
1

1

Daniel L. Rosenband
danlief@mit.edu

Laboratory for Computer Science
MIT

Multicycle Operations

January 17, 2003

January 17, 2003

2

Outline

• What are multicycle operations

• Compiling multicycle operations

• Challenges

• Implementation strategy

2

January 17, 2003

3

Multicycle Operations

Transition
Logic

Combinational Delay > 1 cycle

Multicycle Path Pipelined Multicycle Operation

Multiple stages that form a pipeline

• Examples:
– Processor pipeline
– Resource limitations

• Challenges:
– Atomicity

– Throughput

• Examples:
– Multiply
– Slow memory

• Challenges:
– Atomicity

– Rest of the design should
not stall

January 17, 2003

4

Execution Semantics

• Rules execute atomically (all cases)
– Final state must match a sequential execution of the rules

when ==>
action

r1 := r2 + r3
r4 := 0

when ==>
actionMCPath 4

r1 := r2 * r3

when ==>
actionPipe

action
r1 := rf.read 0

action
r2 := rf.read 1

action
rf.write 2 (r1+r2)

• Actions execute in
sequence

• Each action executes in a
single cycle

• Entire rule is atomic with
respect to other rules

• Execute in a single
cycle

• Execute over many
cycles

3

January 17, 2003

5

Why use multicycle rather than
single cycle operations?

• Multicycle Paths
– Some structures not easily pipelineable

– Block being interfaced to has a long combinational delay

• Pipelined Multicycle Operations
– Natural to express many hardware structures as a sequence of events

– Atomicity / coherence enforced by the compiler

– Automate buffer sizing(?)

– Consider rule interactions to
determine if there is a coherence
problem – create interlocks

– Ensure that ordering is maintained

Burden on User for
Correctness

– Relax constraints on parallel
execution while maintaining
correctness

Burden on Compiler for
Performance

January 17, 2003

6

Multicycle Path Compilation

when ==>
action

r1 = r2 * r3

when ==>
actionMCPath 4

r1 := r2 * r3

*

Combinational
Delay < 1 cycler2

r3

r1

Scheduler1
1

LoadEn

LoadEn
*

Combinational
Delay < 4 cycler2

r3

r1

Scheduler1
1

Counter

=3?

Start

Reset/
Stop

Original Circuit:

Multicycle Path Circuit:

4

January 17, 2003

7

Multicycle Path Compilation (continued)

• Compilation Strategy
– Source to source transformations
– Break multicycle rule into multiple single cycle rules

Is this correct? NO!!!

• Need to protect the state
– What happens when another rule tries to read / write r1?

– What happens when another rule tries to write to r2/r3?

when ==>
actionMCPath 4

r1 := r2 * r3

when ==>
action

counter.start

when (counter.val == 3) ==>
action

r1 := r2 * r3
counter.reset_and_stop

January 17, 2003

8

Multicycle Path Compilation (continued)

• Introduce a global lock
– Set lock when multicycle path rule begins executing
– Clear lock when multicycle path rule finishes executing

– No other rule can execute while the global lock is set

when ==>
action
global_lock.set
counter.start

when (counter.val == 3) ==>
action

r1 := r2 * r3
counter.reset
global_lock.clear

rules Ri, inew = i & global_lock.isnotset

• Performance is poor since the entire system
stalls when the multicycle path rule is
executing

5

January 17, 2003

9

Multicycle Path Compilation (continued)

• Introduce per register locks
– Write locks will prevent other rules from writing r2 and r3
– Read locks will prevent other rules from reading and writing r1

when ==>
action
r1_read_lock.set
r1_write_lock.set
r2_write_lock.set
r3_write_lock.set
counter.start

when (counter.val == 3) ==>
action

r1 := r2 * r3
counter.reset
r1_read_lock.clear
r1_write_lock.clear
r2_write_lock.clear
r3_write_lock.clear

rules Ri, if Ri reads r1, inew = i & r1_read_lock.isnotset

rules Ri, if Ri writes r1, inew = i & r1_write_lock.isnotset

rules Ri, if Ri writes r2, inew = i & r2_write_lock.isnotset

rules Ri, if Ri writes r3, inew = i & r3_write_lock.isnotset

January 17, 2003

10

Challenges

• Is this the best we can do?
– Performance -- is this the least restrictive schedule?

• Timestamp values
• Looks like renaming

• Virtualize state

– Gate count – are we introducing too many locks?
• Group locks (r1, r2, and r3 could share a lock)

– Practical?

• More choices to be made when we look at pipelined
multicycle operations

• State that is being read / written may not be known at
beginning of operation
– Locks change

• How many of these choices should be user driven?

6

January 17, 2003

11

Implementation Strategy

Bluespec
Compiler
(flatten)

Annotated
Bluespec

Annotated
ATS

Bluespec

Transform
Multicycle to
Single Cycle

Rules

Bluespec
Compiler
(optimize)

Verilog

January 17, 2003

12

Conclusion

• Multicycle operations provide the user
with a higher level of abstraction

• Implementation mostly as source to
source transformations at the ATS level

• Challenging compiler issues

