Bluespec | A-64 Modeling

Roland Wunderlich and James C. Hoe
Computer Architecture Lab (CALCM)
Carnegie Mellon University

Motivation

¢ Combining high-level description/synthesis
and FPGAs for rapid processor prototyping
an alternative to software simulation studies

¢ Allow direct evaluation of new mechanisms

- Functionality: a fast emulator that can run real
software but remains infinitely malleable

completeness, correctness,

- Implementation: a synthesized design gives hints
about feasibility, design complexity and
implementation cost

area,cycle time, power,

J. C. Hoe, CMU/ECE Bluespec Workshop, January 2003, Slide 2

Current Project

¢ Develop a high-level model of 1A-64
microarchitectures
- concise and malleable
- detailed = executable and synthesizable

¢ Synthesize to FPGA

- to target XC2V6000 FPGA board in a P6 processor
slot

- to execute binaries natively on the FPGA
processor against a new PC environment
¢ Current Modeling Challenges
- processor complexity

- trade-off between parch realism and design effort
J. C. Hoe, CMU/ECE Bluespec Workshop, January 2003, Slide 3

Why Bluespec?

¢ Detailed
- nothing left to interpretation
- litmus test: can it be executed or synthesized
automatically?
¢ Concise
- compact and expressive

- natural correspondence to HW structures and
abstractions

¢ Maintainable
- easy to understand
- modular: composible and decomposible

J. C. Hoe, CMU/ECE Bluespec Workshop, January 2003, Slide 4

|A64 Modeling

J. C. Hoe, CMU/ECE Bluespec Workshop, January 2003, Slide 5

Current 1A64 Modd

¢ Basic framework for a 6-wide Itanium datapath
decoding rules for all user-level, non-FP instructions
2 br. unit, 2 mem/int unit, 4 integer unit
bypassing for integer unit, scoreboarding for remaining
currently supports execution of

alloc (register stack but no rotation, no spill engine)

mov (branch registers to general registers and vice versa)

cmp.*.unc (all relations, all immediate forms, compare to
zero)

add, adds, addl (all immediate forms)
br.cond.*.*br.call.*.*br.ret.*.*
nop.* (all unit types)

& Parameterized modeling, i.e. #'s can be changed easily

J. C. Hoe, CMU/ECE Bluespec Workshop, January 2003, Slide 6

Prototype Microarchitecture

Instruction ROM

Branch Predicto

1A-64 Decode

7
@
o
=r

LU

\
\

| 1

I \
| i
1 1
i

|

Register Rn/Rd —— /1 Load Store x 2

HHHHMH\\

I}
/

JID-—» Integer ALU x 4¢

9
wn
©
x @
\ wn
\ QL
1
\
1
1
1
1
1
1
1
1
1
1
1
\
I‘
e
W
\
/‘/
T

| Scoreboard | | Register File | - —
_______________) - Fully Bypassea
3. C. Hoe, CMU/ECE About 70 rules (correspondsg

Pipeline Sage Detall

pipelineStage :: Get A -> Put B
-> Module Empty

pipelineStage inputlC outputiC =

X 11 A <- inputlC.get
outputIC.put (compute x)

module
- state :: Reg STATE <- mkReg READY o
o o)
L s
TR let o
— 3 HGet compute :: A -> B 3
N compute X = .. N
@ 7))
= X

rules
= €

when state == READY ==>
action

J. C. Hoe, CMU/ECE Bluespec Workshop, January 2003, Slide 8

Prototype Microarchitecture

Instruction ROM m

table(dwectmarjpecf:il bit takérrpred|ct|on 64 b|ts "'
branch target) ./

Branch Predrctor|) Register Write

IA-64 Decode

£ .

% Register Rn/Rd

Dispersal
_________ ¥ j\IED-—» Integer ALU x 4/

| Scoreboard | | Regrster File | ~ Fully Bypassed

———————————

LA
L

@

QD

=

- 0
=5

C

3.

X

N

inir &

-

o

QD

o

W

8

(¢ J—

X

N
HHHHMH\\

J. C. Hoe, CMU/ECE Bluespec Workshop, January 2003, Slide 9

Prototype Microarchitecture

Instruction ROM

Register Write

e

IA-64 Decode -
Decode: 6—irjstructions wide > Branch Unit x 2
all user-leggl, non-FP I
Z\V {—ﬂ;IIIH Load S‘tore/ X 2 i/
Dispersal == Register Rn/Rdg i E
_________ ¥ JID-—» Integer ALU x 4/
| Scoreboard | | Register File | - —
_______________ - Fully Bypassed

J. C. Hoe, CMU/ECE Bluespec Workshop, January 2003, Slide 10

Prototype Microarchitecture

Instruction ROM m

Branch Predicto

1A-64 Decode
@/* Branch Unit x 2=+

7
@
o
=r

LU

Register Write

ﬂﬂ
W

Dispersal: [eft-most subset
up to Eringtdpisp res@d

-
o
Q
o
)
Q
@
X
N
mummm\

gister Rn/Rd

z M» Integer ALU x 4

Fully Bypassed

—
o
—
1
@D
D
fan

B

el

Q¢
:

@D
CL

(%))

)
Tl
ﬁ

=

't
(W

W,
‘/m
\

J. C. Hoe, CMU/ECE Bluespec Workshop, January 2003, Slide 11

Dispersal Slage Logic

From decode
Consider up to

| | | | eoee | | [| N bundles from
the same group

dispersal
logic

Issue to available FUs

collection of opcode-
specific stallable FU
pipelines

J. C. Hoe, CMU/ECE Bluespec Workshop, January 2003, Slide 12

Dispersal Stage Bluespec

dispersal decodelC (brPorts, memPorts, intPorts) =
module

instructionQueue ::

Reg WideDispersalInstructions <- mkReg
let

wideDisperse :: WideDispersallnstructions -> Action
wideDisperse instructions =

let

unitTypes = getUnitTypes (selectExecutionGroup instructions)

availablePorts = map isAvailable (brPorts :> memPorts :> intPorts)

pattern = dispersalPattern availablePorts unitTypes
in

JoinActions (map (\x -> disperseAction pattern) instructions)
instructionQueue :

= map (\x -> splitlssue pattern) instructions
rules

“"New Dispersal’: when instructionQueue == Nothing ==>

wideDisperse decodelC.get

"Split Issue Dispersal’:

when (Just partial) <- instructionQueue ==>
wideDisperse partial

J. C. Hoe, CMU/ECE

Bluespec Workshop, January 2003, Slide 13

Prototype Microarchitecture

Instruction ROM

|
|
1
\
\
1
1
\

% S\ 1
Register Write

Q‘

j register/sta v+ Branch Unit x 2

111

no rotation : b z/
nospillengine ! . L rex -
Register Rn/Rd i > Load Store E
e e — T/ Integer ALU x 47
| Scoreboard | | Register File | — Ty
—d - — ully Byp

J. C. Hoe, CMU/ECE

Bluespec Workshop, January 2003, Slide 14

Prototype Microarchitecture

Instruction ROM

7
@
o
=r

LU

Branch Predicto

IA-64 Decode ““““““

Register Rn/Rd

’
/

J. C. Hoe, CMU/ECE

Register Write

(onIy executes a subset of instructions)
Bluespec Workshop, January 2003, Slide 15

Development Flow

- Bluespec Model

Bluespec Compiler
|A-64 Binary
Intel IA-64
Caompiler
C/Assembly
Benchmark

Debug
aziwndo

J. C. Hoe, CMU/ECE

Jespec Workshop, January 2003, Slide 16

Synthesis Results

¢ Synplify and Xilinx ISE for a XC2V6000 —6
- LUTs: 43,408 of 74,900 (58%)
- Critical path: 23.450 ms (42.6 MHz)

¢ Cost breakdown (synthesized in pieces)

LUT Critical Path Freq.
(max 38,400) (ns) (MHz)
Fetch 6% 14.8 67.3
Decode 8% 23.0 43.5
Dispersal+ o
Rn+Rd 24% 17.2 58.1
Execute 11% 19.5 51.4
J. C. Hoe, CMU/ECE Bluespec Workshop, January 2003, Slide 17
Some Questions

¢ What has been the real advantage of using
Bluespec?
operation-centric abstraction vs
language expressiveness?
¢ Are high-level transformations a good thing?
do I trust the compiler when | don’t know
what its doing behind my back?

¢ What about synchronous/deterministic

deSIQnS? Computer Architecture Lab
at Carnegie Mellon (CALCM)
http://www.ece.cmu.edu/~jhoe
J. C. Hoe, CMU/ECE

jhoe@ece.cmu.edu

