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Lab Exercises 2 14 Jan 2003

Remember that you can refer to the “How-To” handout from Monday for details on running the
Bluespec compiler and simulating the output. More complete documention on the Bluespec com-
piler is available in the “Bluespec Compiler User Manual” on the TAPBlue website. The Bluespec
language and standard libraries are documented in the “Bluespec Language Manual,” also on the
website.

Exercise 1 Divide by three

In Lab 1, problem 3b asked you to write a circuit which keeps accepting digits of a number and
reports whether the number, as seen so far, is divisible by three. The file Div3.bs contains one
possible solution for that problem. The mkDiv3 module has a register modsum which keeps track
of the remainder of the sum of the digits when divided by three (the “mod”). When a new digit
comes in to the module, a case-statement considers the current remainder and the incoming digit
to produce the new remainder, which is stored in modsum.

Now let’s think about taking one bit at a time, rather than a whole hexidecimal digit.

Part a:

Write a function which takes a remainder value and a single bit and returns the new remainder.
You might want to use a case-statement as in mkDiv3 and in the shifter example from lecture.

Your function should have the following type:

computeRemainder :: Bit 1 -> Bit 2 -> Bit 2
computeRemainder nextbit modsum = ...

Part b:

Now we have a combinational circuit computeRemainder which can compute a new remainder given
a single bit. If we are given a long bit vector, and we want to compute the remainder, we would
need to chain many 1-bit circuits together, so that each is passing its computed remainder to the
next one. To do this, we use the function foldr.

See, for example, the variable shifter from lecture. In that example, the step function was folded
over a list to generate a chain of steps.

Use foldr to fold the function computeRemainder over an arbitrarily-sized bit vector. Your new
function should have the following type:

computeRemainderN :: Bit n -> Bit 2 -> Bit 2

In order to fold over the bits in a bit vector, you will need to convert the bit vector into a list of
single bits. To do this, use the 1istBits functions in the file ListBits.bs which we have provided
with this lab.
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Can you write a module around this function which takes bit vectors and reports whether they are
divisble by three?
Part c:

As we saw in Lecture 3, the combinational cascade of steps in the variable shifter could be pipelined
by adding a FIFO between each step.

Using a similar technique, pipeline the computeRemainderM circuit.

Exercise 2 Register Array

The Array interface that was presented in lecture has the following general definition:

interface Array i a =
upd :: i -> a -> Action
sub :: i -> a

This interface can be instantiated for any index i and value a.

Let’s consider a specific instance of Array which has an index type of (Bit 2) and a value type of
(Bit n). This means that there are at most four entries in the array.

upd :: Bit 2 -> Bit n -> Action
sub :: Bit 2 -> Bit n

Part a:
Write a module mkArray which defines the (Array (Bit 2) (Bit n)) interface using only Reg
primitives. The module should have the following type:

mkArray :: Module (Array (Bit 2) (Bit n))
mkArray = module ...

You will need to instantiate four registers to hold the four array values. The interface to your
module will need to contain case-statements which select the register to read or write based on
the index.

The registers in your array can be uninitialized, initialized to zero, or you can add an argument to
mkArray which is the initial value of the array:

mkArrInit :: (Bit n) -> Module (Array (Bit 2) (Bit n))

Exercise 3 FIFO

Now that we have practiced with case and foldr and arrays of registers, let us implement a FIFO
in Bluespec using only register primitives.

The FIFO interface that we saw in lecture has the following form:

interface FIFO t =

enq :: t -> Action
first :: t
deq :: Action

clear :: Action



JAPBlue Lab Exercises 2 3

Part a:

Before implementing the FIFO, let’s make a prediction about the conflicts between interface meth-
ods. Write a conflict grid (like we saw in Lecture 2) showing which interface methods you would
expect to conflict, which you would expect to be conflict free, and which you would expect to be
sequentially composable.

For example, should enq and deq be allowed to happen at the same time? Write down what you
think a good implementation of FIFO should allow.

Part b:

Write Bluespec code for a 2-place FIFO using registers. (The code you wrote for an array of
registers might be useful.) To make type-checking simpler, let’s assume that the FIFO holds bit
vectors. Your module should have the following signature:

mkFIFO :: Module (FIFO (Bit n))

Part c:

Generate code for mkFIFO with the Bluespec compiler and inspect the header of the generated
Verilog or C code. There should be a line that looks like this:

// Method conflict free info:

Following that line is any composability relationships that the compiler determined for the FIFQ’s
interface methods. If no information is listed, then the compiler believes that all interface methods
conflict. For example, the following information is from mkGCD from Lab 1:

// Method conflict free info:
// [result_ < start_]

This says that the result_ method is sequentially composible with start_ only in the order
result_ followed by start_. The symbol <> is used to indicate that the methods can be composed
in either direction.

From this information, draw the conflict matrix that the compiler determined for your FIFO design.
How well does it correspond to what you had hoped to achieve in part (a)? It is likely much more
restrictive (unless your prediction was not hopeful enough). Do you think that, given the language
constructs that we have shown you so far, you could write a FIFO which has your hopeful conflict
properties? (Hint: Don’t spend too much time trying to writing it.)

Part d:

If you have time, try generalizing your FIFO implementation to an arbitrary depth FIFO. Passing
the size as a parameter to mkFIFO is tricky, so for this exercise you're welcome to write a function
which makes a FIFO module of fixed size, but which has one number inside that you can conve-
niently change in the code to change the size of the FIFO that is generated. If you still want to try
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tackling the problem of how to pass that size as a parameter, you're welcome to.

Part e:

If you have more time, write an array of registers or a FIFO which supports an additional find
method. Find has the following signature:

find :: ((Bit n) -> Bool) -> Bit n

The find method takes a function and applies it in order to each element of the array or FIFO,
returning the first element for which the function is true.

We will use this method in lecture tomorrow to define bypass FIFOs for a 5-stage CPU.

First start by writing find for a specific size array or FIFO. Then, if you’re feeling very adventurous,
try writing find for a FIFO of arbitrary depth.



