Bluespec ASIC Pilot Project

Pilot Project Overview

* Redesigned a major functional
component of an existing ASIC in
Bluespec

— 2 stage arbitration block (16 nodes, 18
ports/NODE)

— 9 Subblocks
— ~1.55 million gates

* Integrated resulting Verilog into an
existing ASIC netlist and design
verification environment

 Completed synthesis, test insertion,
physical layout, timing analysis on each
subblock (hard macro)

Jan 16, 2003

Pilot Project Design Details

* 4760 lines of Bluespec VS 65459 lines of Verilog

BLOCK PILOT ORIGINAL

NAME TOTAL GATES TOTAL GATES
uc 141000 g
UCPS (x16) 897000 856000
MC 228000 271000
FO 18000 26000}
QR (x16) 163000 164000)
AC 15000 0f
MG 90000 42000}
QR FANOUT 1000 E
Pl FANOUT 1000 |

MEMORY DEPTH
NAME QUANTITY (WORDS) WIDTH #OF BITS
mc_mem| 1 1024 16| 16384
qr_mem| 16} 354 4] 22656§

SUBTOTAL

Jan 16, 2003

Front End Issues

¢ Front end code had to accommodate some
requirements for the backend. (Often these are
vendor and design-flow specific.)

— Design for test (DFT) required dummy SCAN ports
(pragma was added)

— Memory BIST may require connectivity from an
instantiated memory core up to I1/O ports at the top level
of the subblock

— Hard macro flow required bit-blasted interfaces (pragma
was added)

— To simplify verification/backend, we wanted all flops
resetable. (Bluespec Verilog libraries were modified to
accommodate this.)

¢ Bluespec scheduling can present problems

— The designers made assumptions about the schedule that
the compiler would pick. Often, correctness of the
resulting design depended on these assumptions.

¢ Processor Interface register plumbing was
entirely hidden

Jan 16, 2003

Verification/Debug Issues

* Bug turn around time can be a problem.
The Bluespec flow has an added compile
step.

find bug->fix in BS code->
recompile into Verilog->rerun sim

» Typical Verilog model for debugging
becomes more difficult

— A designer will look simultaneously at signals in the
simulation waveform and the Verilog code
(particularly in large chip/system designs). This
becomes more cumbersome when the Verilog is
compiler-generated.

— Concise and descriptive presentation of scheduling
information (and any other debugging info) would
be very helpful here

Jan 16, 2003

Verification/Debug |ssues (cont’ d)

* Source/Destination naming conventions
embedded in all “top-level” interfaces
— Separate interfaces were defined for each pair of
subblocks that talk to each other. These interface
names include the 2 subblock names.
+ Consistent use of well-defined types is
important

— In the pilot, this initially meant more compile-time
errors and longer coding/unit-testing times.

— During integration and chip-level verification,
however, there were significantly fewer bugs as
compared to the original project.

Jan 16, 2003

Synthesis/Physical Layout

¢ To accommodate the physical layout, we needed
to register all signals at hard macro (subblock)
boundaries

— We restricted all interfaces to be of type either CGet/Cput
or CServer/CClient (all control and data are registered
with these types of interfaces).

— Many of the subblocks had multiple wide interfaces. We
ultimately needed to optimize the implementation of
these interfaces to minimize flop counts.

— Ultimately, there is still “extra” overhead incurred when
these interfaces need to support full bandwidth data flow
e Multicycle Paths
— The design required multicycle paths to minimize flop
counts
— These were encapsulated in a bluespec library

Jan 16, 2003

Synthesis/Physical Layout (cont’ d)

« Embedding names in Verilog
— Many backend scripts key off of instance names which are
embedded in the Verilog code
— We didn't always have the degree of control we would
have liked, but the the backend was able to
accommodate this
e Structural VS Logical blocks
— We like to separate structural blocks (blocks which
instantiate sub blocks) from logical blocks (blocks which
contain gates/flops).
« This simplifies synthesis scripting and budgeting
between low-level blocks.
e Compiles of structural blocks is faster (don’t need to
be synthesizied- can just be written out)
— Itis harder to maintain this distinction with Bluespec.
(“Structural” Bluespec blocks often contain some small
amount of logic.)

Jan 16, 2003

Synthesis/Physical Layout (cont’ d)

¢ Bottom-up synthesis

— Some subblocks were large enough that they required
“bottom-up” synthesis. Synthesis times can blow up with
top-down compiles on large blocks.

— In the pilot, the partitioning was not ideal for this (i.e.,
the structural/logical distinction is blurred and interfaces
were not registered). This is partially because Bluespec
promotes drawing module (physical) boundaries at
functional boundaries.

¢ Clock domain crossings (not used in pilot project)

— We would need to generate separate Verilog modules for
each domain

— We would like standard libraries that handle resync’ing
(synchronous fifoes with Grey coded pointers, etc.)

Jan 16, 2003

Future Improvement Ideas

¢ Compiler generated synthesis scripts
« Compiler generated waveform viewer config files
— These could contain some (all?) of the bluespec
types defined. This would be particularly useful for
state machines.
« Synthesis/vendor specific optimized code generation
* “Hard-core/soft-shell” partitioning for synthesis
— This means a “hard core” with all interface signals
registered and a “soft shell” which instantiates the
hard core and any combinational logic which
surrounds it. Hard cores would be the only blocks
synthesized; soft shells are always synthesized
with the next highest hard core
 Mechanisms for embedding debug code in the
generated Verilog (error messaging, etc.)
* Bluespec/RTL formality (equivalence) checking
¢ Optimizing asynchronous interfaces by making top
level assertions (might be able to optimize
backpressure mechanisms)
Jan 16, 2003

