
Bluespec — Designer’s Perspective

Lennart Augustsson

augustss@sandburst.com

Sandburst Corporation

17th January 2003

Copyright c© Sandburst Corporation, 2003



Evolution of Bluespec

• -1999 TRAC work at MIT.

• 2000 Bluespec version 1, much like TRAC, but with named

state components and somewhat Haskellish syntax.

• 2001- Current Bluespec, Haskell syntax, full Haskell functional-

ity at compile time, monads for handling state.

Bluespec — Designer’s Perspective 1



Design choices

• Syntax

• Types

• Semantics (trickier for HW because of realizability)

• Staging

Some of these choices were already made, because the Bluespec

was going to be based on TRS.

Bluespec — Designer’s Perspective 2



Syntax

The Bluespec syntax is based on Haskell, a choice that makes it

unfamiliar to almost everyone. (To succeed these days you have to

look like C, or have a truly bizarre syntax (e.g., Perl).)

Robin Milner: People discussing concrete syntax are like

people getting into a car; they become animals.

Bluespec — Designer’s Perspective 3



Types

Choices:

• Untyped, like the hardware (e.g., almost Verilog)

• Dynamically typed, not realizable (e.g., Scheme)

• Statically typed

Bluespec — Designer’s Perspective 4



Types, statically typed

• Non-polymorphic (e.g., C)

• Somewhat polymorphic (e.g., VHDL)

• Hindley-Milner polymorphism (e.g., SML)

• Hindley-Milner polymorphism+overloading (e.g., Haskell)

• Dependently typed (e.g., Cayenne)

• Subtyping

• Object typing

• Resource type systems (e.g., linear types)

• ...

Bluespec — Designer’s Perspective 5



Semantics, choices

The run time semantics is TRS (that was the premise of Bluespec),

but what about the compile time semantics?

• imperative (C, etc.)

• object oriented (C++, Java)

• process/simulation (Verilog)

• functional

None of these is a perfect fit.

Bluespec — Designer’s Perspective 6



Semantics, 1

There are two semantics of Bluespec, the compile time semantics

and the “run time” (i.e., hardware) semantics.

The “run time” semantics is based on TRS. Part of a TRS de-

scription specifies how to get from one state to the next, this is a

pure function so a pure functional language is a good fit.

In Bluespec the state transition function is written in the subset

of Bluespec that is realizable as hardware. The realizability restric-

tion is enforced by types (except for termination issues), but types

cannot guarantee a size bound on the generated hardware.

Bluespec — Designer’s Perspective 7



Semantics, 2

The compile time semantics of Bluespec is full Haskell (many li-

braries are missing, but could be implemented).

The compile time language must be able to describe both the

state transition functions (as mentioned before), but also the state

elements.

Describing state, i.e., items that have an identity, does not fit into

a pure functional framework as neatly.

Bluespec — Designer’s Perspective 8



Semantics, 3

These are the same:

let x = 2 let x = 2

y = 2

in ... x ... y ... in ... x ... x ...

These are not:

int x = 2; int x = 2;

int y = 2;

... x ... y ... ... x ... x ...

Bluespec — Designer’s Perspective 9



Semantics, 4

To describe state Bluespec borrows from O’Haskell, an object ori-

ented version of Haskell.

The key idea is that all descriptions of hardware is done in a monad,

Module. Using a monad we can easily keep track of the state.

The Module monad is built in to the compiler and its internals are not

accessible to the programmer (except for operations like addRules).

But, the Module monad is extensible, cf., PCIModule.

The hardware description part of Bluespec has a very object ori-

ented flavour; but then we are really describing physical objects.

Bluespec — Designer’s Perspective 10



Staging, 1

All language translators involve some kind of staging: certain com-

putations are carried out by the compiler, others at run-time.

In a hardware description language the staging issue is brought to

its point, some operations can only be performed at compile time

some are clearly intended to generate hardware.

Questions:

• How powerful should the compile time language be?

• Is it the same as the run-time language?

• Is the staging visible in the source?

Bluespec — Designer’s Perspective 11



Staging, 2

Some examples:

• C
The preprocessor is the compile time language, it’s very weak.
Some uses of it (#if, etc) are clearly marked.

• Verilog
Verilog has a C like preprocessor. All uses of it are marked.
But, there are also some language constructs that are compile
time, like for loops.

• Bluespec
Bluespec has the same language for compile time and “run
time”. The language is very powerful (it’s Haskell). It’s gen-
erally impossible to determine the staging of an expression (al-
though, e.g., Integer has to be compile time, and, e.g., rules
are always run time).

Bluespec — Designer’s Perspective 12



Staging, 2

• Template Haskell

Template Haskell has the same language for all stages, but there

are clear annotation in the source when you switch between

stages, e.g., “$(f x) y” means that the application “f x” is

executed at compile time, and the last application at run time.

Bluespec — Designer’s Perspective 12



Staging example, tabulate

An old favourite, the factorial function.

fac :: Bit 3 -> Bit 32 -- not the most general type

fac 0 = 1

fac n = zeroExtend n * fac (n-1)

...

i :: Reg (Bit 3) <- ...

o :: Reg (Bit 32) <- ...

rules

when c ==> o := fac i

Compilation if this does not terminate. The reason is that the

termination condition for fac cannot be computed at compile time.

Bluespec — Designer’s Perspective 13



Example, tabulate, cont

The tabulate funtion to the rescue:

i :: Reg (Bit 3) <- ...

o :: Reg (Bit 32) <- ...

rules

when c ==> o := (tabulate fac) i

Now it does terminate, because tabulate builds a table of all the

results of fac applied all possible arguments.

Bluespec — Designer’s Perspective 14



Example, tabulate, the code

The tabulate function is written entirely in Bluespec!

tabulate :: (Bounded a, Enum a, Eq a) => (a -> b) -> (a -> b)

tabulate f x =

foldr (\ b r -> if x == b then f b else r)

_

(enumFromTo minBound maxBound)

Bluespec — Designer’s Perspective 15



Example, tabulate, unfolded

The tabulate fac application expands to

\ x -> if x == 0 then fac 0

else if x == 1 then fac 1

else if x == 2 then fac 2

else if x == 3 then fac 3

else if x == 4 then fac 4

else if x == 5 then fac 5

else if x == 6 then fac 6

else if x == 7 then fac 7

else _

Bluespec — Designer’s Perspective 16



Example, tabulate, unfolded

The tabulate fac application expands to

\ x -> if x == 0 then 1

else if x == 1 then 1

else if x == 2 then 2

else if x == 3 then 6

else if x == 4 then 24

else if x == 5 then 120

else if x == 6 then 720

else if x == 7 then 5040

else _

Bluespec — Designer’s Perspective 17



Example, tabulate, Verilog

case (x)

3’h0, 3’d1: tfac_ = 32’d1;

3’d2: tfac_ = 32’d2;

3’d3: tfac_ = 32’d6;

3’d4: tfac_ = 32’d24;

3’d5: tfac_ = 32’d120;

3’d6: tfac_ = 32’d720;

3’d7: tfac_ = 32’h000013b0;

endcase

Bluespec — Designer’s Perspective 18



Conclusions

We got some things right in Bluespec, but there are many choices

where there is no obvious answer. It would be interesting to ex-

periment with other designs, e.g., a somewhat better type system

and staging annotations.

Bluespec — Designer’s Perspective 19


	Bluespec --- Designer's Perspective
	Evolution of Bluespec
	Design choices
	Syntax
	Types
	Types, statically typed
	Semantics, choices
	Semantics, 1
	Semantics, 2
	Semantics, 3
	Semantics, 4
	Staging, 1
	Staging, 2
	Staging example, tabulate
	Example, tabulate, cont
	Example, tabulate, the code
	Example, tabulate, unfolded
	Example, tabulate, unfolded
	Example, tabulate, Verilog
	Conclusions


