. L2-1

Bluespec- 2:
Two-level Compilation and
Scheduling of Operations

Arvind
Laboratory for Computer Science
M.L.T.

January 13, 2003

L2-2
Arvind

Outline

* From Bluespec to TRS to FSM [
« TRS execution semantics
» Compiling a single rule
* Scheduling of multiple rules
— conflict-free analysis

— mutual exclusion analysis
— sequential compositionality

« Putting it all together

January 13, 2003 it Fi 255 T6S Tt edu/APBIue A

http://www.csg.lcs.mit
http://www.csg.lcs.mit

L2-3

Arvind
Bluespec: A two-level language
Level 2 compilation
January 13, 2003 hito:/fwww.csg1cs. mit.edu/IAPBlue fﬁ‘

! _| Collection S 0
Transition of
Logic State
Elements

January 13, 2003 ks o S50 16 it edu/|APBIue F0

http://www.csg.lcs.mit
http://www.csg.lcs.mit

L2-5
Arvind

Hardware Elements

* Boolean gates
— AND, OR, NOT, ...

» Simple combinational circuits
— mux
— add, subtract, increment, equal, greater than, ...

* Synchronous state elements
flipflop with enable

— register
— multiported register file, array, ...
- FIFO
D D D D D D D D
b b b bbb |
ff || fF || ff || ff || fF || £ || £F (| ff register
B S S S A A
Q Q Q Q Q Q Q@ Q
January 13, 2003 it e eSg 1cs ot edu/IAPBIue N
L2-6
Arvind
interface FIFO a =
eng ;> a->Action -- engqueue an item
deq ;2 Action -- remove the oldest entry
first Ta -- inspect the oldest item
clear :: Action -- make the FIFO empty

— FIFO can be implemented directly in Verilog or in
Bluespec using registers

\n I
enab
not full <r—dbL
Ty
not empty JY
4+
not empty <fdy |

enab

[clear] first | deq || enq |
FIFO
module

January 13, 2003 hitpy/fwww.csgIcs.mit.edu/IAPBIue &

http://www.csg.lcs.mit
http://www.csg.lcs.mit

L2-7
Arvind

TRS Execution Semantics

Given a set of rules and an initial term s

While (some rules are applicable to s)
¢+ choose an applicable rule
(non-deterministic)
¢ apply the rule atomically to s

The trick to generating good hardware is to schedule as
many rules in parallel as possible without violating the
sequential semantics given above

January 13, 2003 it o S50 TcS ot edu/IAPBIue &

L2-8
Arvind

Rule: As a State Transformer

* A rule may be decomposed into two parts 1(S)
and &(s) such that

Shext = 1T TI(S) then &(s) else s

d(s) is expressed as (atomic) actions on the
state elements. These actions can be enabled
only if 1(s) is true

January 13, 2003 it Fi 255 T6S Tt edu/APBIue A

http://www.csg.lcs.mit
http://www.csg.lcs.mit

L2-9
Arvind
Compiling a Rule
“Bz Taken”:
when (Bz rc ra) <- bu.first, rf.sub rc ==
==> action pc = rf.sub ra
bu.clear
— enable
pc Tt
rf
bu next
current |
> o > state
state
values
T = enabling condition
d = action signals & values Q .
January 13, 2003 it e eSg 1cs ot edu/IAPBIue Al

L2-10
Arvind

Combining State Updates: strawman

L
s from the rules
that update R OR

T,

latch
enable

\4

&'s from the rules R

51’ 4
that update R next state

N
B r value

What if more than one rule is enabled?

January 13, 2003

ity Wi cSg 168 it edu/l APBlue)

http://www.csg.lcs.mit
http://www.csg.lcs.mit

L2-11
Arvind

Combining State Updates

m—> @
s f I Scheduler:
s from a Priority OR |]
the rules Encod
m, ncoder . N

latch
enable

\4

d's from the rules LR

6 | 4
that update R next state

> value
6n,R »

Scheduler ensures that at most one @ is true

January 13, 2003 hitp: i cSg Tcs. it edu/IAPBIue N

L2-12
Arvind

Single-rewrite-per-cycle Scheduler

m —— — O
T, ’ > @
—— Scheduler; —
—> —»

_ 3} Priority [§
—» Encoder ——

L p— -, G
lL.oUTm e
2 = a\\\eé\(\g
U 0. O, 0 @ Ue U.... O, \Joo(\\)a"‘“\
Qe‘ O\Q S
3. One rewrite at a time \N"i(ec“\

i.e. at most one @ is true

January 13, 2003 it/ SSg 1cs. it edu/IAPBIue &

http://www.csg.lcs.mit
http://www.csg.lcs.mit

L2-13
Arvind

Executing Multiple Rules Per Cycle

“Fetch”:
when True
==> action pc = pc+1

bu.enq (imem.get pc)
“Add”:

when (Add rd rs rt) <- bu.first

==> action rf.upd rd (rf.sub rs + rf.sub rt)
bu.deq

Can these rules be executed simultaneously?

These rules are “conflict free” because they
manipulate different parts of the state

(i.e., pc and rf), and enq and deq on a FIFO
can be done simultaneously.

January 13, 2003

L2-14
Arvind

Multiple Rewrites Per Cycle

“Fetch”:
when True
==> action pc :=pc+1
bu.enqg (imem.get pc)
“Bz Taken™:

when (Bz rc ra) <- bu.first, rf.sub rc ==
==> action pc :=rf.subra
bu.clear

Can these rules be executed simultaneously?

Yes, as long as the action of Bz Taken rule appears to
take effect after the Fetch rule!

Fetch and Bz taken rules are “sequentially composable”
January 13, 2003

________ ot

http://www.csg.lcs.mit
http://www.csg.lcs.mit

L2-15
Arvind

Conflict-Free Rules

* Rule, and Rule, are conflict-free if

Os . m(s) Um(s) U
1. T,(3y(s)) UT,(34(S))
2. 5,(3,(5)) == 8,(3,(s))

Theorem: Conflict-free rules can be executed
concurrently without violating TRS’s sequential
semantics*

*From a practical point of view it does not always make
sense to compute §,(9,(s)) in one cycle

January 13, 2003 it o S50 TcS ot edu/IAPBIue &

L2-16
Arvind

Mutually Exclusive Rules

* Rule, and Rule, are mutually exclusive if they
can never be enabled simultaneously

Os . m(s) U ~ my(s)

Theorem: Mutually-exclusive rules are Conflict-
free

Mutual- exclusive analysis brings down the cost
of conflict-free analysis

January 13, 2003 it Fi 255 T6S Tt edu/APBIue A

http://www.csg.lcs.mit
http://www.csg.lcs.mit

L2-17
Arvind

Sequentially Composable Rules

* Rule, and Rule, are sequentially composable if
firing of Rule, does not disable Rule,

Os . m(s) Uy(s) O 15,(3,(8))

Theorem: Sequentially composable rules can
be executed concurrently without violating
TRS’s sequential semantics provided the state
is updated according to §,(9,(s))*

*From a practical point of view it does not always make
sense to compute §,(9,(s)) in one cycle

January 13, 2003 hitp: i cSg Tcs. it edu/IAPBIue Fa

L2-18
Arvind

Conflict-Free Scheduler

e Partition rules into maximum number of
disjoint sets such that

— arule in one set may conflict with one or more rules
in the same set
— arule in one set is conflict free with respect to all the
rules in all other sets
(Best case: All sets are of size 1!!)

» Schedule each set independently
— Priority Encoder, Round-Robin Priority Encoder
— Enumerated Encoder

The state update logic depends upon
whether the scheduler chooses “sequential
composition” or not

January 13, 2003 it/ SSg 1cs. it edu/IAPBIue &

http://www.csg.lcs.mit
http://www.csg.lcs.mit

L2-19
Arvind

Multiple- Op-per-Cycle Scheduler

m — — ¢
e ; Scheduler > @,
., —» — .
., ——— Scheduler ———— &
., — — .
Jpa— B
—— ¥ Scheduler ——
L p—— O
lL.gUTm

2mimd... Um0 ¢ Ue U.... U,

3. Multiple operations such that
@U@0 Rjand R;are conflict-free or
sequentially composable

January 13, 2003 hitp: i cSg Tcs. it edu/IAPBIue N

L2-20
Arvind

Conflict Analysis

* Register for SC assume
_ op, < 0P,
read2 write2
readl CF SC
writel| C SC
« FIFO
eng2 | first2 deq2 | clear2
engl C CF CF SC
firstl CF CF SC SC
deql CF C C SC
clearl] SC C C CF
January 13, 2003 hitpy/fwww.csgIcs.mit.edu/IAPBIue ;hTfl

10

http://www.csg.lcs.mit
http://www.csg.lcs.mit

L2-21
Arvind

Conflict Analysis

“1.Fetch”:
when True

What are the
. restrictions on
=== action EC = perl scheduling these
u.enq (imem.get pc)
“2 Add”: rules?
when (Add rd rs rt) <- bu.first
==> action rf.upd rd (rf.sub rs + rf.sub rt)

bu.deq
“3.Bz Not Taken”:
when (Bz rc ra) <- bu.first, (rf.sub rc) /= 0O -2,3&4are ME
—=> action bu.deq -1lisCFwrt2&3
' -lisSCwrt4
“4.Bz Taken™:
when (Bz rc ra) <- bu.first, rf.sub rc ==
==> action pc := rf.sub ra
bu.clear o
January 13, 2003 hitp/Awww.csglcs. mit.edu/IAPBlue ;ET‘
L2-22
Arvind
Generate Enable Signals
M. ~Ty * bu.enq
1 pueng » bu enq value
T
m, ::.——» bu.deq
T, > bu.clear
m
::.—> pc._write
T[l ”4
Oupc — pc value
4 pc :-
January 13, 2003 hitp:/www.csg-Ics. mit.edu/IAPBlue _f'&fh

11

http://www.csg.lcs.mit
http://www.csg.lcs.mit

