bluespec ESL

SYNTHESIS

The Zen of SoCs in BSV:
The Threefold Path to SoC Nirvana

Elliot Mednick
Bluespec, Inc

MIT Bluespec Workshop
August 13, 2007

The Problem

e Designing SoCs is hard

e Writing IP is hard

 Changing SoC configurations is hard
* You are suffering

hluespec

The Threefold Path to SoC Nirvana

1. Right Connections
Transactional interfaces

2. Right Abstraction
As high as possible, but no higher

3. Right Wrapping

Using BSV as a top level, and instantiating Verilog from BSV

hluespec

The Firstfold Step: Right Interconnects

All connections through transactional get/put interfaces
— Master-to-Slave
— Master-to-fabric, fabric-to-Slave

Allows neatrly trivial IP and interconnect(!) swaps
Already in AzurelP library

Currently supports AXI, AHB buses

OPB to be added next

Synthesizability unique to BSV

hluespec

So simple...

Master IP

Master I/F

mkConnection

Slave I/F

In a system

AXI/AHB/OPB

Master IP

Master I/F

mkConnection

Slave I/F

Slave IP

Master I/F

mkConnection

Slave I/F

Slave IP

hluespec

The Secondfold Step: Right Abstraction

* Use a mix of abstractions, where each is the highest
(reasonable) level of abstraction

e Most here familiar with Bluespec implementations — and how
high-level they are relative to RTL

o With this effort, also show synthesizable models:
— Write IP quickly, as if it were a “C” model
— Ignore (mostly) hardware performance optimizations, like pipelining

— For example: PowerPC “synthesizable ISS”
« One rule per instruction, mostly
« Very fast Bluesim simulation speed (1-10MIPs)
» “Good Enough” hardware performance (100MIPSs)
« “Good Enough” area (<1000 LUTS)
« Easy to implement

— Atest: PCI-E

Is there a subset that will work on a PC host that is fast enough to meet timing
using high-abstraction techniques?

« We will find out

— Synthesizability using to BSV

hluespec

Sample code snippet

rule compare_log_imm(check opcode(pc)==Cmpli);
endrule

rule cntlzw (check opcode(pc) == Cntlzw);

endrule

rule cror (check opcode(pc) == Cror);
end;ule

rule crxor (check opcode(pc) == Crxor);
endrule

hluespec

The Thirdfold Step: Right Wrapping

* Use ImportBVI to access legacy Verilog models from BSV

o First test: Wrap Xilinx’s PPC to connect it to AzurelP
Interfaces

o Second test: Wrap Xilinx’s Ethernet MAC

* Also need to wrap Xilinx-specific libraries
. Distributed RAM Blocks
. Queues
. MPMC2?

« Later: Develop wrapping methodology
o A little more later: write a tool to do it, a la SWIG
o Synthesizability unigue to BSV

hluespec

Wrapping IP

Master IP Xilinx PPC

Master I/F Verilog module
mkConnection

Slave I/F ‘

AXI/AHB/OPB

Master I/F

Master I/F

mkConnection

Slave I/F

B E B Slave IP EE N

hluespec

10

The Demonstration Vehicle

e Substrate: Xilinx Virtex-4 FX (100)

e Processor: PowerPC 405
. Xilinx and Bluespec/BSV versions

e OS: Linux 2.6.X

e Application 1: FTP server
. IP: Ethernet MAC, flash/'SDRAM memory, interconnect
. AzurelP interconects
. Xilinx MAC

* Application 2: Digital Video Recorder

. Additional IP: H.264, PCI-Express
« BSV H.264 from MIT
« BSV PCI-E by Bluespec

e SoC Nirvana

hluespec

The Platform

 Avnet PCI-E Development Board

..... 4 bl T M e -

=

JTTLE] |

12

Current Status

e Just starting

« FTP Server by Q4/07
 DVR basics by Q1/08
* Nirvana by tbd

hluespec

13

Contact info

Elliot Mednick
elliot@bluespec.com

hluespec

