Massachusetts Institute of Technology — Laboratory for Computer Science
IAPBlue A Mini Course on Bluespec
http://www.csg.lcs.mit.edu/IAPBlue

Lab Exercises 4 16 Jan 2003

Again, we'd like to encourage you to use the lab time today to finish problems in Labs 2 and 3.
Work on the exercises that are most interesting to you. In this handout, we provide a few simple
exercises to give you more variety to choose from.

Remember that you can refer to the “How-To” handout from Monday for details on running the
Bluespec compiler and simulating the output. More complete documention on the Bluespec com-
piler is available in the “Bluespec Compiler User Manual” on the IAPBlue website. The Bluespec
language and standard libraries are documented in the “Bluespec Language Manual,” also on the
website.

Exercise 1 5-stage pipeline with bypasses

Let’s get the 5-stage pipeline working with bypasses.

Part a:

Given the source code for SFIFQ (stall FIFO) from Lab 3, can you write BFIFO (bypass FIFO) which
has the following interface:

interface BFIF0 t =

enq :: t -> Action

first :: t

deq :: Action

clear :: Action

find :: (t -> Bool) -> Maybe t

The difference is the find method. In the stall FIFO, we simply reported whether an element in
the FIFO matched a certain condition. In the bypass FIFO, we return the matched element (using
the Maybe type) so that we can check whether it has a result that can be routed to another stage.

Part b:
Using the BFIF0, change the FiveStageCPUStall code to include bypasses to the decode stage.

Part c:

Write some simple programs which would stall without bypassing and run them through both
designs, observing that the version with bypasses does execute the program in less cycles.

Exercise 2 Modular CPU pipeline

The 5-stage pipeline that we gave you in Lab 3 is written as one monolithic module. All state and
rules for all stages are defined in the toplevel module. Let’s explore the possibilities for connecting
modules in Bluespec by rewriting the 5-stage pipeline in a more modular form.

You can start by defining modules such as:

2 JAPBlue Lab Exercises 4

FIFO (Ia, Bit 32)

SFIFO (Ia, InstTemplate)
SFIFO (Ia, InstTemplate)
SFIFO (Ia, InstTemplate)

type FetchFIFO
type DecodeFIF0
type ExecFIF0
type MemFIFO

mkFetchStage :: InstrMem -> Reg Ia -> FetchFIFO -> Module Empty
mkFetchStage imem pc bf = ...

mkDecodeStage :: FetchFIFO —> DecodeFIF0 -> ExecFIF0 -> MemFIFO -> Module Empty
mkDecodeStage bf bd be bm = ...

mkExecuteStage :: DecodeFIF0 -> ExecFIF0 -> Module Empty
mkMemStage :: DataMem -> ExecFIF0 -> MemFifo -> Module Empty

mkWBStage :: RegFile -> MemFifo -> Module Empty

These definitions assume that the buffers are instantiated outside of each stage and passed in as
arguments. You could also write modules which instantiate their own buffers and export the enq
or deq side to the outside world. A third option would be to have the modules export interfaces in
the Connectable class and wire them together with connect.

Once you have written the submodules, put them together in a brief toplevel module.

Exercise 3 ActionValue

The FIFO interface that we have shown you in class has the following form:

interface FIFO t =

enq :: t -> Action
first :: t

deq :: Action
clear :: Action

Reading the head of the FIFO (first) and dequeuing the head of the FIFO (deq) are separate
methods. This leaves open the possibility that a design can read the head of a FIFO and forget to
perform the dequeue action. If we want to add some safety to our design and enforce the rule that
reading the head of a list must always be combined with dequeuing it, then we can use the type
ActionValue.

We could write the FIFO interface as follows:

interface FIFO t =

enq :: t -> Action
deq :: ActionValue t
clear :: Action

An ActionValue can only be accessed inside an Action block. For example:

when (condition)
==> action
next_elem <- fifol.deq
fifo2.enq next_elem

JAPBlue Lab Exercises 4 3

When used in a module, the “<-” symbol means that the module on the right is being placed into
the current design and its interface is being given the name on the left. Similarly, in an action
block, the arrow means that the action part of the ActionValue is being added to the action block
and the value is being given the name on the left (here next_elem).

To create an ActionValue type, write an Action block and include “return walue” as the last
line. For example, the deq method could now be written as:

deq = action
perform the dequeue action
return the first element

Part a:

Change the SFIFO or BFIFO in your 5-stage pipeline design to use ActionValue and alter the
pipeline source to use the new FIFO. You should be able to compile and run the CPU testbench
to confirm that the altered code still works.

Part b:

The ActionValue type can be used in any situation where an Action is associated with a return
value. For example, in the IP lookup example, we had a completion buffer which granted tokens
upon request. The request required an acknowledgement, which is an Action:

interface CBuffer n a =

getToken :: CBToken n

getTokenAck :: Action

done :: CBToken n -> a -> Action
get 1 a

ack :: Action

Rewrite the completion buffer in CBuffer.bs (in the IP lookup files provided with Lab 2) to use
ActionValue for getToken and get, instead of requiring acknowledgement.

Exercise 4 Reorder Buffer

Looking for something more challenging? Write a module which implements the reorder buffer
interface RoB given in lecture.

A reorder buffer is a circular buffer, in which instructions are added in order and retired in order.
The SFIFO that we provided in Lab 3 is implemented as a circular buffer. You might want to study
the source code for SFIFQO and try to use the same mechanism for the reorder buffer.

