
1

http://www.csg.lcs.mit.edu/IAPBlue

L2- 1

Arvind
Laboratory for Computer Science

M.I.T.

Bluespec-2:
Two- level Compilation and
Scheduling of Operations

January 13, 2003

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-2
Arvind

Outline

• From Bluespec to TRS to FSM ⇐
• TRS execution semantics
• Compiling a single rule
• Scheduling of multiple rules

– conflict- free analysis

– mutual exclusion analysis

– sequential compositionality

• Putting it all together

http://www.csg.lcs.mit
http://www.csg.lcs.mit

2

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-3
Arvind

Bluespec: A two- level language

Source code

Intermediate form:
Rules and Actions

(Term Rewriting System)

Object code
(Verilog/C)

Level 1 compilation

Level 2 compilation

• Type checking
• Massive partial evaluation

• Rule conflict analysis
• Rule scheduling

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

From TRS to Synchronous CFSM

Transition
Logic

I
OS“Next” SCollection

of
State

Elements

http://www.csg.lcs.mit
http://www.csg.lcs.mit

3

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-5
Arvind

Hardware Elements

• Boolean gates
– AND, OR, NOT, ...

• Simple combinational circuits
– mux
– add, subtract, increment, equal, greater than, ...

• Synchronous state elements
– flipflop with enable
– register
– multiported register file, array, ...
– FIFO

ff

D

ff

D

ff

D

ff

D

ff

D

ff

D

ff

D

ff

QQQQQQQQ

D

Clk

En
register

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-6
Arvind

FIFO

interface FIFO a =

enq :: a -> Action -- enqueue an item
deq :: Action -- remove the oldest entry

first :: a -- inspect the oldest item

clear :: Action -- make the FIFO empty

– FIFO can be implemented directly in Verilog or in
Bluespec using registers

n = # of bits needed
to represent the
values of type "a"

not full

not empty

not empty

rdy
enab

n

n

rdy
enab

rdy

en
q

de
q

fir
st

FI
FO

m
o

d
u

le

cl
ea

renab

http://www.csg.lcs.mit
http://www.csg.lcs.mit

4

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-7
Arvind

TRS Execution Semantics

Given a set of rules and an initial term s

While (some rules are applicable to s)
♦ choose an applicable rule

(non-deterministic)
♦ apply the rule atomically to s

The trick to generating good hardware is to schedule as
many rules in parallel as possible without violating the
sequential semantics given above

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-8
Arvind

Rule: As a State Transformer

• A rule may be decomposed into two parts π(s)
and δ(s) such that

snext = if π(s) then δ(s) else s

δ(s) is expressed as (atomic) actions on the
state elements. These actions can be enabled
only if π(s) is true

http://www.csg.lcs.mit
http://www.csg.lcs.mit

5

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-9
Arvind

Compiling a Rule

pc

rf

bucurrent
state

next
state
values

δ

π

enable

pc’

rf’

bu’

“Bz Taken”:
when (Bz rc ra) <- bu.first, rf.sub rc == 0

==> action pc := rf.sub ra
bu.clear

π = enabling condition
δ = action signals & values

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-10
Arvind

Combining State Updates: strawman

next state
value

latch
enable

R

OR

π1

πn

δ1,R

δn,R

OR

π’s from the rules
that update R

δ’s from the rules
that update R

What if more than one rule is enabled?

http://www.csg.lcs.mit
http://www.csg.lcs.mit

6

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-11
Arvind

Combining State Updates

next state
value

latch
enable

R

Scheduler:
Priority

Encoder
OR

φ1

φn

π1

πn

δ1,R

δn,R

OR
δ’s from the rules

that update R

Scheduler ensures that at most one φi is true

π’s from all
the rules

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-12
Arvind

Single-rewrite-per-cycle Scheduler

Scheduler:
Priority

Encoder

π1
π2

πn

φ1
φ2

φn

1. φi ⇒ πi

2. π1 ∨ π2 ∨ ∨ πn ⇒ φ1 ∨ φ2 ∨ ∨ φn

3. One rewrite at a time
i.e. at most one φi is true

Very conservat ive

way of g
uaranteeing

corre
ctness

http://www.csg.lcs.mit
http://www.csg.lcs.mit

7

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-13
Arvind

Executing Multiple Rules Per Cycle

“Fetch”:
when True

==> action pc := pc+1
bu.enq (imem.get pc)

“Add”:
when (Add rd rs rt) <- bu.first

==> action rf.upd rd (rf.sub rs + rf.sub rt)
bu.deq

Can these rules be executed simultaneously?

These rules are “conflict free” because they
manipulate different parts of the state
(i.e., pc and rf), and enq and deq on a FIFO
can be done simultaneously.

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-14
Arvind

Multiple Rewrites Per Cycle

“Fetch”:
when True

==> action pc := pc+1
bu.enq (imem.get pc)

“Bz Taken”:
when (Bz rc ra) <- bu.first, rf.sub rc == 0

==> action pc := rf.sub ra
bu.clear

Can these rules be executed simultaneously?

Yes, as long as the action of Bz Taken rule appears to
take effect after the Fetch rule!
Fetch and Bz taken rules are “sequentially composable”

http://www.csg.lcs.mit
http://www.csg.lcs.mit

8

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-15
Arvind

Conflict-Free Rules

• Rulea and Ruleb are conflict- free if

∀s . πa(s) ∧ πb(s) ⇒
1. πa(δb(s)) ∧ πb(δa(s))
2. δa(δb(s)) == δb(δa(s))

Theorem: Conflict- free rules can be executed
concurrently without violating TRS’s sequential
semantics*

*From a practical point of view it does not always make
sense to compute δb(δa(s)) in one cycle

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-16
Arvind

Mutually Exclusive Rules

• Rulea and Ruleb are mutually exclusive if they
can never be enabled simultaneously

∀s . πa(s) ⇒ ~ πb(s)

Theorem: Mutually-exclusive rules are Conflict-
free

Mutual-exclusive analysis brings down the cost
of conflict- free analysis

http://www.csg.lcs.mit
http://www.csg.lcs.mit

9

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-17
Arvind

Sequentially Composable Rules

• Rulea and Ruleb are sequentially composable if
firing of Rulea does not disable Ruleb

∀s . πa(s) ∧ πb(s) ⇒ πb(δa(s))

Theorem: Sequentially composable rules can
be executed concurrently without violating
TRS’s sequential semantics provided the state
is updated according to δb(δa(s))*

*From a practical point of view it does not always make
sense to compute δb(δa(s)) in one cycle

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-18
Arvind

Conflict-Free Scheduler

• Partition rules into maximum number of
disjoint sets such that
– a rule in one set may conflict with one or more rules

in the same set
– a rule in one set is conflict free with respect to all the

rules in all other sets
(Best case: All sets are of size 1!!)

• Schedule each set independently
– Priority Encoder, Round-Robin Priority Encoder
– Enumerated Encoder

The state update logic depends upon
whether the scheduler chooses “sequential
composition” or not

http://www.csg.lcs.mit
http://www.csg.lcs.mit

10

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-19
Arvind

Multiple-Op-per-Cycle Scheduler

Scheduler
π1
π2

πn

φ1
φ2

φn

1. φi ⇒ πi

2. π1 ∨ π2 ∨ ∨ πn ⇒ φ1 ∨ φ2 ∨ ∨ φn

3. Multiple operations such that
φi ∧ φj ⇒ Ri and Rj are conflict-free or

sequentially composable

Scheduler

Scheduler

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-20
Arvind

Conflict Analysis

• Register

• FIFO

read2 write2
read1 CF SC

write1 C SC

enq2 first2 deq2 clear2

enq1 C CF CF SC
first1 CF CF SC SC

deq1 CF C C SC

clear1 SC C C CF

for SC assume
op1 < op2

http://www.csg.lcs.mit
http://www.csg.lcs.mit

11

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-21
Arvind

Conflict Analysis
“1.Fetch”:

when True
==> action pc := pc+1

bu.enq (imem.get pc)
“2.Add”:

when (Add rd rs rt) <- bu.first
==> action rf.upd rd (rf.sub rs + rf.sub rt)

bu.deq

“3.Bz Not Taken”:
when (Bz rc ra) <- bu.first, (rf.sub rc) /= 0

==> action bu.deq

“4.Bz Taken”:

when (Bz rc ra) <- bu.first, rf.sub rc == 0

==> action pc := rf.sub ra
bu.clear

What are the
restrictions on
scheduling these
rules?

- 2, 3 & 4 are ME
- 1 is CF wrt 2 & 3
- 1 is SC wrt 4

January 13, 2003 http://www.csg.lcs.mit.edu/IAPBlue

L2-22
Arvind

Generate Enable Signals

OR bu.deq
π2

π3

π4 bu.clear

OR pc._write
π1

π4

AND

AND

OR pc value

π1 . ~ π4

π4δ4,PC

δ1,PC

δ1,buenq bu enq value

bu.enqπ1 . ~ π4

http://www.csg.lcs.mit
http://www.csg.lcs.mit

