Bluespec Scheduling
Joe Stoy

sandburst

17 January, 2003

Times and Rules

sandburst

17 January, 2003

O Tempora, O Mores

sandburst

17 January, 2003

What | Did on My Holidays

sandburst

17 January, 2003

What | Did on My Holidays

 We had a working project;

* Mieszko and | changed the way the
compiler prioritized rules;

» The project spectacularly stopped
working;

* We changed it back.

MORAL: These decisions are far too
important to be left to the compiler.

20-Jan-03

Agenda

 Why did it go wrong?
* What can we do about it?
— Model (what are we trying to do?)
— Present situation
— Notation
— Proposals

20-Jan-03

Why Did It Go Wrong?

* Previously the compiler prioritized
(roughly) in order of the rules’
appearance in the text.

* We changed it to prioritize in
alphabetical order of the rules’ labels.

20-Jan-03

Programming Errors

* Foo Bar effect

— Natural order different from
alphabetical order

when True ==>
action
x <- randNo.get
ucRand.put x

when True ==>
action
x <- randNo.get
mcRand.put x

20-Jan-03

Programming Errors

* Foo Bar effect

* Catch-all case

— Several rules decrement a counter and take various
actions, depending on its value

— The default case merely decrements the counter

— Ought to have been mutually exclusive (e.g. by
“<+” operator), but | forgot

— OK at bottom of list, but dominated some of the
others when in alphabetical order

— But saying it properly is syntactically unpleasant.

20-Jan-03 s2ndburst]

10

Programming Errors

* Foo Bar effect
* Catch-all case
* Add the Library, and stir

— Modules usually imported at head of program

— Their rules clump together, usually with higher
priority than rules using imported modules’
methods

— Acceptable, most of the time

— In alphabetical order, all hell breaks loose!
* No uniform naming scheme works
» Completely breaks modularity

20-Jan-03 s2ndburst]

Programming Errors

11

* Foo Bar effect
* Catch-all case
* Add the Library, and stir

20-Jan-03 s2ndburst]

Programming Errors

12

» Foo Bar effect
— Need to specify priority
» Catch-all case
— Need convenient way of specifying pre-emption,
exclusivity etc.
* Add the Library, and stir

— Need to handle interaction of rules and methods, in
a way which respects modularity.

20-Jan-03 s2ndburst]

13

Model of What We’'re Trying To Do

« Two inter-related tasks, for each
particular execution:

 Sequencing: choosing the sequence of
rules for firing, one at a time, according
to TRS

 Chunking: partitioning this sequence
into chunks, each of which fires on a
single clock.

— Cf. operation of a sausage machine. The
scheduler gets to go between each chunk.

— The first is important for partial correctness;
the second deals more with performance
issues.

20-Jan-03 s2ndburst]

14

Aims

* Whenever compiler makes an
“interesting” choice, it should utter a
warning.

* This should include a fragment of text,
which the programmer may add to the
program, to specify how the choice
should be resolved.

 The programmer may edit the fragment
before incorporation if appropriate.

* (Might also dump and restore whole
schedules, but that’s different.)

20-Jan-03 s2ndburst]

15

The Present Scheduler-Generator

* Divides rules up into “cliques”, each of
which may be scheduled completely
independently of the others.

* One-rule cliques, and members of
cligues of mutually exclusive rules, can
fire whenever enabled, with their own
(trivial) schedulers.

 The degenerate case, but common and
important.

« Two other kinds of scheduler.

20-Jan-03 s2ndburst]

16

(1) Direct Scheduler

» Consider each subset of rules in a clique.

* Assuming just that subset is enabled,
select which of its elements should fire.

» Selection done greedily, according to
some notion of priority.

« Good, but O(2".

20-Jan-03 s2ndburst]

17

(2) Priority Group Scheduler

* Used when direct schedule generation too
slow.

* Consider each rule in clique.

* Assuming that’s the highest priority rule
enabled, form set from remaining rules
such that each element may fire if
enabled.

» Selection of elements again greedy.

* O(n2), but less good.

» Bad case:

— Rules a, b, c (in that order of priority)
— b or c can fire with a, but not both.
— c always overlooked, even if b not enabled.

* (But improvement on old PriPar method.) ®
20-Jan-03 s2ndbursi

18

Agenda

 Why did it go wrong?
* What can we do about it?
— Model (what are we trying to do?)
— Present situation
— Notation
— Proposals

20-Jan-03 s2ndburst]

Notation

19

Several kinds of annotation
» Assertions (claims)

“I believe this is true: please verify or disprove.”
— Doesn't affect semantics of program

— May conveniently be a pragma
{-# ASSERT fire when enabled #-}

» Prescriptions (fiats)

— “This is extra information: please use it when
appropriate.”

— Does affect semantics; shouldn’t be a pragma

priority
&
20-Jan-03 s2ndburst]
20
Notation

* Assumptions

— “This information is true, but you might not be
smart enough to work it out for yourself: please
use it (but give an error if you can prove me

wrong).”

rules
: when x==0 ==> actionl
: when y==0 ==> action2

-- INVARIANT: x==0 implies y/=0
assume exclusive

* Insistence (Overruling)

— “You may safely assume this to be true (even

though we both know it isn’t): ride roughshod over
any indications to the contrary.”

insist <>

20-Jan-03

10

Notation

21

Kinds of annotation:
— Assertions

— Prescriptions

— Assumptions
Overrulings

e
20-Jan-03 sendburst]
22
Notational Details
* Notations apply to (smallest) containing module
» Allow methods to be labelled (like rules)
— Refer to each by label
. property ab{cd} e
» Semantics: The property applies to each
element, or to transitive pairs: thus in the latter
case “property a b c” is equivalent to
property a b
property a ¢
property b ¢
e IfSisasetsuchas{cd}, “property aS b”is
equivalent to
¥V X € S: property axb
* If mis a method label, it denotes the set of all
rules using that method.
e
20-Jan-03 szndburst]

11

23

Notation: Syntactic trivia

* Separators: , ; or space?
— Does offside rule apply?
* Rules identified by labels?
» Allow initial prefixes of labels?
— If prefix identifies several rules, treat them as a set

— If only one, leads to conciseness in program
— Longer labels still helpful on waves.

* Allow quotes to be omitted if nude string
satisfies variable-identifier syntax?

20-Jan-03 s2ndburst]

24

Properties

* exclusive xy

— “Make x and y mutually exclusive,
giving preference to x.”
* This is about enabling, and is dealt with
before the scheduler gets to go.
 Thus
exclusive S1 S2
where S1, S2 are set of rules, achieves
the same effect as the present “<+7.
* Quite different from assume exclusive.

* May also have syntactic sugar within a
single rules expression:
otherwise ==> defaultAction

20-Jan-03 s2ndburst]

12

25

Properties

e urgency Xy
— “Never omit x from a chunk for the
sake of including y.”
— If they can both be included, fine!

 Scheduler often considers rules in order
of urgency (when doing greedy
selection).

» This property is about chunking.
» Says nothing about sequencing order.

®
20-Jan-03 s2ndburSt
26
Properties
* preempts Xy
— “Never allow x and y to be in the
same chunk, and give preference to
X.”
* This is about chunking.
* Note: y is excluded only if x actually
fires, unlike exclusive (and <+).
* Maybe allow
{-# ASSERT fire unless preempted #-}
®
20-Jan-03 szndburst]

13

Properties

27

° insist x<y insist x<>y etc
— “linsist that if they're both enabled, x and y
can be composed this way round in the same
chunk, overruling any contrary deductions by
you, O compiler.”
— Does not overrule deductions involving a third
rule.

* The MIT gang want something like this, for
getting round problems in a top-down way.

» The Sandburst gang has hitherto proceeded
bottom-up, by using primitives with relaxed
constraints.

* (More on this later, if there’s time.)

20-3an-03 s2ndburst]

Properties

28

precedes X y

— “If they're both enabled, they must be sequenced
in this order.”

» This property is about sequencing
(though it may affect chunking).

» If x and y can never be composed this
way round, it's a compile-time error (or
just possibly equivalent to pre-empting).

 Maybe not very useful, except for
avoiding consequences of naughty
insistences.

20-3an-03 s2ndburst]

14

29

Possible Additional Properties

 assume exclusive a b
— Already described

P | 1 e 1 Y I N

direct X y

— “All cliques containing x or y should be given direct
schedules.”

— Note that this may take a very long time.

separate x
— What's a better word for this?

— “If x is part of a PriGroup, consider ‘x enabled’ and
‘X not enabled’ separately.”

— May double number of cases, but better than

direct.
[]
20-Jan-03 s2ndbursi
30
Separate Compilation
* These suggestions have been assuming
a single compilation.
* A method of a separately compiled
modules is treated as a single internal
rule.
* Have not yet thought through how these
suggestions apply then (though probably
OK).
[]
20-Jan-03 s2ndburSt

15

31

The End
— (except for digression)

20-Jan-03 s2ndburSt
32
Top Down vs. Bottom Up
 Example: a FIFO written in Bluespec
* Goal: allow simultaneous enq and deq
when not full and not empty
* Problem:
eng X = increment (asReqg i)
when notFull i j
deq = increment (asReg j)
when notEmpty i j
* Not sequentially composable!
®
20-Jan-03 szndburst]

16

33

Top Down vs. Bottom Up

* MIT solution:

insist <>
— Top-down

 Sandburst solution:

use ConfigReg instead of Reg for i and j
— Allow _read <> _write

— Bottom-up
[
20-Jan-03 s2ndbursi
34
MIT’s solution better because...
e Ban on _write<_read overruled only
when necessary, not relaxed
everywhere.
[
20-Jan-03 s2ndburSt

17

Sandburst’s solution better
because...

35

 MIT’s way might not respect TRS

semantics
— E.g. there might be an impossible intermediate
state (actually OK in this example)

* Can explain Sandburst’s way entirely in
TRS:

&
20-Jan-03 s2ndbursi
36
ConfigReg in TRS
mkConfigReg :: a-> Reg a
mkConfigReg x =
module
r :: Reg a = mkReg x
w :: Reg a = mkReg x
rules
when True ==> r:=w
-- this fires with bounded delay after each _write
interface
_read = r
_writey = w:=y
&
szndburst]

20-Jan-03

18

