Bluespec ASIC Pilot Project

Pilot Project Overview

* Redesigned a major functional
component of an existing ASIC in
Bluespec

— 2 stage arbitration block (16 nodes, 18
ports/NODE)

— 9 Subblocks
— ~1.55 million gates

* Integrated resulting Verilog into an
existing ASIC netlist and design
verification environment

 Completed synthesis, test insertion,
physical layout, timing analysis on each
subblock (hard macro)
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Pilot Project Design Details

* 4760 lines of Bluespec VS 65459 lines of Verilog

BLOCK PILOT ORIGINAL

NAME TOTAL GATES TOTAL GATES
uc 141000 g
UCPS (x16) 897000 856000
MC 228000 271000
FO 18000 26000}
QR (x16) 163000 164000)
AC 15000 0f
MG 90000 42000}
QR FANOUT 1000 E
Pl FANOUT 1000 |

MEMORY DEPTH
NAME QUANTITY  (WORDS) WIDTH #OF BITS
mc_mem| 1 1024 16| 16384
qr_mem| 16} 354 4] 22656§

SUBTOTAL
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Front End Issues

¢ Front end code had to accommodate some
requirements for the backend. (Often these are
vendor and design-flow specific.)

— Design for test (DFT) required dummy SCAN ports
(pragma was added)

— Memory BIST may require connectivity from an
instantiated memory core up to I1/O ports at the top level
of the subblock

— Hard macro flow required bit-blasted interfaces (pragma
was added)

— To simplify verification/backend, we wanted all flops
resetable. (Bluespec Verilog libraries were modified to
accommodate this.)

¢ Bluespec scheduling can present problems

— The designers made assumptions about the schedule that
the compiler would pick. Often, correctness of the
resulting design depended on these assumptions.

¢ Processor Interface register plumbing was
entirely hidden
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Verification/Debug Issues

* Bug turn around time can be a problem.
The Bluespec flow has an added compile
step.

find bug->fix in BS code->
recompile into Verilog->rerun sim

» Typical Verilog model for debugging
becomes more difficult

— A designer will look simultaneously at signals in the
simulation waveform and the Verilog code
(particularly in large chip/system designs). This
becomes more cumbersome when the Verilog is
compiler-generated.

— Concise and descriptive presentation of scheduling
information (and any other debugging info) would
be very helpful here
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Verification/Debug |ssues (cont’ d)

* Source/Destination naming conventions
embedded in all “top-level” interfaces
— Separate interfaces were defined for each pair of
subblocks that talk to each other. These interface
names include the 2 subblock names.
+ Consistent use of well-defined types is
important

— In the pilot, this initially meant more compile-time
errors and longer coding/unit-testing times.

— During integration and chip-level verification,
however, there were significantly fewer bugs as
compared to the original project.
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Synthesis/Physical Layout

¢ To accommodate the physical layout, we needed
to register all signals at hard macro (subblock)
boundaries

— We restricted all interfaces to be of type either CGet/Cput
or CServer/CClient (all control and data are registered
with these types of interfaces).

— Many of the subblocks had multiple wide interfaces. We
ultimately needed to optimize the implementation of
these interfaces to minimize flop counts.

— Ultimately, there is still “extra” overhead incurred when
these interfaces need to support full bandwidth data flow
e Multicycle Paths
— The design required multicycle paths to minimize flop
counts
— These were encapsulated in a bluespec library
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Synthesis/Physical Layout (cont’ d)

« Embedding names in Verilog
— Many backend scripts key off of instance names which are
embedded in the Verilog code
— We didn't always have the degree of control we would
have liked, but the the backend was able to
accommodate this
e Structural VS Logical blocks
— We like to separate structural blocks (blocks which
instantiate sub blocks) from logical blocks (blocks which
contain gates/flops).
« This simplifies synthesis scripting and budgeting
between low-level blocks.
e Compiles of structural blocks is faster (don’t need to
be synthesizied- can just be written out)
— Itis harder to maintain this distinction with Bluespec.
(“Structural” Bluespec blocks often contain some small
amount of logic.)
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Synthesis/Physical Layout (cont’ d)

¢ Bottom-up synthesis

— Some subblocks were large enough that they required
“bottom-up” synthesis. Synthesis times can blow up with
top-down compiles on large blocks.

— In the pilot, the partitioning was not ideal for this (i.e.,
the structural/logical distinction is blurred and interfaces
were not registered). This is partially because Bluespec
promotes drawing module (physical) boundaries at
functional boundaries.

¢ Clock domain crossings (not used in pilot project)

— We would need to generate separate Verilog modules for
each domain

— We would like standard libraries that handle resync’ing
(synchronous fifoes with Grey coded pointers, etc.)
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Future Improvement Ideas

¢ Compiler generated synthesis scripts
« Compiler generated waveform viewer config files
— These could contain some (all?) of the bluespec
types defined. This would be particularly useful for
state machines.
« Synthesis/vendor specific optimized code generation
* “Hard-core/soft-shell” partitioning for synthesis
— This means a “hard core” with all interface signals
registered and a “soft shell” which instantiates the
hard core and any combinational logic which
surrounds it. Hard cores would be the only blocks
synthesized; soft shells are always synthesized
with the next highest hard core
 Mechanisms for embedding debug code in the
generated Verilog (error messaging, etc.)
* Bluespec/RTL formality (equivalence) checking
¢ Optimizing asynchronous interfaces by making top
level assertions (might be able to optimize
backpressure mechanisms)
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