Multicycle Operations

Daniel L. Rosenband
danlief@mit.edu
Laboratory for Computer Science
MIT

January 17, 2003

Outline

What are multicycle operations

Compiling multicycle operations

Challenges

Implementation strategy

January 17, 2003

Multicycle Operations

Multicycle Path Pipelined Multicycle Operation

January 17, 2003

[X X]

Combinational Delay > 1 cycle Multiple stages that form a pipeline
« Examples: Examples:

— Multiply — Processor pipeline

— Slow memory — Resource limitations
* Challenges: * Challenges:

— Atomicity — Atomicity

— Rest of the design should — Throughput

not stall

Execution Semantics

when © ==> when © ==>
action actionMCPath 4
ri:=r2+r3 ri:=r2*r3
r4a :=20

« Execute in a single « Execute over many
cycle cycles

when © ==>
actionPi pe
action
rl :=rf.read O
action
r2 :=rf.read 1
action

rf.wite 2 (ril+r2)

¢ Actions execute in
sequence

* Each action executes in a

single cycle

* Entire rule is atomic with

respect to other rules

* Rules execute atomically (all cases)
— Final state must match a sequential execution of the rules

January 17, 2003

A

Why use multicycle rather than
single cycle operations?

* Multicycle Paths

— Some structures not easily pipelineable
— Block being interfaced to has a long combinational delay
* Pipelined Multicycle Operations

— Natural to express many hardware structures as a sequence of events
— Atomicity / coherence enforced by the compiler
— Automate buffer sizing(?)

Burden on User for
Correctness

— Consider rule interactions to

problem — create interlocks

determine if there is a coherence

— Ensure that ordering is maintained

Burden on Compiler_for

Performance

correctness

January 17, 2003

— Relax constraints on parallel
execution while maintaining

Ty
30

Multicycle Path Compilation

Original Circuit:

when T, ==>
action
ri =

r2 *r3

Multicycle Path Circuit:

when m, ==>
acti onMCPat h 4
rl :=r2 * r3

January 17, 2003

Combinational
Delay < 1 cycle

Scheduler

Combinational
Delay < 4 cycle

A

0
n,—%| Scheduler ‘?m Cou

nter

Reset/
Stop

it

Multicycle Path Compilation (continued)

 Compilation Strategy
— Source to source transformations
— Break multicycle rule into multiple single cycle rules

when m, ==>

when w, ==> action
actfonwcpath 4 counter.start
ri:=r2*r3 when (counter.val == 3) ==>
action

rl :=r2*r3
counter.reset_and_stop

Is this correct? NOI!!!

* Need to protect the state
— What happens when another rule tries to read / write r1?
— What happens when another rule tries to write to r2/r3?

s
January 17, 2003 ,l";:h

Multicycle Path Compilation (continued)

* Introduce a global lock
— Set lock when multicycle path rule begins executing
— Clear lock when multicycle path rule finishes executing
— No other rule can execute while the global lock is set
when n, ==> when (counter.val == 3) ==>
action action
=12 *r3

gl obal _I ock. set rl .=
counter.start counter.reset

gl obal _I ock. cl ear

Vrules R, 7, = & global _| ock.isnotset

* Performance is poor since the entire system
stalls when the multicycle path rule is

executing
o

January 17, 2003

Multicycle Path Compilation (continued)

* Introduce per register locks
— Write locks will prevent other rules from writing r2 and r3
— Read locks will prevent other rules from reading and writing rl1

when m, ==> when (counter.val == 3) ==>
action action
rl read_| ock. set ri:=r2*r3
ri_wite_|lock. set counter.reset
r2_ wite | ock. set rl_read_| ock. cl ear
r3_wite_lock. set ri_wite_lock.clear
counter.start r2_wite_lock.clear

r3_ wite |ock.clear

Vrules R, if Rreads rl, m,, == & rl_read_|ock.isnotset
Vrules R, if Rwites rl, m,, =m & rl_wite_|lock.isnotset
Vrules R, if Rwites r2, m,, =m &r2_wite_|lock.isnotset
Vrules R, if Rwites r3, m,, =m & r3_wite_lock.i snotset
January 17, 2003 N
10
Challenges

* Is this the best we can do?
— Performance -- is this the least restrictive schedule?
» Timestamp values
* Looks like renaming
* Virtualize state
— Gate count — are we introducing too many locks?
* Group locks (r1, r2, and r3 could share a lock)
— Practical?
* More choices to be made when we look at pipelined
multicycle operations
» State that is being read / written may not be known at
beginning of operation
— Locks change
« How many of these choices should be user driven?

January 17, 2003 &

11

Implementation Strategy

Annotated : Bluespec
Bluespec ; Compiler

January 17, 2003 ,l";:h

12

Conclusion

e Multicycle operations provide the user
with a higher level of abstraction

* Implementation mostly as source to
source transformations at the ATS level

* Challenging compiler issues

January 17, 2003 &

