
Fresh Breeze: A Multiprocessor Chip Architecture
Guided by Modular Programming Principles

Jack B. Dennis
MIT Laboratory for Computer Science

Cambridge, MA 02139

Abstract

It is well-known that multiprocessor systems are vastly
more difficult to program than systems that support
sequential programming models. In a 1998 paper[11] this
author argued that six important principles for supporting
modular software construction are often violated by the
architectures proposed for multiprocessor computer sys-
tems. The Fresh Breeze project concerns the architecture
and design of a multiprocessor chip that can achieve supe-
rior performance while honoring these six principles.

The envisioned multiprocessor chip will incorporate
three ideas that are significant departures from main-
stream thinking about multiprocessor architecture: (1)
Simultaneous multithreading has been shown to have per-
formance advantages relative to contemporary superscalar
designs. This advantage can be exploited through use of a
programming model that exposes parallelism in the form of
multiple threads of computation. (2) The value of a shared
address space is widely appreciated. Through the use of
64-bit pointers, the conventional distinction between
‘‘memory’’ and the file system can be abolished. This can
provide a superior execution environment in support of
program modularity and software reuse, as well as sup-
porting multi-user data protection and security that is con-
sistent with modular software structure. (3) No memory
update; cycle-free heap. Data items are created, used, and
released, but never modified once created. The allocation,
release, and garbage collection of fixed-size chunks of
memory will be implemented by efficient hardware mecha-
nisms. A major benefit of this choice is that the multipro-
cessor cache coherence problem vanishes: any object
retrieved from the memory system is immutable. In addi-
tion, it is easy to prevent the formation of pointer cycles,
simplifying the design of memory management support.

1. Introduction
It is well-known that multiprocessor systems are vastly

more difficult to program than systems that support
sequential programming models. In a 1998 paper[11] this
author argued that six important principles for supporting
modular software construction are often violated by the
architectures proposed for multiprocessor computer sys-
tems. The six principles are:
1. Information Hiding Principle: The user of a module must not

need to know anything about the internal mechanism of the
module to make effective use of it.

2. Invariant Behavior Principle: The functional behavior of a
module must be independent of the site or context from
which it is invoked.

3. Data Generality Principle: The interface to a module must be
capable of passing any data object an application may
require.

4. Secure Arguments Principle: The interface to a module must
not allow side-effects on arguments supplied to the interface.

5. Recursive Construction Principle: A program constructed
from modules must be usable as a component in building
larger programs or modules.

6. System Resource Management Principle: Resource manage-
ment for program modules must be performed by the com-
puter system and not by individual program modules.

The first two principles have been generally appreciated
for many years. For example, the Information Hiding Prin-
ciple was advocated by David Parnas[26]. The Data Gener-
ality Principle is implicit in the goals of the object-oriented
programming methodology where any type of object a user
wishes to define through a set of methods can be freely
passed among program modules. The Recursive Construc-
tion Principle simply asks that program modules, once con-
structed, can be used as components in building higher-
level modules — an obviously desirable property but one
that is curiously lacking in most programming systems.
The importance of the System Resource Management Prin-

ciple is evident from the ubiquitous presence of virtual
memory and paging in most systems intended to support
large-scale programs. However, the extension of these
ideas to more general global addressing features as in Mul-
tics[2] and the IBM AS/400[28] has not been generally
adopted.

The continued practice of partitioning data into separate
categories of ‘‘memory’’ and ‘‘files’’ seriously impedes the
practice of modular programming. It makes the System
Resource Management Principle impossible to honor, and
constitutes violation of the Data Generality principle
because files (as opposed to file names) cannot be used as
arguments or results of a program module.

The Secure Arguments Principle[11] is important in
computer systems that support concurrent operation of pro-
gram modules. If two program modules share input data
then any change made to the value of the shared argument
made by one module will be potentially visible to the other,
leading to possible nondeterminate operation and incorrect
behavior that could be very difficult to track down. The
Secure Arguments Principle requires that this situation not
be allowed to happen. In particular, the language in which
modules are written should not permit modules to have
“side effects” through their input data.

The Fresh Breeze project concerns the architecture and
design of a multiprocessor chip that can achieve superior
performance while honoring the six principles. As early as
1968[3] it was recognized that properties of a computer or
programming system can affect one’s ability to practice
modular software construction. One must be able to iden-
tify a unit of software that provides well-defined interfaces
with other modules and eliminates dependences on the
context of use. To satisfy the Resource Management Prin-
ciple, the system must implement resource management
rather than permitting modules to make private resource
allocation decisions. To satisfy the Data Generality Princi-
ple, there can be no separate file system, and data struc-
tures represented in heap storage must have a data type and
be able to be passed between program modules. This
implies the necessity of a global address space.

In this paper we report on the Fresh Breeze project the
author has begun at MIT. Its goal is to demonstrate a real-
ization of this set of principles in the design of a multipro-
cessor chip for general-purpose computing. To reach this
goal, the Fresh Breeze multiprocessor chip incorporates
three ideas that are significant departures from conven-
tional thinking about multiprocessor architecture:

Simultaneous multithreading. It has been argued that
simultaneous multithreading[29] can yield performance
advantages relative to contemporary superscalar designs.
This advantage can be exploited through use of a program-
ming model that exposes parallelism in the form of multi-
ple threads of computation. Also, compact ways of

encoding dependences among instructions in several
closely related threads have been devised in recently
reported work[20]. By arranging for a compiler to encode
data dependencies between instructions in the machine
code, ILP may be exploited without the complex predictive
mechanisms of contemporary superscalar microprocessors.
The result is that fine-grain parallel execution of several
activities can achieve high utilization of processing
resources (function units).

Global shared address space. The value of a shared
address space is widely appreciated. Through the use of
64-bit pointers, the conventional distinction between
‘‘memory’’ and the file system can be abolished. This will
provide a superior execution environment in support of
program modularity and software reuse. Some of the bene-
fits of employing shared address spaces have been demon-
strated by the Project MAC Multics system[2] and in the
success of IBM AS/400 system products[28].

No memory update; cycle-free heap. In a Fresh
Breeze computer system data items will be created, used,
and released, but never modified once created. The alloca-
tion, release, and garbage collection of fixed-size chunks of
memory will be implemented by efficient hardware mecha-
nisms. A major benefit of this choice is that the multipro-
cessor cache coherence problem vanishes: any object
retrieved from the memory system is immutable. In addi-
tion, it is easy to prevent the formation of pointer cycles,
simplifying the design of memory management support.

The following sections introduce our current vision of a
Fresh Breeze computer system. After describing the struc-
ture of the multiprocessor chip and how it is intended to be
used within a larger system, we focus on the memory hier-
archy, the nature of the heap implementation, and how it
supports scientific computation, using a classical linear
system solver as an example. Then the support for stream-
based computation is introduced, leading to a discussion of
support for transactions on shared data.

2. Architecture
A Fresh Breeze System consists of several Fresh Breeze

Processing chips and a shared memory system (SMS), as
shown in Figure 1. There is also provision for interproces-
sor communication and message exchange with input-out-
put facilities. Each processing chip includes several (16,
say) multithread processors and memory to hold fresh and
active data and programs. The architecture of a processing
chip is discussed further below.

Memory in a Fresh Breeze system is organized as a col-
lection of chunks, each of fixed size. In this paper we
assume that a chunk contains 1024 bits and can hold either
thirty-two 32-bit words or sixteen 64-bit double words, for
example. (A different size may prove a better choice, but

we won’t know without some testing of the design.) A
chunk also includes auxiliary information that indicates the
type and format of its contents. Each chunk held in the
SMS has a unique 64-bit identifier that serves to locate the
chunk within the SMS, and is a globally valid reference to
the data or program object represented by the chunk’s con-
tents.

A chunk may contain 64-bit pointers that refer to related
chunks, for example, components of a data structure. The
rules of operation of a Fresh Breeze system are such that
the contents of a chunk are never altered once the chuck
has been stored in the SMS. (There is one exception to this
in the case of a guard chunk which is provided in support
of transactions processing, as discussed briefly toward the
end of this paper.) Moreover, a reference pointer may only
be incorporated into a chunk at the time the chunk is first
allocated and filled — before its reference count becomes
greater than one. It follows that there is no way that a path
can be formed that leads from a reference contained in a
chunk to the reference identifier of the chunk itself. This
property guarantees that the directed graph consisting of
the collection of chunks and the references between pairs
of chunk will never contain directed cycles.

The SMS supports the operations of: obtaining unique
identifiers for new chunks; storing a chunk; accessing a
chunk from its pointer; and incrementing or decrementing
the reference count of a chunk. The SMS automatically
performs incremental garbage collection of chunks when
the reference count of any chunk it holds becomes zero.
Note that chunks are always moved between the SMS and
on-chip memory of the processing chips as complete units,
just as cache lines are stored and retrieved in conventional
computers.

 The Fresh Breeze Processing Chip, shown in Figure 2,
includes sixteen multithread processors (MTPs) (only four
are shown) and additional units that hold on-chip copies of
instructions and data. The MTPs communicate with eight
Instruction Access Units (IAU) for access to memory
chunks containing instructions, and with eight Data Access

Units (DAU) for access to memory chunks containing data.
Both kinds of access units have many slots that can each
hold one chunk of program or data. The location of an
access unit slot is the combination of the unit number and
the slot index within the unit.

Certain registers of the MTP can hold pointers used to
access data and program chunks. These registers also have
an extra field that contains the slot location of the chunk
once access to it has been effected and the chunk is present
in one of the access units. The Instruction Association Unit
(IAU) and the Data Association Unit (DAU) are aug-
mented associative memories that map 64-bit unique refer-
ences into chip locations when a chunk is retrieved from
the SMS by means of its reference identifier. The two asso-
ciation units are related to the TLB (translation lookaside
buffer) of a conventional processor, but the contents of a
TLB is valid only for the currently executing process,
whereas the association units of the Fresh Breeze Processor
Chip hold globally valid references and never need to be
flushed. The association units also maintain chunk usage
data so the “least recently used” criterion may be used to
select chunks for purging to the SMS when on-chip space
is needed for more active programs or data.

The MTPs are scalar processors that embody a modi-
fied principle of simultaneous multithreading. In brief,
each MTP supports simultaneous execution of up to four

Figure 1. A Fresh Breeze system

Interprocessor Network

FBP

Shared Memory System (SMS)

FBP FBP FBP

DataInstruction

Instruction

MTP

Access Switch Access Switch

Association Unit
Data

Association Unit

MTP MTP MTP

Shared Memory System

Figure 2. The Fresh Breeze Multiprocessor Chip.

IAU DAUIAU DAU

SMS Interface

independent activities. Each activity presents integer and
floating point instructions in a way that allows exploitation
of a limited amount of instruction-level parallelism within
the activity. Each activity has a private register set for inte-
ger, floating point and pointer values, and special registers
that hold references to the chunks that hold instructions of
the function body being executed by the activity. The inte-
ger and floating point function units of the MTP are shared
by all four activities. An activity is suspended when it
encounters a data or program access request that cannot be
met immediately from chunks held in the on-chip access
units, and also if the activity is waiting for a response mes-
sage for an input-output transaction. Status information for
suspended activities is held in data chunks in the DAUs.
The Data Association Unit maintains these activity status
records in a priority queue as completion signals arrive and
assigns them to MTPs as activity slots become free.

Execution of a function call initiates a new activity in
the body code of the function, creating a function activa-
tion with a dedicated function activation record made up of
one or more data chunks. Each function activation executes
completely on the processing chip where its initial activity
began execution. This execution may spread to several
activities running on the same or different MTPs on the
chip, and may include invocations of functions whose acti-
vations are (through remote function call) initiated on other
processing chips.

3. Array Data Structures
All data structures used by application programs in a

Fresh Breeze system are represented by assemblages of
(fixed-size) chunks. Since cycles are not allowed, each
such representation must take the form of a DAG (directed
acyclic graph). The treatment of arrays will serve to illus-
trate principles that may be applied to a variety of data
structures.

In general, an array is a data structure that represents a
mapping of an index set into a set of element values. Often
the set of element values is a basic data type such as inte-
gers or floating point values represented in a 32 or 64 bit
computer word. In a Fresh Breeze system, array elements
may also be pointers (references) to objects of any chosen
data type. For the Fresh Breeze machine the index set is
restricted to non-negative integers less than 232.

Suppose the elements of an array are 64-bit floating
point values. Then 16 element values can be held in one
1024-bit chunk of memory. These must correspond to a
contiguous range of index values starting at a multiple of
16. For this format of data in a chunk, auxiliary informa-
tion consisting of 16 flag bits indicates which of the sixteen
value positions hold defined elements of the array.

A large array is represented by a tree of chunks having a
depth of as many as eight levels. The number of levels is
determined by the largest index value for which the array
has a defined element. For example, the tree for an array of
64-bit values with an index set of {0, .. , 255} would have
only two levels. Each chunk of the tree is marked with its
level (0..7), the leaf nodes that contain element values
being at level 0. Each chunk at a higher level in the tree
contains up to 16 64-bit pointers to chunks at the next
lower level.

Given an array represented by a tree of depth k, if there
is a chain of pointers leading to a leaf chunk, where at each
level h the pointer occupies slot , then the element in
position of the leaf chunk corresponds to the index

At each level of the tree, flags indicate whether each slot
contains a valid pointer. Where there is no valid reference,
the array is undefined for index values corresponding to
any chain that runs through the invalid slot.

Figure 3 illustrates how three chunks are used to repre-
sent an array containing defined 64-bit elements for index
values in the set {30,31,32,33}.

To access an array element for a given index value x:
Divide the 32-bit binary representation of x into 4-bit sec-
tions, and number the eight sections (nibbles) from right to
left. This numbering corresponds to the levels of the tree. If
the leftmost non-zero section is at level k and the tree has
fewer than k levels, the given index x is out of bounds.
Suppose the tree has depth k. Then the 4-bit section at posi-

s h[]
s 0[]

x s h[] 16h×
h 0=

k 1–

∑=

level 1 level 0

0

1

2 14

15

0
1

element 30

element 31

element 32

element 33

Figure 3. An array with four defined elements.

tion (k - 1) gives the slot containing the pointer to the next
chunk on the path to the desired leaf chunk (the leaf chunk
itself if k = 1). This procedure is effected in the Fresh
Breeze machine by a collaboration between the memory
interface unit of the MTP executing the activity and the
(one or more) DAUs that hold chunks that need to be
accessed.

Note that large, sparse arrays are represented with rea-
sonable efficiency, at the expense of requiring several
accesses to chunks to access any element starting from the
root pointer of the array. This latency of access to array ele-
ments is accepted in a Fresh Breeze system for the benefit
of being able to perform the allocation of new arrays with
minimal cost. It is expected that most of this latency will be
tolerated through intra- and inter- activity parallelism
exploited through simultaneous multithreading.

Arrays are constructed using three basic operations:
Create, Augment, and Combine. The ArrayCreate opera-
tion allocates a chunk (in a DAU) and initializes it with up
to 16 array elements. This may be done as a single opera-
tion in which element values from a contiguous group of
processor registers are transferred. If the index range of the
array elements is such that a pointer chunk is required, then
a second chunk is automatically allocated and initialized
with a pointer to the leaf chunk. This is continued to yield a
tree (chain) of chunks of the necessary depth.

The ArrayAugment operation may be used to fill in
undefined elements of a leaf chunk. This is permitted as an
“update-in-place” if the reference count of the chunk is one
and the chunk has not been stored in the SMS. Otherwise,
either the array has already been made available to other
activities or it has been saved in the SMS, and the chunk
must not be altered. In this case a new chunk is allocated,
the elements of the given array are copied, and the update-
in-place is performed on the copy. Note that a chunk will
be sent to the SMS only if space is needed because on-chip
memory is exhausted, or there is a request for access to the
data from an activity in another chip.

Arrays represented by more than one leaf chunk are
constructed by creating several partial arrays with non-
overlapping index ranges, and combining them using the
ArrayCombine operation. The ArrayCombine operation
is given two arrays each represented by a tree of chunks.
Assume first they have non-overlapping index ranges and
every chunk in both trees has a reference count of one. The
result of the operation is a pointer to the root chunk of an
array representation that incorporates all elements of both
given arrays. No new chunk needs to be allocated unless
the combined index range demands an additional level and
a new root chunk in the tree. One of the given arrays is
chosen as the basis for forming the combined array. Any
subtree of this tree that has an index range not intersecting
with the index set of the second array is left intact. For a

subtree where there is a non-empty intersection of index
sets, the chunks of the basis tree must be updated with ele-
ments and/or pointers from the second tree. Note that the
chunks of the second array need not have a reference count
of one for this procedure to work correctly. If such a chunk
has a reference count of one, and its contents are copied
into a corresponding basis chunk, the reference count will
be decremented making the chunk free. Otherwise the
chunk will be retained because access to it is retained by
another data structure or activity.

When each chunk is allocated during construction of an
array, it is assigned a 64-bit reference identifier supplied by
the SMS from its pool of free references.

For accessing array elements, the ArrayRead operation
takes a pointer to an array (tree of chunks) and an index
range and transfers the element values to specified proces-
sor registers. The chunks along the path to the required leaf
chunk are accessed, including retrieval from the SMS to
on-chip DAUs as necessary.

The array Create, Augment, Combine, and Read opera-
tions will be implemented by processor instructions that
direct action by the DAUs. Because these operations may
require multiple steps, they will likely be supported in a
way that uses several machine instructions, perhaps includ-
ing a repeat mechanism. The details of these operations are
under development.

The processing of a large array may spread over many
processing chips of a Fresh Breeze system. Construction of
an array may be initiated by an activity that invokes func-
tion instantiations on remote processing chips correspond-
ing to some partitioning of the work, either determined
automatically by a compiler or through detailed coding by
a programmer. An array may be passed as an argument of a
function call executed on a remote processing chip. When
an activity executing the function code attempts to access
parts of the array, these may not yet have been sent to the
SMS. In this case, the SMS will act on the access request
by commanding the processor that created each requested
part of the array to send the corresponding chunk to the
SMS so it may be forwarded to the processing chip that
needs it.

4. Example: A Linear System Solver
One popular way of solving systems of linear algebraic

equations is the method based on lower-upper decomposi-
tion as implemented in the Linpack BLAS[16]. This algo-
rithm has long been used as a benchmark for comparing
the performance of high-performance computer systems.
Here we discuss implementation of this solver on a Fresh
Breeze system for high performance.

For our purposes it is convenient to discuss the algo-
rithm as written in the Java programming language[18].

This is shown in Figure 5 where, for simplicity, we have
omitted the code that implements “partial pivoting”. The
class LinearSystemSolver contains four methods, one
of which is public and is the entry point for users. The
arguments of Solve are n the dimension of the equation
system and A a n by n+1 matrix that contains the coeffi-
cient array in columns 0 through n-1, and the right hand
side vector as column n. The algorithm consists of two
parts: the “forward elimination” phase coded in method
Forward, and the “back substitution” phase coded in
method Backward. Because the principal computation
effort occurs in the construction of the new array An at
each of n steps (this is what gives the algorithm its n3 com-
plexity), we focus our attention on this part of the program.
The elimination steps are performed by successive recur-
sive calls of the method ForwardStep. In the body of this
method the following lines capture the major computa-
tional effort, where k is the step index starting from 0:

for (int i = k+1; i < n; i++) {

temp = A[i][k] / A[k][k];
for (int j = k+1; j < n+1; j++) {

An[i][j] = An[i][j] -
temp * A[i][j];

 }
}

The body statement of the nested loop

An[i][j] = An[i][j] - temp * A[i][j];

 is to be executed (n-k) * (n-k+1) times, and all of these can
be done concurrently, offering a high degree of parallelism.
Figure 4 illustrates the forward elimination step. A com-

piler for a Fresh Breeze computer can easily recognize this
and generate code that creates a separate function instance
for each tile of the (n-k) by (n-k+1) index space, where the
size of the tiles is chosen as a judicious trade-off governed
by the size of the machine and the expected sizes of linear
systems to be solved. In this case, how execution of these
function instances is distributed over the processing chips
of a Fresh Breeze system is not crucially important because
the effort required to move data around becomes asymptot-
ically small in comparison with the floating point opera-
tions required, as larger matrix sizes are handled. During
execution, chunks for each new array An will be allocated
almost instantly, and chunks containing pieces of earlier An
instances automatically become free and immediately reus-
able once all accesses to them have been completed.

5. Streams and Transactions
Arrays and records are the basic data structures pro-

vided by many programming languages. A record type is a
class of objects, usually of fixed size, that have several
fields that may be objects of different types, including ref-
erences to arrays, other records, or arbitrary objects. Just as
records are often implemented in a sequence of computer
words in conventional computers, records can be imple-
mented as an array of 32-bit or 64-bit elements in a Fresh
Breeze system, so they will not be discussed further here.

A kind of structured data that is increasingly recognized
as important in the construction of modular software is a
stream. A stream is an unending series of values of uniform
type that may be passed from one software module to
another. Using stream data types, many signal processing
and other applications have elegant structure as a straight-
forward composition of program modules[10][21].

A

a) Initial b) Before step k c) After step k

k k

k k

C C

AnA(coefficients)
R
H
S

Figure 4. Forward elimination step of the liner system solver.

In a Fresh Breeze system, a stream is naturally repre-
sented by a sequence of chunks, each chunk containing a
group of stream elements. Either each such chunk may
include a reference to the chunk holding the next group of
stream elements, or auxiliary chunks containing “current”
and “next” references may be used to organize the chunks
that hold stream elements. The operations StreamEnter
and StreamRemove are supported, where, in particular,

the StreamRemove operation causes the executing activity
to suspend if the stream contains no elements, and to
resume just when elements are entered in the stream.

For the StreamEnter operation to work properly with
this choice of representation for streams, it must be possi-
ble to fill in a slot (the “next” reference) perhaps long after
the chunk was allocated and filled with stream elements.
To guarantee that a cycle cannot be created, the stream
chunk is marked as being of a special stream type, and can
only be referenced by the “next” reference in another
chunk of stream type. This sort of mechanism is similar to
that of “incremental arrays” (“I-structures”)[1][7].

In earlier work [13] it was noted that performing asyn-
chronous transactions on an object such as a “shared file”
may be viewed as happening in two phases as illustrated in
Figure [6]. In the first phase, transaction requests arriving
asynchronously are merged into a single (ordered) stream
of requests. (Each request includes context information
needed to reply to the initiating activity.) This stream of
requests is then applied to the subject entity to produce a
stream of responses which are distributed to the requesting
activities. The processing of the ordered stream of requests
is a purely functional computation that manipulates the
subject entity as an internal value. (We have noted that lots
of potential concurrency may be exploited within this func-
tional computation, including the overlapped execution of
multiple requests.) Thus the novel aspect introduced to per-
form transactions is supporting the (nondeterminate) merge
of asynchronous requests.

In[12] it was shown how this may be accomplished by
using a special kind of memory object (chunk) that we
have called a guard. In essence, the guard holds a reference
to the tail element of the (ordered) stream of transaction
requests. An activity wishing to enter a transaction request
forms a request stream element with an empty “next” ele-
ment field. It then performs a swap operation that substi-
tutes the pointer to its stream element (the new tail
element) for the current pointer held by the guard. Finally
it installs the pointer of the (old) tail in the “next” field of
the new stream element.

class LinearSystemSolver {
 int n;
 class Row {
 double[] elmnts;
 }

 Row[] C;

 public double[] Solve (int n, double[][] A) {
 double[] X;
 this.n = n;
 C = Forward (A);
 X = Backward (C);
 return X;
 }

 private Row[] Forward (double[][] A) {
 C = new Row[n];
 return ForwardStep (0, A, C);
 }

 private Row[] ForwardStep (
 int k,
 double[][] A,
 Row[] C) {
 double temp, factor;
 double[][] An = new double[n-k][n-k+1];
 C[k].elmnts = new double[n+1];
 // Pivot row
 factor = 1.0 / A[k][k];
 for (int j = k+1; j < n+1; j++) {
 C[k].elmnts[j] = factor * A[k][j];
 }
 // Non pivot rows
 for (int i = k+1; i < n; i++) {
 temp = A[i][k] / A[k][k];
 for (int j = k+1; j < n+1; j++) {
 An[i][j] = An[i][j] - temp * A[i][j];
 }
 }
 // Terminate or Continue
 if (k == n-1) {
 return C;
 } else {
 return ForwardStep (k+1, An, C);
 }
 }

 private double[] Backward (Row[] C) {
 double[] X = new double[n];
 for (int k = n-1; k >= 0; k--) {
 double S = 0.0;
 for (int j = k+1; j <= n-1; j++) {
 S = S + C[k].elmnts[j] * X[j];
 }
 X[k] = C[k].elmnts[n] - S / C[k].elmnts[k];
 }
 return X;
 }

}

Figure 5. The linear system solver written in Java.

contextrequests responses

ProcessM
er

ge

D
is

tri
bu

te

transaction state

Figure 6. A view of transaction processing.

In the Fresh Breeze machine, a guard is a special kind of
memory element (chunk) that exists only in the SMS,
thereby avoiding problems associated with cached copies.
The instruction CreateGaurd is passed directly to the
SMS and returns a reference to a unique guard chunk. The
GuardSwap instruction is also passed directly to the SMS
where it is forwarded to the component of the SMS where
the guard was allocated. With this arrangement, Guard-
Swap instructions executed by independent activities on
any processing chips can be processed by the SMS compo-
nent in immediate succession; the rate at which transac-
tions can be processed may be as fast as the SMS unit can
process successive swap instructions, and is not limited by
the speed of any of the MTPs.

6. Conclusion
 Some of the principles and architectural concepts guid-

ing the Fresh Breeze Project have been presented. The use
of a cycle-free heap of fixed-size chunks to support general
array data structures has been explained and illustrated
using a linear system solver.

Some interesting additional features are envisioned for a
Fresh Breeze computer system: A job is a collection (tree)
of function activations that are operating on behalf of one
user of a Fresh Breeze system. Each job may have a moni-
toring activity (part of a superior job) that is normally dor-
mant, but is activated upon job termination or upon the
occurrence of exceptional conditions during job execution.

Note that an activity can only access data that it creates,
or data that it is given access to through a reference argu-
ment of its function instance. Many jobs may be running
on a Fresh Breeze System at the same time with no danger
that activities of one job can affect data of any other job
except where several jobs share access to objects by means
of transactions executed through a guard. Input/Output
transactions in a Fresh Breeze System are performed by
messages sent by activities using unique identifiers for
peripheral controllers or devices (capabilities[15][17]) pro-
vided to the job by its superior job. These features will per-
mit a high degree of security to be realized.

The Fresh Breeze project is a continuation of work
begun many years ago inspired by the potential benefits of
recognizing program structure in study of computer archi-
tecture[4][15][5][6][8]. This work also builds on the efforts
of several other projects[19][24][23].

The Fresh Breeze Project is in an early stage. The first
steps are to complete the architectural specification and
develop a detailed instruction set. Concurrently, a cycle-
accurate simulator of a Fresh Breeze System is being
developed using the Java programming language. An
important next step is enabling the preparation and evalua-
tion of application programs to demonstrate the merit of
architectural choices. For this purpose it is planned to use a
restricted dialect of Java and a special back-end processor
that converts Java class (bytecode) files into Fresh Breeze
machine code.

References

[1] Arvind and R. S. Nikhil and Keshav Pingali. I-structures:
data structures for parallel computing. ACM Transactions on
Programming Languages and Systems 11, 4:598-632, Octo-
ber 1989.

[2] A. Bensoussan, C. T. Clingen, and R. C. Daley. The Multics
virtual memory. In Proceedings of the Second Symposium on
Operating System Principles. ACM, October 1969, pp 30-
42.

[3] William E. Boebert. Toward a modular programming sys-
tem. In Proceedings of a National Symposium: Modular
Programming. Cambridge, MA: Information Systems Press,
1968.

[4] Jack B. Dennis. Segmentation and the design of multipro-
grammed computer systems. Journal of the ACM 12, 4:589-
602, October 1965.

[5] Jack B. Dennis. Programming generality, parallelism, and
computer architecture. In Information Processing 68.
Amsterdam: North-Holland, 1969, pp 484-492.

[6] Jack B. Dennis. First version of a data flow procedure lan-
guage. In Lecture Notes in Computer Science, Volume 19:

Programming Symposium, B. Robinet, Ed. Springer-Verlag,
1974, pp 362-376.

[7] Jack B. Dennis. An operational semantics for a language
with early completion data structures. In Lecture Notes in
Computer Science, Volume 107: Formal Description of Pro-
gramming Concepts. Berlin: Springer-Verlag, 1981, pp 260-
267.

[8] Jack B. Dennis. The evolution of ‘‘static’’ data-flow archi-
tecture. In Advanced Topics in Data-Flow Computing, Jean-
Luc Gaudiot and Lubomir Bic, eds., chapter 2, Prentice-Hall,
1991.

[9] Jack B. Dennis. Machines and models for parallel comput-
ing. International Journal of Parallel Programming 22,
1:47-77, February 1994.

[10] Jack B. Dennis. Stream data types for signal processing. In
Advances in Dataflow Architecture and Multithreading, J.-L.
Gaudiot and L. Bic, eds. IEEE Computer Society, 1995.

[11] Jack B. Dennis. A parallel program execution model sup-
porting modular software construction. In Third Working
Conference on Massively Parallel Programming Models.
IEEE Computer Society, 1998, pp 50-60.

[12] Jack B. Dennis. General parallel computation can be per-
formed with a cycle-free heap. In Proceedings of the 1998
International Conference on Parallel Architectures and
Compiling Techniques. IEEE Computer Society, 1998, pp
96-103.

[13] Jack B. Dennis. A language design for structured concur-
rency. In Lecture Notes in Computer Science, Volume 54:
Design and Implementation of Programming Languages.
Berlin: Springer-Verlag, 1977, pages 231-242.

[14] Jack B. Dennis and Guang R. Gao. Multithreaded architec-
tures: principles, projects, and issues. In Robert A. Ianucci,
editor, Advances in Multithreaded Computer Architecture.
Kluwer, 1994.

[15] Jack B. Dennis and Earl C. van Horn. Programming seman-
tics for multiprogrammed computations. Communications of
the ACM 9, 3:143-155, March 1966.

[16] J. Dongarra, J. Bunch, C. Moler and G. W. Stewart. LIN-
PACK Users Guide, SIAM, Philadelphia, PA, 1979.

[17] Robert S. Fabry. Capability-based addressing. Communica-
tions of the ACM 17, 7:403-412, July 1974.

[18] James Gosling, Bill Joy, and Guy Steele. The Java Language
Specification. Addison-Wesley, 1996.

[19] Kei Hiraki, Satoshi Sekiguchi, and Toshio Shimada. Status
report of SIGMA-1: A data-flow supercomputer. In
Advanced Topics in Data-FlowComputing, Jean-Luc Gaud-
iot and Lubomir Bic, eds., chapter~7. Prentice-Hall, 1991.

[20] Ho-Seop Kim and James E. Smith. An Instruction Set and
microarchitecture for instruction level distributed process-
ing. In Proceedings of the 29th Annual International Sympo-
sium on Computer Architecture. IEEE Computer Society,
2002, pp 71-82.

[21] Edward A. Lee and David G. Messerschmitt. Synchronous
data flow. Proceedings of the IEEE 75, 9, September 1987.

[22] Barbara Liskov. Abstraction mechanisms in CLU. Commu-
nications of the ACM 20, 8:564-576, August 1977.

[23] J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J.
Glauert, C. Kirkham, B. Noyce, and R. Thomas. SISAL:
Streams and Iteration in a Single Assignment Language:
Reference Manual Version 1.2. Technical Report M-146,
Rev. 1. Lawrence Livermore National Laboratory, 1985.

[24] Gregory M. Papadopoulos and David E. Culler. Monsoon:
an explicit token-store architecture. In Proceedings of the
17th Annual International Symposium on Computer Archi-
tecture, IEEE Computer Society, 1990, pp 82-91.

[25] Gregory M. Papadopoulos and Kenneth R. Traub. Multi-
threading: A revisionist view of dataflow architectures. In
Proceedings of the 18th Annual International Symposium
on Computer Architecture. IEEE Computer Society, 1991,
pp 342-351.

[26] David L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM 15,
12:1053--1058, December 1972.

[27] Gurindar S. Sohi, Scott Breach, and T. N. Vijaykumar. Mul-
tiscalar Processors. In Proceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture. IEEE
Computer Society, 1995, pp 414-425.

[28] Frank G. Soltis. Inside the AS/400. Loveland, Colorado:
Duke Press, 1996.

[29] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy.
Simultaneous Multithreading: Maximizing on-chip parallel-
ism. In Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture, IEEE Computer Society,
1995, pp 392-403.

