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Motivation

¢ Combining high-level description/synthesis
and FPGAs for rapid processor prototyping
an alternative to software simulation studies

¢ Allow direct evaluation of new mechanisms

- Functionality: a fast emulator that can run real
software but remains infinitely malleable

completeness, correctness, .....

- Implementation: a synthesized design gives hints
about feasibility, design complexity and
implementation cost

area,cycle time, power, .....
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Current Project

¢ Develop a high-level model of 1A-64
microarchitectures
- concise and malleable
- detailed = executable and synthesizable

¢ Synthesize to FPGA

- to target XC2V6000 FPGA board in a P6 processor
slot

- to execute binaries natively on the FPGA
processor against a new PC environment
¢ Current Modeling Challenges
- processor complexity

- trade-off between parch realism and design effort
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Why Bluespec?

¢ Detailed
- nothing left to interpretation
- litmus test: can it be executed or synthesized
automatically?
¢ Concise
- compact and expressive

- natural correspondence to HW structures and
abstractions

¢ Maintainable
- easy to understand
- modular: composible and decomposible
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|A64 Modeling
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Current 1A64 Modd

¢ Basic framework for a 6-wide Itanium datapath
decoding rules for all user-level, non-FP instructions
2 br. unit, 2 mem/int unit, 4 integer unit
bypassing for integer unit, scoreboarding for remaining
currently supports execution of

alloc (register stack but no rotation, no spill engine)

mov (branch registers to general registers and vice versa)

cmp.*.unc (all relations, all immediate forms, compare to
zero)

add, adds, addl (all immediate forms)
br.cond.*.*br.call.*.*br.ret.*.*
nop.* (all unit types)

& Parameterized modeling, i.e. #'s can be changed easily
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Prototype Microarchitecture
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Pipeline Sage Detall

pipelineStage :: Get A -> Put B
-> Module Empty

pipelineStage inputlC outputiC =

X 11 A <- inputlC.get
outputIC.put (compute x)

module
- state :: Reg STATE <- mkReg READY o
o o)
L s
TR let o
— 3 HGet compute :: A -> B 3
N compute X = .. N
@ 7))
= X

rules
= €

when state == READY ==>
action
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Prototype Microarchitecture
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Prototype Microarchitecture
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Prototype Microarchitecture
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Dispersal Slage Logic

From decode
Consider up to

| | | | eoee | | [ | N bundles from
the same group

dispersal
logic

Issue to available FUs

collection of opcode-
specific stallable FU
pipelines
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Dispersal Stage Bluespec

dispersal decodelC (brPorts, memPorts, intPorts) =
module

instructionQueue ::

Reg WideDispersalInstructions <- mkReg
let

wideDisperse :: WideDispersallnstructions -> Action
wideDisperse instructions =

let

unitTypes = getUnitTypes (selectExecutionGroup instructions)

availablePorts = map isAvailable (brPorts :> memPorts :> intPorts)

pattern = dispersalPattern availablePorts unitTypes
in

JoinActions (map (\x -> disperseAction pattern) instructions)
instructionQueue :

= map (\x -> splitlssue pattern) instructions
rules

“"New Dispersal’: when instructionQueue == Nothing ==>

wideDisperse decodelC.get

"Split Issue Dispersal’:

when (Just partial) <- instructionQueue ==>
wideDisperse partial
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Prototype Microarchitecture
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Prototype Microarchitecture
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(onIy executes a subset of instructions)
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Development Flow

- Bluespec Model

Bluespec Compiler
|A-64 Binary
Intel IA-64
Caompiler
C/Assembly
Benchmark

Debug
aziwndo
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Synthesis Results

¢ Synplify and Xilinx ISE for a XC2V6000 —6
- LUTs: 43,408 of 74,900 (58%)
- Critical path: 23.450 ms (42.6 MHz)

¢ Cost breakdown (synthesized in pieces)

LUT Critical Path Freq.
(max 38,400) (ns) (MHz)
Fetch 6% 14.8 67.3
Decode 8% 23.0 43.5
Dispersal+ o
Rn+Rd 24% 17.2 58.1
Execute 11% 19.5 51.4
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Some Questions

¢ What has been the real advantage of using
Bluespec?
operation-centric abstraction vs
language expressiveness?
¢ Are high-level transformations a good thing?
do I trust the compiler when | don’t know
what its doing behind my back?

¢ What about synchronous/deterministic

deSIQnS? Computer Architecture Lab
at Carnegie Mellon (CALCM)
http://www.ece.cmu.edu/~jhoe
J. C. Hoe, CMU/ECE

jhoe@ece.cmu.edu




