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ABSTRACT 
We present the program execution model developed for the Fresh 
Breeze Project, which has the goal of developing a multi-core chip 
architecture that supports a better programming model for parallel 
computing. The model combines the spawn/sync ideas of Cilk 
with a restricted memory model based on chunks of memory that 
can be written only while not shared. The result is a multi-thread 
program execution model in which determinate behavior may be 
guaranteed while  general forms of parallel computation are 
supported. 

Categories and Subject Descriptors  
C.0 [Computer Systems Organization]: Hardware/software 
interfaces; D.1.1 [Programming Languages]: Applicative 
(Functional) Programming; D.1.3 [Programming Languages]: 
Concurrent Programming; D.3.3 [Programming Languages]: 
Language Constructs and Features;   E.1 [Data]:   Data Structures. 

General Terms  
Design, Languages. 

Keywords  
Program execution model, concurrency, multithreading, 
determinacy, streams, transactions. 

1. INTRODUCTION 
With multiprocessing becoming the usual mode of computing, it is 
more pressing than ever to adopt a model of program execution 
that supports general parallel programming while avoiding the 
programing difficulties attending the coordination of concurrent 
computations in contemporary systems. 
This presentation concerns the program execution model 
developed for the Fresh Breeze Project[8][6], which has the goal 
of developing a multi-core chip architecture that supports a better 
programming model for parallel computing, achieving high 
performance through parallelism rather than increased clock speed. 

The Fresh Breeze architecture explores a set of ideas that depart 
from conventional computer architecture: 

Simultaneous multithreading can improve the uti-
lization of function units and allow more effective latency 
tolerance of memory transactions[22].  
A global shared address space permits abolition of 
the conventional distinction between “memory” and 
the file system, and supports a superior execution 
environment meeting requirements of program 
modularity and software reuse[3][5] 
No memory update  of shared data in a Fresh Breeze 
computer system eliminates the multiprocessor cache 
coherence problem: any object retrieved from the memory 
system is immutable. 
Cycle-free heap.  The no-update rule In a Fresh Breeze 
computer system makes it easy to prevent the formation 
of pointer cycles[7]. Efficient reference-count garbage 
collection can be implemented in the hardware. 

We will show how a program execution model based on these 
ideas can provide a platform for robust, general-purpose, parallel 
computation. In particular, much of the difficulty of writing 
correct parallel programs stems from problems in getting 
synchronization correct. The commonly used methods of thread 
coordination are prone to exhibiting nondeterminate behavior, 
making errors difficult to track down. Moreover, getting control 
synchronization correct is no guarantee that accesses to data will 
be effected without hazard, especially when memory access has 
significant latency and memory is shared among concurrently 
executing threads. 
Our hypothesis is that handling control and data coordination 
separately is a bad idea. Here we explore an approach in which 
data and control synchronization are always performed together, 
as a single atomic operation. This is offered as an alternative to 
transactional memory approaches that add complexity, often 
including redundant computation and retry mechanisms. 

Principle: Combine control and data synchronization in 
the design of mechanisms for coordinating concurrent 
activities. 

We begin with an introduction to the Fresh Breeze memory model. 
The program execution structure of threads of control and method 
activations is described. Then we present the basic concurrent 
programming structure of this paper, an adaptation of the classic 
fork/join control primitives for concurrent processes. We argue 
that use of this program structure yields multi-thread programs 
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that are guaranteed to be determinate. Subsequent sections deal 
with generalization and extension of the basic concept to programs 
that operate on data structures and data streams. How a Fresh 
Breeze system can be used to run inherently nondeterminate 
computations such as general transaction processing is discussed 
in the final section. 

2. FRESH BREEZE MEMORY MODEL 
The Fresh Breeze architecture views memory as a collection of 
fixed-size chunks, each holding 1024 bits of code or data. A chunk 
may hold 32 words of 32 bits each, 16 double length words, or 32 
instructions of a program method. Each chunk has a unique 64-bit 
identifier (UID) that serves as a pointer for accessing the chunk. A 
chunk may also hold up to 16 UIDs to represent structured 
information. For example, a three-level tree of chunks could 
represent an array of 16 * 16 * 32 elements. 
The collection of chunks containing pointers to other chunks 
forms a heap which may be regarded as a graph. The Fresh Breeze 
program execution model is designed so that cycles in the heap 
cannot be constructed. This is ensured by the rule that updates to 
the contents of chunks are disallowed once they are shared, and 
marking pointers to chunks in process of definition (creation) so 
that a thread may not store them in any chunk that is under 
construction. 
In a Fresh Breeze system all on-line data, including files and 
databases, are held in the chunk memory as data structures in the 
heap. 
In the following, we will show how this memory model can 
support a variety of program constructions for parallel 
computation. 

3. PROGRAM EXECUTION 
Computation in a Fresh Breeze system is carried out by method 
activations on behalf of a system user. Computation in a method 
activation is performed by exactly one thread of instruction 
execution. The thread has access to the code segment of the 
method, a local data segment, and a set of registers that hold 
intermediate results. The code segment is read-only and may be 
shared by many threads for different method activations. The 
registers and local data segment are private data of the thread and 
are only accessible to it. 
Note that in this model of computation, a thread (method 
activation) can only access information in the heap that it creates 
or that is given to it when it begins execution. 

4. FORMS OF PARALLELISM 
Functional programming languages are known to offer better 
programmer productivity due to their freedom from side-effects 
and the mathematical properties of expressions. Another benefit 
of functional programming languages is the ease of identifying 
parts of computations that may be executed concurrently. In 
particular, several important forms of concurrency are naturally 
represented in functional programs: 

Expressions. Subexpressions may always be evaluated 

concurrently with other subexpressions. 
Functions. Function applications may be evaluated 
concurrently if none uses the results of others. 
Data Parallel. The general expression for an array 
element may be evaluated concurrently over all elements 
of the array. 
Producer/Consumer. If one program module passes a 
series of values to a second module, then both modules 
may run concurrently. 
Cascaded Data Structure Construction. This is a kind 
of generalization of producer/consumer concurrency and 
will be treated in a later section. 

We will show how our thread coordination model supports 
each of these forms of parallelism.  

5. THE BASIC SCHEME 
Our basic program structure for concurrency is an adaptation of 
the fork/join model and is similar to the concurrency scheme of 
Cilk[14]. A master thread spawns a slave thread (executing a new 
function activation) that performs an independent computation 
and terminates by joining with the master thread. The problem to 
be solved is that of performing the join in a safe manner -- in a 
way that does not introduce the possibility of hazards. For the 
present we assume that the slave computation is contributing a 
single value (one computer word) to the computation being 
performed by the master thread. 
Because, in our model, there is no shared data between the master 
and slave threads, updating shared data cannot be used to 
communicate the slave result to the master. (This is good because 
a shared data mechanism would likely introduce possible hazards.)  
Our scheme is the following: When the master spawns the slave 
thread, it initializes a join point and provides the slave thread with 
a join ticket that permits it to exercise (use) the join point. The join 
point is a special entry in the local data segment of the master 
thread that has (1) space for a record of master thread status; and 
(2) space for the result value that will be computed by the slave 
thread. The join point  includes a flag that indicates whether a 
value has been entered by the slave thread, and a flag that indicates 
that a join ticket has been issued. 
A join ticket is similar to the return address of a method, and is 
held at a protected location in the local data segment of the slave 
method activation. It consists of (1) the unique identifier (pointer) 
of the local data segment of the master thread; and (2) the index of 
the join point within the master thread local data segment. 
Special instructions are provided to access a join point. The 
instruction. The Spawn instruction sets a flag in the join point and 
starts execution by the slave thread after storing a joint ticket in its 
local data segment. The EnterJoinResult instruction is used by 
the slave thread to enter its result in the joint point identified by 
its join ticket. Execution of the EnterJoinResult instruction cause 
the slave thread to quit. The master thread may only read the join 
value by using the ReadJoinValue instruction which returns the 
join value if it is available, or suspends the master thread if the join 
value has not yet been entered. Note that the EnterJoinResult 



instruction must resume the master thread if it finds that the 
master thread has been suspended. 
All of these instructions are “architected”; that is, they are 
implemented by the Fresh Breeze hardware so that their 
rules of use cannot be violated. In particular, information in 
the join point or join ticket cannot be read or written by 
ordinary instructions. 

6. DETERMINACY 
Determinacy is the property of a system in which observable 
results are independent of permitted orders of internal events[17]. 
In a Fresh Breeze system, what is observable is the sequences of 
output values produced by threads. In a Fresh Breeze system each 
thread is sequential and operates on private data and fixed input 
data. Any heap operations performed by a thread either read fixed 
data or create new private data. Hence, by itself, operation of each 
single thread is determinate. Operations at a join point have been 
defined so that the result is independent of the order of thread 
arrival. Therefore, a combination of master and slave threads 
operating as we have specified has determinate behavior. Note that 
an error in program construction, such as an attempt by the master 
thread to issue a join ticket twice for the same join point, will 
cause a thread to hang. 
It should be noted that this guarantee of determinacy requires that 
no more than one slave thread be given a join ticket to the same 
join point. After all, if two asynchronous threads can arrive at the 
join point in either order, and the join point accepts the first to 
arrive, then a hazard will exist. This is avoided by having the 
spawn instruction set the join point flag when it issues a join 
ticket, and making it an error to attempt use of a marked join 
point. 

7. GENERALIZATION 
The basic scheme we have described can be the basis for 
constructing highly concurrent programs. The slave thread may act 
as master for another slave, etc. yielding a team of threads working 
together to produce a single result. The original master thread may 
initiate several slave subcomputations each with its own join 
point. However, the basic scheme does not provide for concurrent 
computations where the ultimate result is more than a single value. 
This limitation is overcome by the extensions discussed next. 

8. EXTENSIONS 
Two extensions to the basic scheme are combining operations and 
array construction. In a combining operation the combining 
operator (the join operator) must be associative and commutative. 
Such an operator may be used to combine a finite collection of 
result values yielding a final result that is independent of the order 
in which pairs of values are combined using the operator. To 
implement this using a collection of n slave threads, the join point 
is initialized with two counters set to the same integer n. The issue 
counter limits the number of slave threads that may be spawned. 
the join counter tallies the slave threads as each contributes its 
result value to an accumulator in the join point using the join 

operator. When exactly n threads have used their join tickets to 
contribute to the join point, the master thread is permitted to 
continue, using the final accumulated value in its further compu-
tation. It should be clear that this arrangement of threads also 
performs a determinate computation, by the same reasoning used 
for the basic scheme. 
The second extension uses a fixed number of slave threads to 
generate components of a data structure. In the Fresh Breeze 
machine, it is natural to associate a memory chunk (the join chunk) 
with the join point, and employ one slave thread to compute each 
of its components, either 32 scalar values or 16 pointers to 
arbitrary data structures. In this case we must be certain that each 
thread contributes the component at a specified index in the join 
chunk. This is done by giving each slave thread a join ticket that 
carries the index of its assigned component. Each spawn operation 
gives a slave thread a join ticket containing an index from the issue 
counter of the join point, and then increments the counter. As 
before, the number of slave threads is limited to the preset value of 
the join counter. When each slave thread exercises the join point, 
the value or pointer to a data structure it has created is installed in 
the join chunk at the index position given by its join ticket. This 
arrangement supports a general form of data parallel computation 
and includes the guarantee of determinacy. 

9. CASCADED DATA STRUCTURES 
A future is a special kind of value that can be a component of an 
array or data structure[2][16]. A future is an indication that a 
genuine data value will appear in its place at some future time. A 
future is similar to a join point in that it will receive a value when 
some thread provides it. It is different from a join point in that it 
is an element of a data structure instead of being a special entry in 
the local data segment of a thread. What is neat about futures is 
that they permit a thread to pass a data structure it is generating to 
a second thread that uses the data structure before the data 
structure is completely generated. 
A future has three states: undefined, defined, and waiting. 
Two operations are used with futures: Write and Read. The 
Write operation creates a future (as part of a data structure 
the thread is building). The future begins life undefined and 
empty. The producer thread that exe cutes the Write 
operation may pass the structure containing the future to a 
consumer thread of the data structure. Either of two events 
may follow. (1) The producer thread finishes computing a 
value and places it in the future, changing its state to 
defined; if the state was waiting it also resumes the 
consumer thread which can then make use of the value; or 
(2) the consumer thread performs a Read operation on the 
future. If the future is undefined, the consumer thread is 
suspended and a pointer to its status record is placed in the 
future, which changes to waiting status; if the future is 
defined the consumer thread continues with the value. 
This mechanism supports the concurrent processing of a 
cascade of data structure transformations, as might occur in 
a programming language compiler. It can also be used in the 



functional processing of database transactions as described 
in a later section. 

10. STREAMS 
Concurrent computations in the form of modules that 
communicate by passing streams of messages from one to another 
are important in the expression of signal processing and other 
computations[10][9][18]. These are naturally expressible in 
functional programming languages that include stream data 
types[20]. In the Fresh Breeze memory model a stream can have a 
representation that is a chain of chunks where the chunk at the 
beginning of the chain holds the next elements to be read from the 
stream, and the end of the chain is a future waiting to receive 
further elements yet to be computed. This arrangement of using 
futures for the implementation of streams again has the property 
of determinacy. Any assembly of Fresh Breeze threads producing 
and consuming streams of data using this implementation is 
guaranteed to be determinate. 

11. TRANSACTIONS 
So far we have only dealt with computations that may be readily 
expressed using determinate expressions in a functional 
programming language. The world of computing is larger than this: 
Some applications are inherently nondeterminate, for example 
when two agents compete asynchronously for the last seat on an 
airline flight. Such computations are said to deal with “state” and 
appear to require the use of program constructions that have “side 
effects”. 
Some computations appear to have “state” but are nevertheless 
determinate because the data comprising the sequence of states 
may be regarded as a stream of values. Such computations may be 
programmed in a purely functional language using stream data 
types. Here we deal with computations that are truly non-deter-
minate. 
A transaction is an action that is thought of as altering the values 
of one or more stored data records. Execution of a transaction by a 
program may be viewed as a communication (request and 
response) by the program with an external agent. In this view, the 
program, without the external agent, may be determinate while the 
overall operations of the system containing the program and 
external agent is nondeterminate. 
It is helpful to use a programming discipline that conforms to this 
view. In the Fresh Breeze execution model, transactions are 
supported by means of an object called a guard that occupies a 
memory chunk owned by the user responsible for the correct 
maintenance of the shared data, perhaps a large 
database[12][11][13]. The guard holds a pointer to the head 
element of a stream (initially empty) that will hold transaction 
requests. The instruction EnterRequest takes the guard and a data 
structure representing a transaction request as arguments, and 
installs the request as a new element of the request stream. Any 
thread that has been given a pointer to the guard object may 
execute the EnterRequest instruction, hence the guard is an 
implementation of the nondeterminate stream merge operator. It 

is the only source of nondeterminate behavior in a Fresh Breeze 
system. 
The stream of transaction requests can be processed by a 
transaction function that accepts the stream of requests and a data 
structure representing the starting state of the shared data or 
database. The transaction function reads the first transaction 
request from the request stream and uses it to construct a new 
version of the shared data. It then calls itself recursively with the 
remaining elements of the request stream and a pointer to the new 
version of the data. 
This arrangement permits several forms of parallelism in 
transacton processing: Firstly, the transaction function may 
expose parallelism within the performance of a single transaction. 
In addition, execution of several transactions from a single request 
stream may overlap if the transact function produces a future for 
the new version before completing its computation, just as with 
cascaded data structure construction discussed earlier. Of course 
one database may be partitioned into several sections for which 
separate streams of requests are processed concurrently; and 
many separate databases may be resident on the system. 

12. CONCLUSION 
The program execution model provided by a computer system has 
an enormous impact on the ability of programmers to efficiently 
build (create) quality software. A good program execution model 
can make the expression of algorithms straightforward and easy; 
the lack of a good program execution model can cause programs to 
be convoluted and difficult to develop, as is the case with parallel 
programming today. A good program execution model can support 
sound principles of program organization, such as the ability to 
build large programs using concepts of modular software. 

The most familiar program execution model is a process executing 
instructions that perform computations and read and write 
accesses to a linear array of memory cells. Computer scientists 
have made this simple model into a powerful tool for programming 
by developing means for composing programs out of subroutines 
and library modules. McCarthy's introduction of Lisp[19] showed 
how general classes of dynamic data structures can be supported 
within this simple model by adding dynamic memory allocation 
and garbage collection, providing a sophisticated level of generality 
within the simple model. 

Things became more complicated when we started running 
multiple programs on computers and began using operating 
systems that multiplexed use of the machine's resources. It became 
necessary to deal with concurrent processes that accessed shared 
data. More challenges were added with the introduction of 
multiple processor computer systems. For many years it has been 
customary for the user to duck the problems by writing sequential 
code that does not exploit the multiprocessing capability of such 
systems. This is no longer a tenable strategy. 

The common wisdom has been to ask: what is the right memory 
model to use when several processes or threads have concurrent 
access to a shared memory? In my view, this is a flawed approach. 



What is needed is not a memory model but rather a satisfactory 
program execution model. We build computers to perform 
computations that  are specified by programs, and it is program 
execution that we desire to be correct. The need is for a program 
execution model that encompasses concurrency and honors the 
principles of modular software construction. 

There are several program execution models for parallel 
computing: Operating system support for concurrent threads; 
language support through thread libraries as in Java or C; the 
Message Passing Interface (MPI)[21], the Threaded Abstract 
Machine (TAM)[4], Cilk and JCilk[14]; and now various versions 
of hardware or software implementations of Transactional 
Memory[15]. However, none of these schemes have gotten us 
away from the nemesis of dealing with shared memory. We must 
move away from the idea that a process can modify any data any 
time it chooses. We should recognize that the primary intent of a 
program is to create information, not destroy it. In most cases the 
intention of a store operation is to place new information in 
memory for future reference, not to overwrite information 
generated earlier. A failure of most program execution models for 
concurrent computation is the lack of a distinction between 
determinate and  nondeterminate computation. Today there is 
little excuse for expressing a determinate computation in a model 
or language that fails to guarantee determinate execution. Of the 
cited models, only MPI can provide such a guarantee, but only for 
its use in distibuted memory systems, and provided the 
programmer avoids sending messages from multiple sources to the 
same receiver. (Similar remarks hold with respect to the Erlang 
language[1].) 

In this presentation we have offered a program execution model 
that has some appealing qualities: (1) It satisfies the requirements 
for supporting modular construction of a general class of 
programs; (2) It provides a guarantee of determinate execution if 
the features supporting transactions are not used; (3) I believe it is 
amenable to efficient implementation, for example, using 
simultaneous multi-threading technology. 

One might ask whether the Fresh Breeze model is sufficiently 
general? With respect to determinate computations, the model 
supports all of the important paradigms of parallel computing I 
am familiar with. With respect to nondeterminate computations, I 
have explored the generality of functionally processing merged 
streams of transaction requests. I have convinced myself that the 
prospects are very good. I hope to convince others through further 
work and publications. 
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