
The Fresh Breeze Model of Thread Execution

Jack B. Dennis
MIT Computer Science and Artificial

Intelligence Laboratory
Cambridge, MA
617-253-6956

dennis@csail.mit.edu
ABSTRACT
We present the program execution model developed for the Fresh
Breeze Project, which has the goal of developing a multi-core chip
architecture that supports a better programming model for parallel
computing. The model combines the spawn/sync ideas of Cilk
with a restricted memory model based on chunks of memory that
can be written only while not shared. The result is a multi-thread
program execution model in which determinate behavior may be
guaranteed while general forms of parallel computation are
supported.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: Hardware/software
interfaces; D.1.1 [Programming Languages]: Applicative
(Functional) Programming; D.1.3 [Programming Languages]:
Concurrent Programming; D.3.3 [Programming Languages]:
Language Constructs and Features; E.1 [Data]: Data Structures.

General Terms
Design, Languages.

Keywords
Program execution model, concurrency, multithreading,
determinacy, streams, transactions.

1. INTRODUCTION
With multiprocessing becoming the usual mode of computing, it is
more pressing than ever to adopt a model of program execution
that supports general parallel programming while avoiding the
programing difficulties attending the coordination of concurrent
computations in contemporary systems.
This presentation concerns the program execution model
developed for the Fresh Breeze Project[8][6], which has the goal
of developing a multi-core chip architecture that supports a better
programming model for parallel computing, achieving high
performance through parallelism rather than increased clock speed.

The Fresh Breeze architecture explores a set of ideas that depart
from conventional computer architecture:

Simultaneous multithreading can improve the uti-
lization of function units and allow more effective latency
tolerance of memory transactions[22].
A global shared address space permits abolition of
the conventional distinction between “memory” and
the file system, and supports a superior execution
environment meeting requirements of program
modularity and software reuse[3][5]
No memory update of shared data in a Fresh Breeze
computer system eliminates the multiprocessor cache
coherence problem: any object retrieved from the memory
system is immutable.
Cycle-free heap. The no-update rule In a Fresh Breeze
computer system makes it easy to prevent the formation
of pointer cycles[7]. Efficient reference-count garbage
collection can be implemented in the hardware.

We will show how a program execution model based on these
ideas can provide a platform for robust, general-purpose, parallel
computation. In particular, much of the difficulty of writing
correct parallel programs stems from problems in getting
synchronization correct. The commonly used methods of thread
coordination are prone to exhibiting nondeterminate behavior,
making errors difficult to track down. Moreover, getting control
synchronization correct is no guarantee that accesses to data will
be effected without hazard, especially when memory access has
significant latency and memory is shared among concurrently
executing threads.
Our hypothesis is that handling control and data coordination
separately is a bad idea. Here we explore an approach in which
data and control synchronization are always performed together,
as a single atomic operation. This is offered as an alternative to
transactional memory approaches that add complexity, often
including redundant computation and retry mechanisms.

Principle: Combine control and data synchronization in
the design of mechanisms for coordinating concurrent
activities.

We begin with an introduction to the Fresh Breeze memory model.
The program execution structure of threads of control and method
activations is described. Then we present the basic concurrent
programming structure of this paper, an adaptation of the classic
fork/join control primitives for concurrent processes. We argue
that use of this program structure yields multi-thread programs

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.

that are guaranteed to be determinate. Subsequent sections deal
with generalization and extension of the basic concept to programs
that operate on data structures and data streams. How a Fresh
Breeze system can be used to run inherently nondeterminate
computations such as general transaction processing is discussed
in the final section.

2. FRESH BREEZE MEMORY MODEL
The Fresh Breeze architecture views memory as a collection of
fixed-size chunks, each holding 1024 bits of code or data. A chunk
may hold 32 words of 32 bits each, 16 double length words, or 32
instructions of a program method. Each chunk has a unique 64-bit
identifier (UID) that serves as a pointer for accessing the chunk. A
chunk may also hold up to 16 UIDs to represent structured
information. For example, a three-level tree of chunks could
represent an array of 16 * 16 * 32 elements.
The collection of chunks containing pointers to other chunks
forms a heap which may be regarded as a graph. The Fresh Breeze
program execution model is designed so that cycles in the heap
cannot be constructed. This is ensured by the rule that updates to
the contents of chunks are disallowed once they are shared, and
marking pointers to chunks in process of definition (creation) so
that a thread may not store them in any chunk that is under
construction.
In a Fresh Breeze system all on-line data, including files and
databases, are held in the chunk memory as data structures in the
heap.
In the following, we will show how this memory model can
support a variety of program constructions for parallel
computation.

3. PROGRAM EXECUTION
Computation in a Fresh Breeze system is carried out by method
activations on behalf of a system user. Computation in a method
activation is performed by exactly one thread of instruction
execution. The thread has access to the code segment of the
method, a local data segment, and a set of registers that hold
intermediate results. The code segment is read-only and may be
shared by many threads for different method activations. The
registers and local data segment are private data of the thread and
are only accessible to it.
Note that in this model of computation, a thread (method
activation) can only access information in the heap that it creates
or that is given to it when it begins execution.

4. FORMS OF PARALLELISM
Functional programming languages are known to offer better
programmer productivity due to their freedom from side-effects
and the mathematical properties of expressions. Another benefit
of functional programming languages is the ease of identifying
parts of computations that may be executed concurrently. In
particular, several important forms of concurrency are naturally
represented in functional programs:

Expressions. Subexpressions may always be evaluated

concurrently with other subexpressions.
Functions. Function applications may be evaluated
concurrently if none uses the results of others.
Data Parallel. The general expression for an array
element may be evaluated concurrently over all elements
of the array.
Producer/Consumer. If one program module passes a
series of values to a second module, then both modules
may run concurrently.
Cascaded Data Structure Construction. This is a kind
of generalization of producer/consumer concurrency and
will be treated in a later section.

We will show how our thread coordination model supports
each of these forms of parallelism.

5. THE BASIC SCHEME
Our basic program structure for concurrency is an adaptation of
the fork/join model and is similar to the concurrency scheme of
Cilk[14]. A master thread spawns a slave thread (executing a new
function activation) that performs an independent computation
and terminates by joining with the master thread. The problem to
be solved is that of performing the join in a safe manner -- in a
way that does not introduce the possibility of hazards. For the
present we assume that the slave computation is contributing a
single value (one computer word) to the computation being
performed by the master thread.
Because, in our model, there is no shared data between the master
and slave threads, updating shared data cannot be used to
communicate the slave result to the master. (This is good because
a shared data mechanism would likely introduce possible hazards.)
Our scheme is the following: When the master spawns the slave
thread, it initializes a join point and provides the slave thread with
a join ticket that permits it to exercise (use) the join point. The join
point is a special entry in the local data segment of the master
thread that has (1) space for a record of master thread status; and
(2) space for the result value that will be computed by the slave
thread. The join point includes a flag that indicates whether a
value has been entered by the slave thread, and a flag that indicates
that a join ticket has been issued.
A join ticket is similar to the return address of a method, and is
held at a protected location in the local data segment of the slave
method activation. It consists of (1) the unique identifier (pointer)
of the local data segment of the master thread; and (2) the index of
the join point within the master thread local data segment.
Special instructions are provided to access a join point. The
instruction. The Spawn instruction sets a flag in the join point and
starts execution by the slave thread after storing a joint ticket in its
local data segment. The EnterJoinResult instruction is used by
the slave thread to enter its result in the joint point identified by
its join ticket. Execution of the EnterJoinResult instruction cause
the slave thread to quit. The master thread may only read the join
value by using the ReadJoinValue instruction which returns the
join value if it is available, or suspends the master thread if the join
value has not yet been entered. Note that the EnterJoinResult

instruction must resume the master thread if it finds that the
master thread has been suspended.
All of these instructions are “architected”; that is, they are
implemented by the Fresh Breeze hardware so that their
rules of use cannot be violated. In particular, information in
the join point or join ticket cannot be read or written by
ordinary instructions.

6. DETERMINACY
Determinacy is the property of a system in which observable
results are independent of permitted orders of internal events[17].
In a Fresh Breeze system, what is observable is the sequences of
output values produced by threads. In a Fresh Breeze system each
thread is sequential and operates on private data and fixed input
data. Any heap operations performed by a thread either read fixed
data or create new private data. Hence, by itself, operation of each
single thread is determinate. Operations at a join point have been
defined so that the result is independent of the order of thread
arrival. Therefore, a combination of master and slave threads
operating as we have specified has determinate behavior. Note that
an error in program construction, such as an attempt by the master
thread to issue a join ticket twice for the same join point, will
cause a thread to hang.
It should be noted that this guarantee of determinacy requires that
no more than one slave thread be given a join ticket to the same
join point. After all, if two asynchronous threads can arrive at the
join point in either order, and the join point accepts the first to
arrive, then a hazard will exist. This is avoided by having the
spawn instruction set the join point flag when it issues a join
ticket, and making it an error to attempt use of a marked join
point.

7. GENERALIZATION
The basic scheme we have described can be the basis for
constructing highly concurrent programs. The slave thread may act
as master for another slave, etc. yielding a team of threads working
together to produce a single result. The original master thread may
initiate several slave subcomputations each with its own join
point. However, the basic scheme does not provide for concurrent
computations where the ultimate result is more than a single value.
This limitation is overcome by the extensions discussed next.

8. EXTENSIONS
Two extensions to the basic scheme are combining operations and
array construction. In a combining operation the combining
operator (the join operator) must be associative and commutative.
Such an operator may be used to combine a finite collection of
result values yielding a final result that is independent of the order
in which pairs of values are combined using the operator. To
implement this using a collection of n slave threads, the join point
is initialized with two counters set to the same integer n. The issue
counter limits the number of slave threads that may be spawned.
the join counter tallies the slave threads as each contributes its
result value to an accumulator in the join point using the join

operator. When exactly n threads have used their join tickets to
contribute to the join point, the master thread is permitted to
continue, using the final accumulated value in its further compu-
tation. It should be clear that this arrangement of threads also
performs a determinate computation, by the same reasoning used
for the basic scheme.
The second extension uses a fixed number of slave threads to
generate components of a data structure. In the Fresh Breeze
machine, it is natural to associate a memory chunk (the join chunk)
with the join point, and employ one slave thread to compute each
of its components, either 32 scalar values or 16 pointers to
arbitrary data structures. In this case we must be certain that each
thread contributes the component at a specified index in the join
chunk. This is done by giving each slave thread a join ticket that
carries the index of its assigned component. Each spawn operation
gives a slave thread a join ticket containing an index from the issue
counter of the join point, and then increments the counter. As
before, the number of slave threads is limited to the preset value of
the join counter. When each slave thread exercises the join point,
the value or pointer to a data structure it has created is installed in
the join chunk at the index position given by its join ticket. This
arrangement supports a general form of data parallel computation
and includes the guarantee of determinacy.

9. CASCADED DATA STRUCTURES
A future is a special kind of value that can be a component of an
array or data structure[2][16]. A future is an indication that a
genuine data value will appear in its place at some future time. A
future is similar to a join point in that it will receive a value when
some thread provides it. It is different from a join point in that it
is an element of a data structure instead of being a special entry in
the local data segment of a thread. What is neat about futures is
that they permit a thread to pass a data structure it is generating to
a second thread that uses the data structure before the data
structure is completely generated.
A future has three states: undefined, defined, and waiting.
Two operations are used with futures: Write and Read. The
Write operation creates a future (as part of a data structure
the thread is building). The future begins life undefined and
empty. The producer thread that exe cutes the Write
operation may pass the structure containing the future to a
consumer thread of the data structure. Either of two events
may follow. (1) The producer thread finishes computing a
value and places it in the future, changing its state to
defined; if the state was waiting it also resumes the
consumer thread which can then make use of the value; or
(2) the consumer thread performs a Read operation on the
future. If the future is undefined, the consumer thread is
suspended and a pointer to its status record is placed in the
future, which changes to waiting status; if the future is
defined the consumer thread continues with the value.
This mechanism supports the concurrent processing of a
cascade of data structure transformations, as might occur in
a programming language compiler. It can also be used in the

functional processing of database transactions as described
in a later section.

10. STREAMS
Concurrent computations in the form of modules that
communicate by passing streams of messages from one to another
are important in the expression of signal processing and other
computations[10][9][18]. These are naturally expressible in
functional programming languages that include stream data
types[20]. In the Fresh Breeze memory model a stream can have a
representation that is a chain of chunks where the chunk at the
beginning of the chain holds the next elements to be read from the
stream, and the end of the chain is a future waiting to receive
further elements yet to be computed. This arrangement of using
futures for the implementation of streams again has the property
of determinacy. Any assembly of Fresh Breeze threads producing
and consuming streams of data using this implementation is
guaranteed to be determinate.

11. TRANSACTIONS
So far we have only dealt with computations that may be readily
expressed using determinate expressions in a functional
programming language. The world of computing is larger than this:
Some applications are inherently nondeterminate, for example
when two agents compete asynchronously for the last seat on an
airline flight. Such computations are said to deal with “state” and
appear to require the use of program constructions that have “side
effects”.
Some computations appear to have “state” but are nevertheless
determinate because the data comprising the sequence of states
may be regarded as a stream of values. Such computations may be
programmed in a purely functional language using stream data
types. Here we deal with computations that are truly non-deter-
minate.
A transaction is an action that is thought of as altering the values
of one or more stored data records. Execution of a transaction by a
program may be viewed as a communication (request and
response) by the program with an external agent. In this view, the
program, without the external agent, may be determinate while the
overall operations of the system containing the program and
external agent is nondeterminate.
It is helpful to use a programming discipline that conforms to this
view. In the Fresh Breeze execution model, transactions are
supported by means of an object called a guard that occupies a
memory chunk owned by the user responsible for the correct
maintenance of the shared data, perhaps a large
database[12][11][13]. The guard holds a pointer to the head
element of a stream (initially empty) that will hold transaction
requests. The instruction EnterRequest takes the guard and a data
structure representing a transaction request as arguments, and
installs the request as a new element of the request stream. Any
thread that has been given a pointer to the guard object may
execute the EnterRequest instruction, hence the guard is an
implementation of the nondeterminate stream merge operator. It

is the only source of nondeterminate behavior in a Fresh Breeze
system.
The stream of transaction requests can be processed by a
transaction function that accepts the stream of requests and a data
structure representing the starting state of the shared data or
database. The transaction function reads the first transaction
request from the request stream and uses it to construct a new
version of the shared data. It then calls itself recursively with the
remaining elements of the request stream and a pointer to the new
version of the data.
This arrangement permits several forms of parallelism in
transacton processing: Firstly, the transaction function may
expose parallelism within the performance of a single transaction.
In addition, execution of several transactions from a single request
stream may overlap if the transact function produces a future for
the new version before completing its computation, just as with
cascaded data structure construction discussed earlier. Of course
one database may be partitioned into several sections for which
separate streams of requests are processed concurrently; and
many separate databases may be resident on the system.

12. CONCLUSION
The program execution model provided by a computer system has
an enormous impact on the ability of programmers to efficiently
build (create) quality software. A good program execution model
can make the expression of algorithms straightforward and easy;
the lack of a good program execution model can cause programs to
be convoluted and difficult to develop, as is the case with parallel
programming today. A good program execution model can support
sound principles of program organization, such as the ability to
build large programs using concepts of modular software.

The most familiar program execution model is a process executing
instructions that perform computations and read and write
accesses to a linear array of memory cells. Computer scientists
have made this simple model into a powerful tool for programming
by developing means for composing programs out of subroutines
and library modules. McCarthy's introduction of Lisp[19] showed
how general classes of dynamic data structures can be supported
within this simple model by adding dynamic memory allocation
and garbage collection, providing a sophisticated level of generality
within the simple model.

Things became more complicated when we started running
multiple programs on computers and began using operating
systems that multiplexed use of the machine's resources. It became
necessary to deal with concurrent processes that accessed shared
data. More challenges were added with the introduction of
multiple processor computer systems. For many years it has been
customary for the user to duck the problems by writing sequential
code that does not exploit the multiprocessing capability of such
systems. This is no longer a tenable strategy.

The common wisdom has been to ask: what is the right memory
model to use when several processes or threads have concurrent
access to a shared memory? In my view, this is a flawed approach.

What is needed is not a memory model but rather a satisfactory
program execution model. We build computers to perform
computations that are specified by programs, and it is program
execution that we desire to be correct. The need is for a program
execution model that encompasses concurrency and honors the
principles of modular software construction.

There are several program execution models for parallel
computing: Operating system support for concurrent threads;
language support through thread libraries as in Java or C; the
Message Passing Interface (MPI)[21], the Threaded Abstract
Machine (TAM)[4], Cilk and JCilk[14]; and now various versions
of hardware or software implementations of Transactional
Memory[15]. However, none of these schemes have gotten us
away from the nemesis of dealing with shared memory. We must
move away from the idea that a process can modify any data any
time it chooses. We should recognize that the primary intent of a
program is to create information, not destroy it. In most cases the
intention of a store operation is to place new information in
memory for future reference, not to overwrite information
generated earlier. A failure of most program execution models for
concurrent computation is the lack of a distinction between
determinate and nondeterminate computation. Today there is
little excuse for expressing a determinate computation in a model
or language that fails to guarantee determinate execution. Of the
cited models, only MPI can provide such a guarantee, but only for
its use in distibuted memory systems, and provided the
programmer avoids sending messages from multiple sources to the
same receiver. (Similar remarks hold with respect to the Erlang
language[1].)

In this presentation we have offered a program execution model
that has some appealing qualities: (1) It satisfies the requirements
for supporting modular construction of a general class of
programs; (2) It provides a guarantee of determinate execution if
the features supporting transactions are not used; (3) I believe it is
amenable to efficient implementation, for example, using
simultaneous multi-threading technology.

One might ask whether the Fresh Breeze model is sufficiently
general? With respect to determinate computations, the model
supports all of the important paradigms of parallel computing I
am familiar with. With respect to nondeterminate computations, I
have explored the generality of functionally processing merged
streams of transaction requests. I have convinced myself that the
prospects are very good. I hope to convince others through further
work and publications.

13. ACKNOWLEDGMENT
This work is supported by National Science Foundation research
grant 9527253.

14. REFERENCES
[1] Armstrong, J., Virding, R., Wikström, C., and Williams, M.

Concurrent Programming in Erlang, Second Ed., Prentice
Hall, 1996.

[2] Baker, H., and Hewitt, C. Specifying and Proving Properties
of Guardians for Distributed Systems, Artificial Intelligence
Memo 505, MIT Art ificial Intelligence Laboratory,
Cambridge MA, June 1979.

[3] Bensoussan, A. Clingen, C. T., and Daley, R. C. The Multics
virtual memory. In Proceedings of the Second Symposium on
Operating System Principles, ACM, 1969, 484-492.

[4] Culler, D. E., Goldstein, S. C., Schauser, K. E., and
Voneicken, T. TAM – a compiler controlled threaded
abstract machine, Journal of Parallel and Distributed
Computing 18, 3 (July 1993), 347-370.

[5] Daley, R. C., and Dennis, J. B. Virtual memory, processes
and sharing in Multics. Communications of the ACM 11, 5
(May 1968), 306-312.

[6] Dennis, J. B. Fresh Breeze: A multiprocessor chip
architecture guided by modular programming principles. ACM
SIGARCH Computer Architecture News 31, 1 (March 2003)
7-15.

[7] Dennis, J. B. General parallel computation can be performed
with a cycle-free heap. In Proceedings of the 1998
International Conference on Parallel Architectures and
Compiling Techniques, IEEE Computer Society, 1998, 96-
103.

[8] Dennis, J. B. A parallel program execution model supporting
modular software construction. In Third Working Conference
on Massively Parallel Programming Models , IEEE Computer
Society, 1998, 50-60.

[9] Dennis, J. B. Static mapping of functional programs: an
example in signal processing. In Proceedings of the conference
on High Performance Functional Computing. A. P. Vim and
John Feo, eds., Lawrence Livermore National Laboratory,
Livermore, CA, 1995.

[10] Dennis, J. B. Stream data types for signal processing. In
Advances in Dataflow Architecture and Multithreading. J.-L.
Gaudiot and L. Bic, eds., IEEE Computer Society, 1995.

[11] Dennis, J. B. Data Should not Change: A Model for a
Computer System . Computation Structures Group Memo
209, MIT Laboratory for Computer Science, Cambridge MA,
July 1981.

[12] Dennis, J. B. A language design for structured concurrency.
In Lecture Notes in Computer Science, Volume 54: Design
and Implementation of Programming Languages . Berlin:
Springer-Verlag, 1977, 231-242.

[13] Dennis, J. B., and Wu, H. Practicing the Object Modeling
Technology in a Functional Programming Framework.

Computation Structures Group Memo 379, MIT Laboratory
for Computer Science, Cambridge, MA, 1996.

[14] Frigo, M., Leiserson, C., and Randall, K. H. The
implementation of the Cilk-5 multithreaded language. In
Proceedings of the ACM SIGPLAN ’98 Conference on
Programming language design and Implementation, ACM
SIGPLAN Notices 33, 5 (May1998).

[15] Herlihy, M., and Moss, J. E. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th International Symposium on
Computer Architecture, IEEE Computer Society, 1993, 289-
300.

[16] Hewitt, C. Viewing control structures as patterns of passing
messages. Journal of Artificial Intelligence 8, 3 (1977), 323-
364.

[17] Karp, R. M., and Miller, R. E. Properties of a model for
parallel computations: determinacy, termination, queueing.
SIAM Journal of Applied Mathematics 14, 6 (Nov. 1966),
1390-1411.

[18] Lamb, A. A., Thies, W., and Amerasinghe, A. Linear
Analysis and optimization of stream programs. In

Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation, June 2003.

[19] McCarthy, J. History of LISP. In History of Programming
Languages: The First ACM SIGPLAN Conference on History
of Programming Languages , New York: ACM Press, 1978,
217-223.

[20] McGraw, J., Skedzielewski, S., Oldehoeft, A., Glauert, J.,
Kirkham, C., Noyce, B., and Thomas, R. SISAL: Streams and
Iteration in a Single Assignment Language: Language
Reference Manual Version 1.2. Technical Report M-146,
Rev. 1. Lawrence Livermore National Laboratory, Livermore,
CA, 1985.

[21] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and
Dongara, J. The MPI Core, second ed., The MIT Press,
Cambridge, MA, 1998.

[22] Tullsen, D. M., Eggers, S. J., and Levy, H. Simultaneous
multithreading: Maximizing on-chip parallelism. In
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, IEEE Computer Society, 1995, 392-
403.

