
1

1

Bluespec ASIC Pilot Project

Jan 16, 2003

1

Pilot Project Overview

• Redesigned a major functional
component of an existing ASIC in
Bluespec

– 2 stage arbitration block (16 nodes, 18
ports/NODE)

– 9 Subblocks
– ~1.55 million gates

• Integrated resulting Verilog into an
existing ASIC netlist and design
verification environment

• Completed synthesis, test insertion,
physical layout, timing analysis on each
subblock (hard macro)

2

Jan 16, 2003

1

Pilot Project Design Details
• 4760 lines of Bluespec VS 65459 lines of Verilog

MEMORY DEPTH
NAME QUANTITY (WORDS) WIDTH # OF BITS
mc_mem 1 1024 16 16384
qr_mem 16 354 4 22656

SUBTOTAL 17 39040

BLOCK PILOT ORIGINAL
NAME TOTAL GATES TOTAL GATES

UC 141000 -
UCPS (x16) 897000 856000
MC 228000 271000
FO 18000 26000
QR (x16) 163000 164000
AC 15000 0
MG 90000 42000
QR FANOUT 1000 -
PI FANOUT 1000 -
SUBTOTAL 1550000 1360000

Jan 16, 2003

1

Front End Issues
• Front end code had to accommodate some

requirements for the backend. (Often these are
vendor and design- flow specific.)

– Design for test (DFT) required dummy SCAN ports
(pragma was added)

– Memory BIST may require connectivity from an
instantiated memory core up to I/O ports at the top level
of the subblock

– Hard macro flow required bit-blasted interfaces (pragma
was added)

– To simplify verification/backend, we wanted all flops
resetable. (Bluespec Verilog libraries were modified to
accommodate this.)

• Bluespec scheduling can present problems
– The designers made assumptions about the schedule that

the compiler would pick. Often, correctness of the
resulting design depended on these assumptions.

• Processor Interface register plumbing was
entirely hidden

3

Jan 16, 2003

1

Verification/Debug Issues
• Bug turn around time can be a problem.

The Bluespec flow has an added compile
step.
find bug->fix in BS code->

recompile into Verilog->rerun sim

• Typical Verilog model for debugging
becomes more difficult

– A designer will look simultaneously at signals in the
simulation waveform and the Verilog code
(particularly in large chip/system designs). This
becomes more cumbersome when the Verilog is
compiler-generated.

– Concise and descriptive presentation of scheduling
information (and any other debugging info) would
be very helpful here

Jan 16, 2003

1

Verification/Debug Issues (cont’d)
• Source/Destination naming conventions

embedded in all “ top- level” interfaces
– Separate interfaces were defined for each pair of

subblocks that talk to each other. These interface
names include the 2 subblock names.

• Consistent use of well-defined types is
important

– In the pilot, this initially meant more compile- time
errors and longer coding/unit- testing times.

– During integration and chip- level verification,
however, there were significantly fewer bugs as
compared to the original project.

4

Jan 16, 2003

1

Synthesis/Physical Layout
• To accommodate the physical layout, we needed

to register all signals at hard macro (subblock)
boundaries

– We restricted all interfaces to be of type either CGet/Cput
or CServer/CClient (all control and data are registered
with these types of interfaces).

– Many of the subblocks had multiple wide interfaces. We
ultimately needed to optimize the implementation of
these interfaces to minimize flop counts.

– Ultimately, there is still “extra” overhead incurred when
these interfaces need to support full bandwidth data flow

• Multicycle Paths
– The design required multicycle paths to minimize flop

counts
– These were encapsulated in a bluespec library

Jan 16, 2003

1

Synthesis/Physical Layout (cont’d)
• Embedding names in Verilog

– Many backend scripts key off of instance names which are
embedded in the Verilog code

– We didn’t always have the degree of control we would
have liked, but the the backend was able to
accommodate this

• Structural VS Logical blocks
– We like to separate structural blocks (blocks which

instantiate sub blocks) from logical blocks (blocks which
contain gates/flops).

• This simplifies synthesis scripting and budgeting
between low- level blocks.

• Compiles of structural blocks is faster (don’t need to
be synthesizied- can just be written out)

– It is harder to maintain this distinction with Bluespec.
(“Structural” Bluespec blocks often contain some small
amount of logic.)

5

Jan 16, 2003

1

Synthesis/Physical Layout (cont’d)
• Bottom-up synthesis

– Some subblocks were large enough that they required
“bottom-up” synthesis. Synthesis times can blow up with
top-down compiles on large blocks.

– In the pilot, the partitioning was not ideal for this (i.e.,
the structural/logical distinction is blurred and interfaces
were not registered). This is partially because Bluespec
promotes drawing module (physical) boundaries at
functional boundaries.

• Clock domain crossings (not used in pilot project)
– We would need to generate separate Verilog modules for

each domain

– We would like standard libraries that handle resync’ing
(synchronous fifoes with Grey coded pointers, etc.)

Jan 16, 2003

1

Future Improvement Ideas
• Compiler generated synthesis scripts
• Compiler generated waveform viewer config files

– These could contain some (all?) of the bluespec
types defined. This would be particularly useful for
state machines.

• Synthesis/vendor specific optimized code generation
• “Hard-core/soft-shell” partitioning for synthesis

– This means a “hard core” with all interface signals
registered and a “soft shell” which instantiates the
hard core and any combinational logic which
surrounds it. Hard cores would be the only blocks
synthesized; soft shells are always synthesized
with the next highest hard core

• Mechanisms for embedding debug code in the
generated Verilog (error messaging, etc.)

• Bluespec/RTL formality (equivalence) checking
• Optimizing asynchronous interfaces by making top

level assertions (might be able to optimize
backpressure mechanisms)

