
1

Rishiyur S. Nikhil
nikhil@sandburst.com

Thursday, January 16, 2003

Bluespec-8
Advanced Topics

MIT IAP Course
http://www.csg.lcs.mit.edu/IAPBlue

L8- 2

Topics

• Connectables
– Structured connections between modules

• Control/status registers
– “Back door” entry into a chip

• Multiple clock domains

2

L8- 3

Connectables

• Modules communicate via their interfaces.

Module
state

rules

Interface

L8- 4

Connectables

• In general, Bluespec places no limits on what
types you can use in an interface.
– scalars
– functions
– tuples and structs
– lists and arrays
– …
– even other interfaces

i.e., all types are first-class

3

L8- 5

Connectables

• In certain situations, there are practical
considerations on what can go into an interface

– Verilog boundary: Bluespec interface must have a
translation into a Verilog interface (wires)

– Timing analysis and timing closure:
• Interface input and output wires must be registered

immediately at the module boundary
• Interface protocol should be “pipelinable” , allowing free

insertion of pipeline registers in long wires
– Readability and maintainability:

• “standard” interfaces
• standard “adapters” between similar standard interfaces

• “Connectables” are a class of interfaces
motivated by such considerations

– (there can be more such classes)

L8- 6

Class Connectable

• Indicates that two related types can be
“connected” . Does not specify the nature of
the connection.

• Example use (for connectable types A and B):

class Connectable a b
(<->) :: a -> b -> Module Empty

mkTop :: Module Empty
mkTop = module

mA :: A <- mkA
mB :: B <- mkB
mA <-> mB

top

mA mB

4

L8- 7

Class Connectable

• The simplest types in the Connectable class
are Get and Put

interface Get a =
get :: ActionValue a

interface Put a =
put :: a -> Action

instance Connectable (Get a) (Put a)
where g <-> p = module

rules
when True ==> action

x <- g.get
put x

L8- 8

Class Connectable

• FIFO interfaces can be converted into Get and
Put (and therefore become connectable)

fifoToGet :: FIFO a -> Get a
fifoToGet f = interface Get

get = do f.deq
return f.first

fifoToPut :: FIFO a -> Put a
fifoToPut f = interface Put

put x = f.enq x

5

L8- 9

Library CGetPut

• The CGetPut library provides a fully registered
credit-based “FIFO” :

mkCGetPut :: ... Module (CGet n a, Put a)
mkGetCPut :: ... Module (Get a, CPut n a)

mkCGetCPut :: ... Module (CGet n a, CPut n a)

instance Connectable (CGet n a) (CPut n a)

Put GetCGet CPutCPut CGet

Sender Receiver

L8- 10

Library CGetPut

• The intermediate buffers (mkCGetPut) are
optional:

– Insert them to add buffering along long wires
– They add latency

• The latency of the transfer is r, in the absence
of any intermediate buffers

– r = 4 in our implementation

• The “credit” value is n.
– Choose n = 4 for full bandwidth

– Choose n = 1 for minimum registers (but ¼ bandwidth)

6

L8- 11

Library BGetPut

• The BGetPut library provides a fully registered
connection that makes no assumptions about
setup and hold times, and so can connect
different clock domains

(but it's not fast)

mkBGetPut :: ... Module (BGet a, Put a)
mkGetBPut :: ... Module (Get a, BPut a)

instance Connectable (BGet a) (BPut a)

L8- 12

Multiple connections

• Two pairs of (corresponding) connectable
types are themselves connectable:

• (see also ClientServer library, and CGetPut
and BGetPut versions of ClientServer)

instance (Connectable a b,
Connectable b c) => Connectable (a,c) (b,d)

where
(<->) (a,b) (c,d) = do

a <-> c
b <-> d

7

L8- 13

Multiple connections

• Two lists of (corresponding) connectable
types are themselves connectable:

instance (Connectable a b) =>
Connectable (ListN n a) (ListN n b)

where
xs (<->) ys = do

sequence (zipWith (<-> xs ys))
return (interface Empty)

L8- 14

“Control and Status” Registers

8

L8- 15

Control/Status registers

• Many chips have “control and status
registers” for configuration, diagnostics,
statistics, debugging, etc.

• These registers are read/written from a
special “ register access” port into the
chip, such as a PCI bus

routing function packet counts

packets outpackets in

“ local bus” access

L8- 16

Control/Status Registers (CSRs)

• CSRs have “ two faces” :
– “Chip side” : the ordinary register interface
– “Local bus side” : read/write like a memory location

• Each CSR has its own address

• CSRs may be scattered all over the design
• The “plumbing” for local bus side of CSRs

can be quite messy if done explicitly
• Bluespec has mechanisms that hide/

simplify/ automate the local bus side
– Part of the power of monads/modules-- not built into

the language!

9

L8- 17

Modules allow “collecting” things

module
..state..
..<-mkA
..state
..<-mkB
..
rules
..

mkB =
module
..state..
..
rules
..

mkA =
module
..state..
..
rules
..

Normally, we collect state and rules

L8- 18

In general, modules can collect
other things (lib ModuleCollect)

• Collect items of type a and return a value
of type i (usually an interface):

• Add an item to a collection

• Retrieve the collection and the regular
value

data ModuleCollect a i

addToCollection :: a -> ModuleCollect a i

getCollection :: ModuleCollect a i -> Module (i, List a)

10

L8- 19

Library ModuleCollect
• A module expression, in general, has type

m t

• Module t is just a special case, where the
only things being collected are state and
rules.

• Instead, we can treat the whole module
structure as a ModuleCollect structure
and, at the top, extract the collected
objects and restore it back to a Module
type.

L8- 20

Library LocalBus
• We use ModuleCollect to automatically

gather up all the “ local bus side”
interfaces of Control/ Status Registers

interface LBSReg sa sd =
lbsAddr :: Bit sa -- addr of CSR
lbsSet :: Bit sd -> Action
lbsGet :: Bit sd

lbRegRW :: Bit sa -> r ->
ModuleCollect (LBSReg sa sd) (Reg r)

11

L8- 21

Library LocalBus
• In a module, for a CSR, we simply use

lbRegRW instead of mkReg

• 0x100 is the localbus address of the CSR

• The module's type is something like:

instead of:

module
...
r :: Reg (Bit 32) <- mkReg 15
csr :: Reg (Bit 32) <- lbRegRW 0x100 15
...

ModuleCollect (LBSReg 24 32) t

Module t

L8- 22

Library LocalBus
• Simplifying local bus address

management:
– Add a base address to all the LBSRegs in a module

lbsOffset :: Bit sa ->
ModuleCollect (LBSReg sa sd) i ->
ModuleCollect (LBSReg sa sd) i

12

L8- 23

Library LocalBus
• Collecting and converting into a memory-

like interface

(and there are further facilities to collect
multiple such RAM interfaces into a single
RAM interface)

lbsCollect :: ModuleCollect (LBSReg sa sd) i ->
Module (RAM sa sd, i)

L8- 24

Library LocalBus: summary
• Wherever you want a CSR, use a

constructor like lbRegRW instead of
mkReg

– Give it a local bus address (can be a computed
value, argument to module constructor function)

• When instantiating sub-modules, use
lbsOffset to move the CSRs of each sub-
module to a relatively unique local bus
address region

• At the top- level, use lbsCollect to obtain
the original interface to the module, and a
RAM interface to all its CSRs.

13

L8- 25

Multiple clock domains

L8- 26

Multiple clock domains

Clk1Clk2

a b

c

m1

m2

14

L8- 27

Library ClockConv
• A type for clocks

data Clock

– The type is abstract: you can essentially only pass it in as
a value from the outside.

– Externally represented as 2 wires, a clock and a reset.

• A class of types that are allowed to cross a
clock domain boundary:

classClockConv a

• Two useful types in this class:
instance ClockConv (Get a)

instance ClockConv (Put a)

• Any type can be “closed” , making it a
ClockConv type

instance ClockConv (Closed a)

close :: a -> Closed a

L8- 28

Library ClockConv
• Convert a module to be clocked by a given

clock instead of the default clock:

clockConv :: (ClockConv a) =>

Clock ->

Module a -> Module a

15

L8- 29

Example

mkM1 clk2 =
module

....
(m2a,m2b) <- clockConv clk2 mkM2
...
return (ic, m2b)

mkM2 :: Module (A, Closed B)
module

...

...
return (ia, close ib)

The End

