | a = λy.b, b = b〉
↓

〈a 1 | a = λy.b, b = •〉
↓constant folding

〈a 1 | a = λy.•〉 → 〈• | a = λy.•〉 → •

Properties

P-TAC is confluent

..... even false Properties!!!!

Skew Confluence (Blom,Klop)

0 → 1 0 → 2 n → n + 2

0 2
�

4
�

6
�

8

1
�

3
�

5
�

7
�

Notice that from1 we can reach number3 that isgreater than2 , and from2 we can
reach number4 that isgreater than3, so on.

a

c
�

b

d

• Skew confluence guarantees unicity of infinite normal forms

KID is Skew Confluent

My life after CSG

Relate Calculi to Logic - Curry-Howard

Isomorphism

Types as Formulae- Programs as Proofs

λx.x : A → A

Typing rules∼ inference rules- Reduction rules∼ nor-

malization

Why?

How many years did it take to proves confluence and termi-

nation ofλ-calculus?

Decidability, confluence and termination results can be reused

Logic and Simply Typed Lambda

Calculus

λ-calculus : M, N ::= x | λx.M | M(N)

Γ, x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ M(N) : B

Execution and Normalization

Detour:
y :A, x :A ⊢ x :A

y :A ⊢ (λx.x) :A → A y :A ⊢ y :A

y :A ⊢ (λx.x) y :A

can be simplified to:

y :A ⊢ y :A

Thenormalizationrules correspond to how the program(λx.x) y is executed:

(λx.x) y 7→ y

Control Operators

Scheme callcc - C - Shift-reset - Abort - Catch and Throw

Control operators provide a general mechanism that allows

the study of a variety of features:

- Jumps, exceptions, error handling
- Recursion, state, streams, irregular trees
- Coroutines, threads, multiprocessing
- Backtracking, logic programming, debuggers
- Web interactions, The Orbitz problem

Logic and Control Operators

How do you type control?

Do the typing rules correspond to inference rules of a known logic?

How do you reason about them?

We developed an elegant reduction theory for most of the control op-

erators taken in isolation (ICALP’03,ICFP’04,HOSC’07)

The theory came out of the logical investigation

We do not have yet theories for the combined effects

Typing Abort

(1 + (A 5)) → 5
(not (A 5)) → 5
(A (A 5)) → 5
("abc" ++ (A 5)) → 5

(1 + (A true)) → true

What is the type of the top-level?⊥ = ∀X.X

Γ ⊢ M : ⊥

Γ ⊢ A M : A

A corresponds to theEx Falso Quodlibet

Proof by Contradiction

ProveA: assumeA is falseand try to derive acontradiction

Γ,¬A ⊢ ⊥

Γ ⊢ A

Γ, k : ¬A ⊢ M : ⊥

Γ ⊢ C(λk.M) : A

Thanks Arvind!

Thanks Silvio Berlusconi!

Henk Barendregt: ”Who is paying for this?”

Corrado B̈ohm: ”It is sponsored by Fininvest”.

Henk Barendregt: ”But who is behind this?”

Corrado B̈ohm: ”A person called Berlusconi. You will hear from him!”

Special Thanks to Gita!

