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The Problem

e Designing SoCs is hard

e Writing IP is hard

 Changing SoC configurations is hard
* You are suffering
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The Threefold Path to SoC Nirvana

1. Right Connections
Transactional interfaces

2. Right Abstraction
As high as possible, but no higher

3. Right Wrapping

Using BSV as a top level, and instantiating Verilog from BSV
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The Firstfold Step: Right Interconnects

All connections through transactional get/put interfaces
— Master-to-Slave
— Master-to-fabric, fabric-to-Slave

Allows neatrly trivial IP and interconnect(!) swaps
Already in AzurelP library

Currently supports AXI, AHB buses

OPB to be added next

Synthesizability unique to BSV
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So simple...

Master IP

Master I/F

mkConnection

Slave I/F

In a system

AXI/AHB/OPB

Master IP

Master I/F

mkConnection

Slave I/F

Slave IP

Master I/F

mkConnection

Slave I/F

Slave IP
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The Secondfold Step: Right Abstraction

* Use a mix of abstractions, where each is the highest
(reasonable) level of abstraction

e Most here familiar with Bluespec implementations — and how
high-level they are relative to RTL

o With this effort, also show synthesizable models:
— Write IP quickly, as if it were a “C” model
— Ignore (mostly) hardware performance optimizations, like pipelining

— For example: PowerPC “synthesizable ISS”
« One rule per instruction, mostly
« Very fast Bluesim simulation speed (1-10MIPs)
» “Good Enough” hardware performance (100MIPSs)
« “Good Enough” area (<1000 LUTS)
« Easy to implement

— Atest: PCI-E

Is there a subset that will work on a PC host that is fast enough to meet timing
using high-abstraction techniques?

« We will find out

— Synthesizability using to BSV

hluespec



Sample code snippet

rule compare_log_imm(check opcode(pc)==Cmpli);
endrule

rule cntlzw (check opcode(pc) == Cntlzw);

endrule

rule cror (check opcode(pc) == Cror);
end;ule

rule crxor (check opcode(pc) == Crxor);
endrule
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The Thirdfold Step: Right Wrapping

* Use ImportBVI to access legacy Verilog models from BSV

o First test: Wrap Xilinx’s PPC to connect it to AzurelP
Interfaces

o Second test: Wrap Xilinx’s Ethernet MAC

* Also need to wrap Xilinx-specific libraries
. Distributed RAM Blocks
. Queues
. MPMC2?

« Later: Develop wrapping methodology
o A little more later: write a tool to do it, a la SWIG
o Synthesizability unigue to BSV
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Wrapping IP

Master IP Xilinx PPC

Master I/F Verilog module
mkConnection

Slave I/F ‘

AXI/AHB/OPB

Master I/F

Master I/F

mkConnection

Slave I/F

B E B Slave IP EE N
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The Demonstration Vehicle

e Substrate: Xilinx Virtex-4 FX (100)

e Processor: PowerPC 405
. Xilinx and Bluespec/BSV versions

e OS: Linux 2.6.X

e Application 1: FTP server
. IP: Ethernet MAC, flash/'SDRAM memory, interconnect
. AzurelP interconects
. Xilinx MAC

* Application 2: Digital Video Recorder

. Additional IP: H.264, PCI-Express
« BSV H.264 from MIT
« BSV PCI-E by Bluespec

e SoC Nirvana
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The Platform

 Avnet PCI-E Development Board

..... 4 bl T M e -

=

JTTLE] |



12

Current Status

e Just starting

« FTP Server by Q4/07
 DVR basics by Q1/08
* Nirvana by tbd
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Contact info

Elliot Mednick
elliot@bluespec.com
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