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Multicycle Operations

Multicycle Path Pipelined Multicycle Operation
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Combinational Delay > 1 cycle Multiple stages that form a pipeline
« Examples:  Examples:

— Multiply — Processor pipeline

— Slow memory — Resource limitations
* Challenges: * Challenges:

— Atomicity — Atomicity

— Rest of the design should — Throughput

not stall

Execution Semantics

when © ==> when © ==>
action actionMCPath 4
ri:=r2+r3 ri:=r2*r3
r4a :=20

« Execute in a single « Execute over many
cycle cycles

when © ==>
actionPi pe
action
rl :=rf.read O
action
r2 :=rf.read 1
action

rf.wite 2 (ril+r2)

¢ Actions execute in
sequence

* Each action executes in a

single cycle

* Entire rule is atomic with

respect to other rules

* Rules execute atomically (all cases)
— Final state must match a sequential execution of the rules
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Why use multicycle rather than
single cycle operations?

* Multicycle Paths

— Some structures not easily pipelineable
— Block being interfaced to has a long combinational delay
* Pipelined Multicycle Operations

— Natural to express many hardware structures as a sequence of events
— Atomicity / coherence enforced by the compiler
— Automate buffer sizing(?)

Burden on User for
Correctness

— Consider rule interactions to

problem — create interlocks

determine if there is a coherence

— Ensure that ordering is maintained

Burden on Compiler_for

Performance

correctness
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— Relax constraints on parallel
execution while maintaining

Ty
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Multicycle Path Compilation

Original Circuit:

when T, ==>
action
ri =

r2 *r3

Multicycle Path Circuit:

when m, ==>
acti onMCPat h 4
rl :=r2 * r3
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Combinational
Delay < 1 cycle
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Combinational
Delay < 4 cycle
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Multicycle Path Compilation (continued)

 Compilation Strategy
— Source to source transformations
— Break multicycle rule into multiple single cycle rules

when m, ==>

when w, ==> action
actfonwcpath 4 counter.start
ri:=r2*r3 when (counter.val == 3) ==>
action

rl :=r2*r3
counter.reset_and_stop

Is this correct? NOI!!!

* Need to protect the state
— What happens when another rule tries to read / write r1?
— What happens when another rule tries to write to r2/r3?

s
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Multicycle Path Compilation (continued)

* Introduce a global lock
— Set lock when multicycle path rule begins executing
— Clear lock when multicycle path rule finishes executing
— No other rule can execute while the global lock is set
when n, ==> when (counter.val == 3) ==>
action action
=12 *r3

gl obal _I ock. set rl .=
counter.start counter.reset

gl obal _I ock. cl ear

Vrules R, 7, = & global _| ock.isnotset

* Performance is poor since the entire system
stalls when the multicycle path rule is

executing
o
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Multicycle Path Compilation (continued)

* Introduce per register locks
— Write locks will prevent other rules from writing r2 and r3
— Read locks will prevent other rules from reading and writing rl1

when m, ==> when (counter.val == 3) ==>
action action
rl read_| ock. set ri:=r2*r3
ri_wite_|lock. set counter.reset
r2_ wite | ock. set rl_read_| ock. cl ear
r3_wite_lock. set ri_wite_lock.clear
counter.start r2_wite_lock.clear

r3_ wite |ock.clear

Vrules R, if Rreads rl, m,, == & rl_read_|ock.isnotset
Vrules R, if Rwites rl, m,, =m & rl_wite_|lock.isnotset
Vrules R, if Rwites r2, m,, =m &r2_wite_|lock.isnotset
Vrules R, if Rwites r3, m,, =m & r3_wite_lock.i snotset
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Challenges

* Is this the best we can do?
— Performance -- is this the least restrictive schedule?
» Timestamp values
* Looks like renaming
* Virtualize state
— Gate count — are we introducing too many locks?
* Group locks (r1, r2, and r3 could share a lock)
— Practical?
* More choices to be made when we look at pipelined
multicycle operations
» State that is being read / written may not be known at
beginning of operation
— Locks change
« How many of these choices should be user driven?
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Implementation Strategy

Annotated : Bluespec
Bluespec ; Compiler
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Conclusion

e Multicycle operations provide the user
with a higher level of abstraction

* Implementation mostly as source to
source transformations at the ATS level

* Challenging compiler issues
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