
1

17 January, 2003

Bluespec Scheduling

Joe Stoy

17 January, 2003

Times and Rules

2

17 January, 2003

O Tempora, O Mores

17 January, 2003

What I Did on My Holidays

3

20-Jan-03

5

What I Did on My Holidays

• We had a working project;
• Mieszko and I changed the way the

compiler prioritized rules;
• The project spectacularly stopped

working;
• We changed it back.

MORAL: These decisions are far too
important to be left to the compiler.

20-Jan-03

6

Agenda

• Why did it go wrong?
• What can we do about it?

– Model (what are we trying to do?)
– Present situation
– Notation
– Proposals

4

20-Jan-03

7

Why Did It Go Wrong?

• Previously the compiler prioritized
(roughly) in order of the rules’
appearance in the text.

• We changed it to prioritize in
alphabetical order of the rules’ labels.

20-Jan-03

8

Programming Errors

• Foo Bar effect
– Natural order different from

alphabetical order

“uc random”:
when True ==>

action
x <- randNo.get
ucRand.put x

“mc random”:
when True ==>

action
x <- randNo.get
mcRand.put x

5

20-Jan-03

9

Programming Errors

• Foo Bar effect
• Catch-all case

– Several rules decrement a counter and take various
actions, depending on its value

– The default case merely decrements the counter

– Ought to have been mutually exclusive (e.g. by
“<+” operator), but I forgot

– OK at bottom of list, but dominated some of the
others when in alphabetical order

– But saying it properly is syntactically unpleasant.

20-Jan-03

10

Programming Errors

• Foo Bar effect
• Catch-all case
• Add the Library, and stir

– Modules usually imported at head of program

– Their rules clump together, usually with higher
priority than rules using imported modules’
methods

– Acceptable, most of the time
– In alphabetical order, all hell breaks loose!

• No uniform naming scheme works

• Completely breaks modularity

6

20-Jan-03

11

Programming Errors

• Foo Bar effect
• Catch-all case
• Add the Library, and stir

20-Jan-03

12

Programming Errors

• Foo Bar effect
– Need to specify priority

• Catch-all case
– Need convenient way of specifying pre-emption,

exclusivity etc.

• Add the Library, and stir
– Need to handle interaction of rules and methods, in

a way which respects modularity.

7

20-Jan-03

13

Model of What We’re Trying To Do

• Two inter- related tasks, for each
particular execution:

• Sequencing: choosing the sequence of
rules for firing, one at a time, according
to TRS

• Chunking: partitioning this sequence
into chunks, each of which fires on a
single clock.
– Cf. operation of a sausage machine. The

scheduler gets to go between each chunk.
– The first is important for partial correctness;

the second deals more with performance
issues.

20-Jan-03

14

Aims

• Whenever compiler makes an
“interesting” choice, it should utter a
warning.

• This should include a fragment of text,
which the programmer may add to the
program, to specify how the choice
should be resolved.

• The programmer may edit the fragment
before incorporation if appropriate.

• (Might also dump and restore whole
schedules, but that’s different.)

8

20-Jan-03

15

The Present Scheduler-Generator

• Divides rules up into “cliques”, each of
which may be scheduled completely
independently of the others.

• One-rule cliques, and members of
cliques of mutually exclusive rules, can
fire whenever enabled, with their own
(trivial) schedulers.

• The degenerate case, but common and
important.

• Two other kinds of scheduler.

20-Jan-03

16

(1) Direct Scheduler

• Consider each subset of rules in a clique.
• Assuming just that subset is enabled,

select which of its elements should fire.
• Selection done greedily, according to

some notion of priority.
• Good, but O(2n).

9

20-Jan-03

17

(2) Priority Group Scheduler

• Used when direct schedule generation too
slow.

• Consider each rule in clique.
• Assuming that’s the highest priority rule

enabled, form set from remaining rules
such that each element may fire if
enabled.

• Selection of elements again greedy.
• O(n2), but less good.
• Bad case:

– Rules a, b, c (in that order of priority)
– b or c can fire with a, but not both.
– c always overlooked, even if b not enabled.

• (But improvement on old PriPar method.)

20-Jan-03

18

Agenda

• Why did it go wrong?
• What can we do about it?

– Model (what are we trying to do?)
– Present situation
– Notation
– Proposals

10

20-Jan-03

19

Notation

• Several kinds of annotation
• Assertions (claims)

– “I believe this is true: please verify or disprove.”

– Doesn’t affect semantics of program

– May conveniently be a pragma
{ -# ASSERT fire when enabled #- }

• Prescriptions (fiats)
– “This is extra information: please use it when

appropriate.”

– Does affect semantics; shouldn’t be a pragma.
priority “a” “b”

20-Jan-03

20

Notation

• Assumptions
– “This information is true, but you might not be

smart enough to work it out for yourself: please
use it (but give an error if you can prove me
wrong).”
rules
“a”: when x==0 ==> action1
“b”: when y==0 ==> action2
-- INVARIANT: x==0 implies y/=0

assume exclusive “a” “b”

• Insistence (Overruling)
– “You may safely assume this to be true (even

though we both know it isn’t): ride roughshod over
any indications to the contrary.”
insist “a” <> “b”

11

20-Jan-03

21

Notation

• Kinds of annotation:
– Assertions

– Prescriptions
– Assumptions

– Overrulings

20-Jan-03

22

Notational Details

• Notations apply to (smallest) containing module
• Allow methods to be labelled (like rules)

– Refer to each by label

• property a b { c d} e
• Semantics: The property applies to each

element, or to transitive pairs: thus in the latter
case “property a b c” is equivalent to

property a b
property a c
property b c

• If S is a set such as { c d} , “property a S b” is
equivalent to

x S: property a x b
• If m is a method label, it denotes the set of all

rules using that method.

12

20-Jan-03

23

Notation: Syntactic trivia

• Separators: , ; or space?
– Does offside rule apply?

• Rules identified by labels?
• Allow initial prefixes of labels?

– If prefix identifies several rules, treat them as a set
– If only one, leads to conciseness in program

– Longer labels still helpful on waves.

• Allow quotes to be omitted if nude string
satisfies variable- identifier syntax?

20-Jan-03

24

Properties

• exclusive x y
– “Make x and y mutually exclusive,

giving preference to x.”
• This is about enabling, and is dealt with

before the scheduler gets to go.
• Thus

exclusive S1 S2
where S1, S2 are set of rules, achieves
the same effect as the present “<+”.

• Quite different from assume exclusive.
• May also have syntactic sugar within a

single rules expression:
otherwise ==> defaultAction

13

20-Jan-03

25

Properties

• urgency x y
– “Never omit x from a chunk for the

sake of including y.”
– If they can both be included, fine!

• Scheduler often considers rules in order
of urgency (when doing greedy
selection).

• This property is about chunking.
• Says nothing about sequencing order.

20-Jan-03

26

Properties

• preempts x y
– “Never allow x and y to be in the

same chunk, and give preference to
x.”

• This is about chunking.
• Note: y is excluded only if x actually

fires, unlike exclusive (and <+).
• Maybe allow

{ -# ASSERT fire unless preempted #- }

14

20-Jan-03

27

Properties

• insist x< y insist x<>y etc
– “I insist that if they're both enabled, x and y

can be composed this way round in the same
chunk, overruling any contrary deductions by
you, O compiler.”

– Does not overrule deductions involving a third
rule.

• The MIT gang want something like this, for
getting round problems in a top-down way.

• The Sandburst gang has hitherto proceeded
bottom-up, by using primitives with relaxed
constraints.

• (More on this later, if there’s time.)

20-Jan-03

28

Properties

• precedes x y
– “If they're both enabled, they must be sequenced

in this order.”

• This property is about sequencing
(though it may affect chunking).

• If x and y can never be composed this
way round, it’s a compile- time error (or
just possibly equivalent to pre-empting).

• Maybe not very useful, except for
avoiding consequences of naughty
insistences.

15

20-Jan-03

29

Possible Additional Properties

• assume exclusive a b
– Already described

• 
• direct x y

– “All cliques containing x or y should be given direct
schedules.”

– Note that this may take a very long time.

• separate x
– What’s a better word for this?
– “If x is part of a PriGroup, consider ‘x enabled’ and

‘x not enabled’ separately.”
– May double number of cases, but better than

direct.

20-Jan-03

30

Separate Compilation

• These suggestions have been assuming
a single compilation.

• A method of a separately compiled
modules is treated as a single internal
rule.

• Have not yet thought through how these
suggestions apply then (though probably
OK).

16

20-Jan-03

31

The End
– (except for digression)

20-Jan-03

32

Top Down vs. Bottom Up

• Example: a FIFO written in Bluespec
• Goal: allow simultaneous enq and deq

when not full and not empty
• Problem:

“enq_method”:
enq x = increment (asReg i)

when notFull i j
“deq_method”:

deq = increment (asReg j)
when notEmpty i j

• Not sequentially composable!

17

20-Jan-03

33

Top Down vs. Bottom Up

• MIT solution:
insist “deq_method” <> “enq_method”

– Top-down

• Sandburst solution:
use ConfigReg instead of Reg for i and j

– Allow _read <> _write
– Bottom-up

20-Jan-03

34

MIT’s solution better because…

• Ban on _write< _read overruled only
when necessary, not relaxed
everywhere.

18

20-Jan-03

35

Sandburst’s solution better
because…

• MIT’s way might not respect TRS
semantics
– E.g. there might be an impossible intermediate

state (actually OK in this example)

• Can explain Sandburst’s way entirely in
TRS:

20-Jan-03

36

ConfigReg in TRS

mkConfigReg :: a -> Reg a
mkConfigReg x =

module
r :: Reg a = mkReg x
w :: Reg a = mkReg x
rules

“configReg” :
when True ==> r := w
-- this fires with bounded delay after each _write

interface
_read = r
_write y = w := y

