
1

Bluespec IA-64 Modeling

Roland Wunderlich and James C. Hoe

Computer Architecture Lab (CALCM)

Carnegie Mellon University

Bluespec Workshop, January 2003, Slide 2J. C. Hoe, CMU/ECE

Motivation

! Combining high-level description/synthesis
and FPGAs for rapid processor prototyping

an alternative to software simulation studies

! Allow direct evaluation of new mechanisms
- Functionality: a fast emulator that can run real

software but remains infinitely malleable
completeness, correctness, …..

- Implementation: a synthesized design gives hints
about feasibility, design complexity and
implementation cost

area,cycle time, power, …..

2

Bluespec Workshop, January 2003, Slide 3J. C. Hoe, CMU/ECE

Current Project
! Develop a high-level model of IA-64

microarchitectures
- concise and malleable
- detailed = executable and synthesizable

! Synthesize to FPGA
- to target XC2V6000 FPGA board in a P6 processor

slot
- to execute binaries natively on the FPGA

processor against a new PC environment

! Current Modeling Challenges
- processor complexity
- trade-off between µarch realism and design effort

Bluespec Workshop, January 2003, Slide 4J. C. Hoe, CMU/ECE

Why Bluespec?
! Detailed

- nothing left to interpretation
- litmus test: can it be executed or synthesized

automatically?

! Concise
- compact and expressive
- natural correspondence to HW structures and

abstractions

! Maintainable
- easy to understand
- modular: composible and decomposible

3

Bluespec Workshop, January 2003, Slide 5J. C. Hoe, CMU/ECE

IA64 Modeling

Bluespec Workshop, January 2003, Slide 6J. C. Hoe, CMU/ECE

Current IA64 Model

! Basic framework for a 6-wide Itanium datapath
- decoding rules for all user-level, non-FP instructions
- 2 br. unit, 2 mem/int unit, 4 integer unit
- bypassing for integer unit, scoreboarding for remaining
- currently supports execution of

alloc (register stack but no rotation, no spill engine)
mov (branch registers to general registers and vice versa)
cmp.*.unc (all relations, all immediate forms, compare to

zero)
add, adds, addl (all immediate forms)
br.cond.*.*br.call.*.*br.ret.*.*
nop.* (all unit types)

! Parameterized modeling, i.e. #’s can be changed easily

4

Bluespec Workshop, January 2003, Slide 7J. C. Hoe, CMU/ECE

Prototype Microarchitecture

FetchFetch

IA-64 DecodeIA-64 Decode

DispersalDispersal

Integer ALU × 4Integer ALU × 4

Branch Unit × 2Branch Unit × 2

Register WriteRegister Write

Register Rn/RdRegister Rn/Rd Load Store × 2Load Store × 2

Fully Bypassed

Instruction ROM Main Memory

Branch Predictor

Register FileScoreboard

About 70 rules (corresponds to many more instances)

Bluespec Workshop, January 2003, Slide 8J. C. Hoe, CMU/ECE

Pipeline Stage Detail

pipelineStage :: Get A -> Put B
-> Module Empty

pipelineStage inputIC outputIC =
module

state :: Reg STATE <- mkReg READY

let
compute :: A -> B
compute x = …

rules
when state == READY ==>

action
x :: A <- inputIC.get
outputIC.put (compute x)

...

...

pipelineStage :: Get A -> Put B
-> Module Empty

pipelineStage inputIC outputIC =
module

state :: Reg STATE <- mkReg READY

let
compute :: A -> B
compute x = …

rules
when state == READY ==>

action
x :: A <- inputIC.get
outputIC.put (compute x)

...

...

m
kS

iz
ed

F
IF

O
 1

m
kS

iz
ed

F
IF

O
 1

m
kS

iz
ed

F
IF

O
 1

m
kS

iz
ed

F
IF

O
 1

Get Put

5

Bluespec Workshop, January 2003, Slide 9J. C. Hoe, CMU/ECE

Prototype Microarchitecture

FetchFetch

IA-64 DecodeIA-64 Decode

DispersalDispersal

Integer ALU × 4Integer ALU × 4

Branch Unit × 2Branch Unit × 2

Register WriteRegister Write

Register Rn/RdRegister Rn/Rd Load Store × 2Load Store × 2

Fully Bypassed

Instruction ROM Main Memory

Branch Predictor

Register FileScoreboard

Fetch: 2-bundle wide with 1024 entry branch predictor
table (direct mapped, 1 bit taken prediction, 64 bits
branch target)

Bluespec Workshop, January 2003, Slide 10J. C. Hoe, CMU/ECE

Prototype Microarchitecture

FetchFetch

IA-64 DecodeIA-64 Decode

DispersalDispersal

Integer ALU × 4Integer ALU × 4

Branch Unit × 2Branch Unit × 2

Register WriteRegister Write

Register Rn/RdRegister Rn/Rd Load Store × 2Load Store × 2

Fully Bypassed

Instruction ROM Main Memory

Branch Predictor

Register FileScoreboard

Decode: 6-instructions wide
all user-level, non-FP

6

Bluespec Workshop, January 2003, Slide 11J. C. Hoe, CMU/ECE

Prototype Microarchitecture

FetchFetch

IA-64 DecodeIA-64 Decode

DispersalDispersal

Integer ALU × 4Integer ALU × 4

Branch Unit × 2Branch Unit × 2

Register WriteRegister Write

Register Rn/RdRegister Rn/Rd Load Store × 2Load Store × 2

Fully Bypassed

Instruction ROM Main Memory

Branch Predictor

Register FileScoreboard

Dispersal: Left-most subset
up to 6 inst (also restricted
to the supported subset of inst.

Bluespec Workshop, January 2003, Slide 12J. C. Hoe, CMU/ECE

Dispersal Stage Logic
From decode

Consider up to
N bundles from
the same group

collection of opcode-
specific stallable FU
pipelines

Issue to available FUsdispersal
logic

7

Bluespec Workshop, January 2003, Slide 13J. C. Hoe, CMU/ECE

Dispersal Stage Bluespec
dispersaldispersaldispersaldispersal decodeIC (brPorts, memPorts, intPorts) =

module

instructionQueueinstructionQueueinstructionQueueinstructionQueue :: Reg WideDispersalInstructions <- mkReg

let

wideDispersewideDispersewideDispersewideDisperse :: WideDispersalInstructions -> Action

wideDispersewideDispersewideDispersewideDisperse instructions =

let

unitTypes = getUnitTypes (selectExecutionGroup instructions)

availablePorts = map isAvailable (brPorts :> memPorts :> intPorts)

pattern = dispersalPattern availablePorts unitTypes

in

joinActions (map (\x -> disperseAction pattern) instructions)

instructionQueue := map (\x -> splitIssue pattern) instructions

rules

"New DispersalNew DispersalNew DispersalNew Dispersal": when instructionQueue == Nothing ==>

wideDisperse decodeIC.get

"Split Issue DispersalSplit Issue DispersalSplit Issue DispersalSplit Issue Dispersal": when (Just partial) <- instructionQueue ==>

wideDisperse partial

Bluespec Workshop, January 2003, Slide 14J. C. Hoe, CMU/ECE

Prototype Microarchitecture

FetchFetch

IA-64 DecodeIA-64 Decode

DispersalDispersal

Integer ALU × 4Integer ALU × 4

Branch Unit × 2Branch Unit × 2

Register WriteRegister Write

Register Rn/RdRegister Rn/Rd Load Store × 2Load Store × 2

Fully Bypassed

Instruction ROM Main Memory

Branch Predictor

Register FileScoreboard

register stack
no rotation
no spill engine

8

Bluespec Workshop, January 2003, Slide 15J. C. Hoe, CMU/ECE

Prototype Microarchitecture

FetchFetch

IA-64 DecodeIA-64 Decode

DispersalDispersal

Integer ALU × 4Integer ALU × 4

Branch Unit × 2Branch Unit × 2

Register WriteRegister Write

Register Rn/RdRegister Rn/Rd Load Store × 2Load Store × 2

Instruction ROM Main Memory

Branch Predictor

Register FileScoreboard

scoreboarded

fully-bypassed

scoreboarded

(only executes a subset of instructions)

Bluespec Workshop, January 2003, Slide 16J. C. Hoe, CMU/ECE

Bluespec Model

C/Assembly
Benchmark

IA-64 Binary

C Model Verilog

Xilinx/Synplify

D
e

bu
g

Bit stream
Intel IA-64
Compiler

Bluespec Compiler

FPGA

O
p

tim
ize

Custom
ROM Loader

Development Flow

9

Bluespec Workshop, January 2003, Slide 17J. C. Hoe, CMU/ECE

51.419.511%Execute

58.117.224%
Dispersal+

Rn+Rd

43.523.08%Decode

67.314.86%Fetch

Freq.
(MHz)

Critical Path
(ns)

LUT
(max 38,400)

Synthesis Results

! Synplify and Xilinx ISE for a XC2V6000 –6
- LUTs: 43,408 of 74,900 (58%)
- Critical path: 23.450 ms (42.6 MHz)

! Cost breakdown (synthesized in pieces)

Bluespec Workshop, January 2003, Slide 18J. C. Hoe, CMU/ECE

Some Questions

! What has been the real advantage of using
Bluespec?

operation-centric abstraction vs
language expressiveness?

! Are high-level transformations a good thing?

do I trust the compiler when I don’t know

what its doing behind my back?

! What about synchronous/deterministic
designs? Computer Architecture Lab

at Carnegie Mellon (CALCM)
http://www.ece.cmu.edu/~jhoe
jhoe@ece.cmu.edu

