
1

Arvind
Computer Science and Artificial Intelligence Lab

M.I.T.

Dataflow: Passing the Token

ISCA 2005, Madison, WI
June 6, 2005

ISCA, Madison, WI, June 6, 2005 Arvind - 2

Inspiration: Jack Dennis

General purpose parallel machines based on a
dataflow graph model of computation

Inspired all the major
players in dataflow during
seventies and eighties,
including Kim Gostelow and
I @ UC Irvine

ISCA, Madison, WI, June 6, 2005 Arvind - 3

Static - mostly for signal processing
NEC - NEDIP and IPP
Hughes, Hitachi, AT&T, Loral, TI, Sanyo
M.I.T. Engineering model
...

Dynamic
Manchester (‘81)
M.I.T. - TTDA, Monsoon (‘88)
M.I.T./Motorola - Monsoon (‘91) (8 PEs, 8 IS)
ETL - SIGMA-1 (‘88) (128 PEs,128 IS)
ETL - EM4 (‘90) (80 PEs), EM-X (‘96) (80 PEs)

Sandia - EPS88, EPS-2
IBM - Empire
...

Dataflow Machines

Related machines:
Burton Smith’s
Denelcor HEP,
Horizon, Tera

Shown at
Supercomputing 96

Shown at
Supercomputing 91

S. Sakai

Y. Kodama

EM4: single-chip dataflow micro,
80PE multiprocessor, ETL, Japan

K. Hiraki

T. Shimada

Sigma-1: The largest
dataflow machine, ETL, Japan

John Gurd

Greg Papadopoulos

MonsoonAndy
Boughton

Chris
Joerg

Jack
Costanza

ISCA, Madison, WI, June 6, 2005 Arvind - 4

Software Influences

• Parallel Compilers
– Intermediate representations: DFG, CDFG (SSA, φ ,...)
– Software pipelining

Keshav Pingali, G. Gao, Bob Rao, ..

• Functional Languages and their compilers

• Active Messages
David Culler

• Compiling for FPGAs, ...
Wim Bohm, Seth Goldstein...

• Synchronous dataflow
– Lustre, Signal

Ed Lee @ Berkeley

ISCA, Madison, WI, June 6, 2005 Arvind - 5

This talk is mostly about MIT work

• Dataflow graphs
– A clean model of parallel computation

• Static Dataflow Machines
– Not general-purpose enough

• Dynamic Dataflow Machines
– As easy to build as a simple pipelined processor

• The software view
– The memory model: I-structures

• Monsoon and its performance

• Musings

ISCA, Madison, WI, June 6, 2005 Arvind - 6

Dataflow Graphs

{x = a + b;
y = b * 7

in
(x-y) * (x+y)}

a b

+ *7

- +

*

y
x

1 2

3 4

5

• Values in dataflow graphs are
represented as tokens

• An operator executes when all
its input tokens are present;
copies of the result token are
distributed to the destination
operators

token < ip , p , v >
instruction ptr port data

ip = 3

p = L

no separate control flow

ISCA, Madison, WI, June 6, 2005 Arvind - 7

Dataflow Operators

• A small set of dataflow operators can be
used to define a general programming
language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

⇒

ISCA, Madison, WI, June 6, 2005 Arvind - 8

Well Behaved Schemas

Before After

• • •

P

• • •

• • •

P

• • •

T F

f g

T F

Conditional

one-in-one-out
& self cleaning

f

p

T F

T F F

LoopBounded Loop

Needed for
resource
management

ISCA, Madison, WI, June 6, 2005 Arvind - 9

Outline

• Dataflow graphs √
– A clean model of parallel computation

• Static Dataflow Machines ←
– Not general-purpose enough

• Dynamic Dataflow Machines
– As easy to build as a simple pipelined processor

• The software view
– The memory model: I-structures

• Monsoon and its performance

• Musings

ISCA, Madison, WI, June 6, 2005 Arvind - 10

Static Dataflow Machine:
Instruction Templates

Each arc in the graph has a
operand slot in the program

Des
tin

ati
on

 1

Des
tin

ati
on

 2

Presence bits

1
2

3
4
5

+ 3L 4L
* 3R 4R

- 5L

+ 5R
* out

Opc
od

e

Ope
ran

d 1

Ope
ran

d 2 a b

+ *7

- +

*

y
x

1 2

3 4

5

ISCA, Madison, WI, June 6, 2005 Arvind - 11

Static Dataflow Machine
Jack Dennis, 1973

<s1, p1, v1>, <s2, p2, v2>

FU FU FU FU FU

Op dest1 dest2 p1 src1 p2 src21
2
.
.
.

Receive

Send

Instruction Templates

• Many such processors can be connected together
• Programs can be statically divided among the

processor

ISCA, Madison, WI, June 6, 2005 Arvind - 12

Static Dataflow:
Problems/Limitations

• Mismatch between the model and the
implementation
– The model requires unbounded FIFO token queues per

arc but the architecture provides storage for one token
per arc

– The architecture does not ensure FIFO order in the
reuse of an operand slot

– The merge operator has a unique firing rule

• The static model does not support
– Function calls
– Data Structures

- No easy solution in
the static framework
- Dynamic dataflow
provided a framework
for solutions

ISCA, Madison, WI, June 6, 2005 Arvind - 13

Outline

• Dataflow graphs √
– A clean model of parallel computation

• Static Dataflow Machines √
– Not general-purpose enough

• Dynamic Dataflow Machines ←
– As easy to build as a simple pipelined processor

• The software view
– The memory model: I-structures

• Monsoon and its performance

• Musings

ISCA, Madison, WI, June 6, 2005 Arvind - 14

Dynamic Dataflow Architectures

• Allocate instruction templates, i.e., a frame,
dynamically to support each loop iteration
and procedure call
– termination detection needed to deallocate frames

• The code can be shared if we separate the
code and the operand storage

<fp, ip, port, data>

frame
pointer

instruction
pointer

a token

ISCA, Madison, WI, June 6, 2005 Arvind - 15

A Frame in Dynamic Dataflow
1
2
3
4
5

Program+

*

-

+

3

1

2

4

5

3L, 4L

3R, 4R

5L

5R

out*

1

2

4
5

7

a b

+ *7

- +

*

y
x

1 2

3 4

5

Need to provide storage for only one operand/operator

<fp, ip, p , v>

3

Frame

ISCA, Madison, WI, June 6, 2005 Arvind - 16

Monsoon Processor
Greg Papadopoulos

Instruction
Fetch

Operand
Fetch

ip

fp+r

Network Network

Frames

op r d1,d2

Code

Form
Token

ALU

Token
Queue

ISCA, Madison, WI, June 6, 2005 Arvind - 17

Temporary Registers & Threads
Robert Iannucci

Registers evaporate
when an instruction
thread is broken

n sets of
registers
(n = pipeline

depth)

Instruction
Fetch

Operand
Fetch

Network Network

Frames

op r S1,S2

Code

Form
Token

ALU

Token
Queue

Registers

Registers are also
used for exceptions &
interrupts

Robert Iannucci

ISCA, Madison, WI, June 6, 2005 Arvind - 18

Actual Monsoon Pipeline:
Eight Stages

Instruction Fetch

Form Token

System
Queue

Registers

Network

Instruction
Memory

Effective Address

Presence Bit
Operation

Frame
Operation

Presence
bits

Frame
Memory

User
Queue

144

144

32

3

72

72 72

2R, 2W
ALU

ISCA, Madison, WI, June 6, 2005 Arvind - 19

Instructions directly control the
pipeline

The opcode specifies an operation for each pipeline stage:

opcode r dest1 [dest2]

EA - effective address
FP + r: frame relative

r: absolute
IP + r: code relative (not supported)

WM - waiting matching
Unary; Normal; Sticky; Exchange; Imperative

PBs X port → PBs X Frame op X ALU inhibit
Register ops:

ALU: VL X VR → V’L X V’R , CC

Form token: VL X VR X Tag1 X Tag2 X CC → Token1 X Token2

EA WM RegOp ALU FormToken

Easy to implement;
no hazard detection

ISCA, Madison, WI, June 6, 2005 Arvind - 20

Procedure Linkage Operators
f

get frame extract tag

change Tag 0

change Tag 0

Graph for f

change Tag 1

a1

1:

change Tag n

an

n:

...

change Tag 1

Fork

token in frame 0
token in frame 1

Like standard
call/return
but caller &
callee can be
active
simultaneously

ISCA, Madison, WI, June 6, 2005 Arvind - 21

Outline

• Dataflow graphs √
– A clean model of parallel computation

• Static Dataflow Machines √
– Not general-purpose enough

• Dynamic Dataflow Machines √
– As easy to build as a simple pipelined processor

• The software view ←
– The memory model: I-structures

• Monsoon and its performance

• Musings

ISCA, Madison, WI, June 6, 2005 Arvind - 22

Parallel Language Model

Global Heap of
Shared Objects

Tree of
Activation
Frames

h:g:

f:

loop

active
threads

asynchronous
and parallel
at all levels

ISCA, Madison, WI, June 6, 2005 Arvind - 23

Dataflow Graphs + I-Structures + . . .

TTDA Monsoon *T

*T-Voyager

Id World
implicit parallelism

Id

ISCA, Madison, WI, June 6, 2005 Arvind - 24

Id World people
• Rishiyur Nikhil,
• Keshav Pingali,
• Vinod Kathail,
• David Culler
• Ken Traub
• Steve Heller,
• Richard Soley,
• Dinart Mores
• Jamey Hicks,
• Alex Caro,
• Andy Shaw,
• Boon Ang
• Shail Anditya
• R Paul Johnson
• Paul Barth
• Jan Maessen
• Christine Flood
• Jonathan Young
• Derek Chiou
• Arun Iyangar
• Zena Ariola
• Mike Bekerle

• K. Eknadham (IBM)
• Wim Bohm (Colorado)
• Joe Stoy (Oxford)
• ...

Steve Heller

Ken TraubR.S. Nikhil Keshav Pingali David Culler

Boon S. Ang Derek ChiouJamey Hicks

ISCA, Madison, WI, June 6, 2005 Arvind - 25

Data Structures in Dataflow

. . . . PP

Memory• Data structures reside in a
structure store

⇒ tokens carry pointers

• I-structures: Write-once, Read
multiple times or
– allocate, write, read, ..., read, deallocate

⇒ No problem if a reader arrives before
the writer at the memory location

I-fetch

a

I-store

a v

ISCA, Madison, WI, June 6, 2005 Arvind - 26

I-Structure Storage:
Split-phase operations & Presence bits

I-Fetch

t

<s, fp, a >

s
1

2

3

4a
a
a
a

v2

fp.ip

I-structure
Memory

• Need to deal with multiple deferred reads
• other operations:

fetch/store, take/put, clear

⇓

v1

address to
be read

t

I-Fetch
<a, Read, (t,fp)>

s

split
phase

forwarding
address

ISCA, Madison, WI, June 6, 2005 Arvind - 27

Outline

• Dataflow graphs √
– A clean parallel model of computation

• Static Dataflow Machines √
– Not general-purpose enough

• Dynamic Dataflow Machines √
– As easy to build as a simple pipelined processor

• The software view √
– The memory model: I-structures

• Monsoon and its performance ←

• Musings

ISCA, Madison, WI, June 6, 2005 Arvind - 28

Unix Box

The Monsoon Project
Motorola Cambridge Research Center + MIT

MIT-Motorola collaboration 1988-91
Research Prototypes

16 2-node systems (MIT, LANL, Motorola,
Colorado, Oregon, McGill, USC, ...)

2 16-node systems (MIT, LANL)

Id World Software

I-structureMonsoon
Processor

64-bit

10M tokens/sec 4M 64-bit words
100 MB/sec

16-node
Fat Tree

Tony Dahbura

ISCA, Madison, WI, June 6, 2005 Arvind - 29

Id Applications on Monsoon @ MIT

• Numerical
– Hydrodynamics - SIMPLE
– Global Circulation Model - GCM
– Photon-Neutron Transport code -GAMTEB
– N-body problem

• Symbolic
– Combinatorics - free tree matching,Paraffins
– Id-in-Id compiler

• System
– I/O Library
– Heap Storage Allocator on Monsoon

• Fun and Games
– Breakout
– Life
– Spreadsheet

ISCA, Madison, WI, June 6, 2005 Arvind - 30

Id Run Time System (RTS) on Monsoon

• Frame Manager: Allocates frame memory
on processors for procedure and loop
activations

Derek Chiou

• Heap Manager: Allocates storage in I-
Structure memory or in Processor
memory for heap objects.

Arun Iyengar

ISCA, Madison, WI, June 6, 2005 Arvind - 31

Single Processor
Monsoon Performance Evolution

One 64-bit processor (10 MHz) + 4M 64-bit I-structure
Feb. 91 Aug. 91 Mar. 92 Sep. 92

Matrix Multiply 4:04 3:58 3:55 1:46
500x500

Wavefront 5:00 5:00 3:48
500x500, 144 iters.

Paraffins
n = 19 :50 :31 :02.4
n = 22 :32

GAMTEB-9C
40K particles 17:20 10:42 5:36 5:36
1M particles 7:13:20 4:17:14 2:36:00 2:22:00

SIMPLE-100
1 iterations :19 :15 :10 :06
1K iterations 4:48:00 1:19:49

hours:minutes:seconds

Nee
d a

 re
al

mac
hin

e

to
do

thi
s

ISCA, Madison, WI, June 6, 2005 Arvind - 32

Monsoon Speed Up Results
Boon Ang, Derek Chiou, Jamey Hicks

Matrix Multiply
500 x 500

Paraffins
n=22

GAMTEB-2C
40 K particles

SIMPLE-100
100 iters

1pe

1.00

1.00

1.00

1.00

1pe

1057

322

590

4681

2pe

1.99

1.99

1.95

1.86

2pe

531

162

303

2518

4pe

3.90

3.92

3.81

3.45

4pe

271

82

155

1355

8pe

7.74

7.25

7.35

6.27

8pe

137

44

80

747

speed up critical path
(millions of cycles)

September, 1992 Could not have
asked for more

ISCA, Madison, WI, June 6, 2005 Arvind - 33

Base Performance?
Id on Monsoon vs. C / F77 on R3000

Monsoon (1pe)
(x 10e6 cycles)

1058

322

590

4682

MIPS (R3000)
(x 10e6 cycles)

954 +

102 +

265 *

1787 *

Matrix Multiply
500 x 500

Paraffins
n=22

GAMTEB-9C
40 K particles

SIMPLE-100
100 iters

R3000 cycles collected via Pixie
* Fortran 77, fully optimized + MIPS C, O = 3
64-bit floating point used in Matrix-Multiply, GAMTEB and SIMPLE

MIPS codes won’t run on
a parallel machine
without
recompilation/recoding

8-way superscalar?
Unlikely to give 7 fold
speedup

ISCA, Madison, WI, June 6, 2005 Arvind - 34

The Monsoon Experience

• Performance of implicitly parallel Id
programs scaled effortlessly.

• Id programs on a single-processor Monsoon
took 2 to 3 times as many cycles as
Fortran/C on a modern workstation.
– Can certainly be improved

• Effort to develop the invisible software
(loaders, simulators, I/O libraries,....)
dominated the effort to develop the visible
software (compilers...)

ISCA, Madison, WI, June 6, 2005 Arvind - 35

Outline

• Dataflow graphs √
– A clean parallel model of computation

• Static Dataflow Machines √
– Not general-purpose enough

• Dynamic Dataflow Machines √
– As easy to build as a simple pipelined processor

• The software view √
– The memory model: I-structures

• Monsoon and its performance √

• Musings ←

ISCA, Madison, WI, June 6, 2005 Arvind - 36

What would we have done
differently - 1

• Technically: Very little
– Simple, high performance design, easily exploits fine-

grain parallelism, tolerates latencies efficiently
– Id preserves fine-grain parallelism which is abundant
– Robust compilation schemes; DFGs provide easy

compilation target

• Of course, there is room for improvement
– Functionally several different types of memories

(frames, queues, heap); all are not full at the same
time

– Software has no direct control over large parts of the
memory, e.g., token queue

– Poor single-thread performance and it hurts when
single thread latency is on a critical path.

ISCA, Madison, WI, June 6, 2005 Arvind - 37

What would we have done
differently - 2

• Non technical but perhaps even more
important
– It is difficult enough to cause one revolution but two?

Wake up?
– Cannot ignore market forces for too long – may affect

acceptance even by the research community
– Should the machine have been built a few years

earlier (in lieu of simulation and compiler work)?
Perhaps it would have had more impact

(had it worked)
– The follow on project should have been about:

1. Running conventional software on DF machines,
or

2. About making minimum modifications to
commercial microprocessors
(We chose 2 but perhaps 1 would have been

better)

ISCA, Madison, WI, June 6, 2005 Arvind - 38

Imperative Programs and Multi-Cores

• Deep pointer analysis is required to
extract parallelism from sequential codes
– otherwise, extreme speculation is the only solution

• A multithreaded/dataflow model is
needed to present the found parallelism
to the underlying hardware

• Exploiting fine-grain parallelism is
necessary for many situations, e.g.,
producer-consumer parallelism

ISCA, Madison, WI, June 6, 2005 Arvind - 39

Locality and Parallelism:
Dual problems?

• Good performance requires exploiting both

• Dataflow model gives you parallelism for
free, but requires analysis to get locality

• C (mostly) provides locality for free but
one must do analysis to get parallelism

– Tough problems are tough independent of
representation

ISCA, Madison, WI, June 6, 2005 Arvind - 40

Parting thoughts

• Dataflow research as conceived by most
researchers achieved its goals
– The model of computation is beautiful and will be

resurrected whenever people want to exploit fine-grain
parallelism

• But installed software base has a different
model of computation which provides
different challenges for parallel computing
– Maybe possible to implement this model effectively on

dataflow machines – we did not investigate this but is
absolutely worth investigating further

– Current efforts on more standard hardware are having
lots of their own problems

– Still an open question on what will work in the end

41

Thank You!

and thanks to

R.S.Nikhil, Dan Rosenband,
James Hoe, Derek Chiou,

Larry Rudolph, Martin Rinard,
Keshav Pingali

for helping with this talk

ISCA, Madison, WI, June 6, 2005 Arvind - 42

DFGs vs CDFGs
• Both Dataflow Graphs and Control DFGs had the

goal of structured, well-formed, compositional,
executable graphs

• CDFG research (70s, 80s) approached this goal
starting with original sequential control-flow
graphs (“flowcharts”) and data-dependency arcs,
and gradually adding structure (e.g., φ-
functions)

• Dataflow graphs approached this goal directly, by
construction
– Schemata for basic blocks, conditionals, loops,

procedures

• CDFGs is an Intermediate representation for
compilers and, unlike DFGs, not a language.

