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The Design Challenge

Timing model complexity

Reduced development time

Relationship between Host Cycles and 
Target Cycles

Statistic and Tracing Integration

FAST Connectors
Influenced by Asim Ports and 
discussions with Joel and Michael



FAST Timing Model
FAST Timing Model

Modules model behavior
Connectors abstract 
performance information 
from modules 
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FAST Connector
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Leveraging Bluespec

Parameters. Enable connector design to be reused 
through the design
Arguments. Enable compile-time 
targeting/allocation of FPGA resources
Function Passing. Enable Statistics and Tracing to 
be easily customized for each instantiation   
Building Blocks.  Complex mechanism designed 
from little more than a FIFO and handful of registers
Conditional Execution. Simple to enforce 
simulation correctness



Example : Rename

Rename module written to handle one register 
rename at a time
Connectors enable the same rename module to 
model different architectures

Rename

To = 1 Ti = 1

Rename

To = 4 Ti = 4

Single Issue:

4-way Issue:



Simple Example
Ti = 1, To = 1, D = 1, Trans = 2
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Ti = 1, To = 1, D = 1, Trans = 2

Simple Example
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Stats & Tracing
Connectors used everywhere

Factor in common functionality 
Statistics

Stats module passed into the connector 
configured via a function for selective stats collection

Trace
Buffer maintains data past its transferal through the 
connector
Log = all data, Trace = selective instructions
Dump of saved data can be event triggered or continuous
Triggered dump provides a record of events that precede 
the trigger event



Our Challenges
RWires versus registers
Need Integer to Numeric Type conversion 
Connections are specified by passing interfaces

Flattens the hierarchy 
Prevents incremental synthesis 
Move to soft connections

Enable efficient Routing on FPGA
Statistics and Trace Information
Desire a single-point of communication outside of 
FPGA (possible to push back through connectors)

Pack / Unpack for C – Bluespec conversion



FAST Connector Conclusions
Simplifies modules by 

Decoupling timing from behavior 
Enables the sequential modeling of parallel actions

Automatically introduces configurability
Throughput
Delay
Outstanding events

Can relax lock-step behavior between modules
Facilitates debug and analysis enabling statistics 
and trace capture



BACK UP SLIDES



FAST Connector Benefits

Simplifies modules by 
decoupling timing from behavior 
ENABLES THE sequential modeling of parallel actions

Increases flexibility of the design and enable design 
exploration by enabling variable delay, to include 0-
delay (via a bypassed register), and variable 
throughput
Increases simulation speed by removing the need 
for global synchronization between data processing 
and transferal between modules
Facilitates debug and analysis enabling statistics 
and trace capture

? Backup (this is mostly 

covered in  “Design Challenge”)



Synchronizing Data Flow
Normal Operation

connector counts ENQs (DEQs)
asserts ‘done’ to the module and blocks buffer access 
if Ti (To) is reached; 
on receipt of ‘commit’ from the modules, increments 
time and unblocks buffer access

Zero data flow modeled by …
Connector asserting ‘done’ without enabling 
ENQ/DEQ
Module asserting ‘commit’ without ENQing/DEQing
The connector uses the enqueued count (or time 
stamps) in lieu of explicit “null” messages to maintain 
target-cycle synchronization



Connector Code 
(Lockstep, Fully Buffered Implementation)

module mkConnect_lockstepFB#(…
…
// internal components

FIFOF#(Bit#(counterSize_t)) enqCntFIFO <- mkSizedFIFOF(delay);
ConnectFIFO#(data_t, Bit#(bufferIndex_t)) buffer <- mkConnectFIFO(mem, bufferSize);
Reg#(Bool) pCmt <- mkReg(False);
Reg#(Bool) cCmt <- mkReg(False);
Reg#(Bit#(counterSize_t)) toEnq <- mkReg(fromInteger(enqNum));
Reg#(Bit#(counterSize_t)) toDeq <- mkReg(0);
Reg#(Bit#(counterSize_t)) enqCount <- mkReg(0);
Reg#(Bit#(counterSize_t)) deqCount <- mkReg(0);
Reg#(Bit#(counterSize_t)) transCount <- mkReg(0);
Reg#(UInt#(TimeWidth)) tgtTime <- mkReg(0);
Reg#(Bit#(TLog#(MaxDelay))) delayTime <- mkReg(fromInteger(delay));

// internal variables
let blockENQ = (pCmt || toEnq==0); 
let blockDEQ = (cCmt || deqCount==fromInteger(deqNum) || toDeq==0);
let blockPcmt = pCmt;
let blockCcmt = cCmt;  
let pDone = ( !pCmt && toEnq==0);
let cDone = ( !cCmt &&  ( deqCount==fromInteger(deqNum) || toDeq==0 ) );



Connector Code (cont)

rule cycleEndProcessing (init && pCmt && cCmt);
// compute values for next cycle

let ntransCount = transCount + enqCount - deqCount;
let nEnq =  min ( fromInteger(enqNum),

(fromInteger(bufferSize)-ntransCount) );
if (transLimit!=0)

nEnq = min(nEnq, (fromInteger(transLimit)-ntransCount));
if (nEnq < fromInteger(enqNum)) 

nEnq = 0;
enqCntFIFO.enq(enqCount);
let addnDeq = 0; 
if (delayTime>0) begin

delayTime <= delayTime - 1;
if (delayTime==1)  enqCntFIFO.deq();

end else begin
addnDeq = enqCntFIFO.first();
enqCntFIFO.deq();

end

endrule

// assign register values
tgtTime <= tgtTime +1;
transCount <= ntransCount;
toEnq <= nEnq;
toDeq <= toDeq + addnDeq; 
pCmt <= False;
cCmt <= False;
enqCount <= 0;
deqCount <= 0; 



Connector Code (cont)

interface ProducerPort p;

method Action enq(data) if (init && !blockENQ);
buffer.enq(data);
toEnq <= toEnq - 1;
enqCount <= enqCount + 1;
stats <= data;

endmethod
method Action commit () if (init && !blockPcmt);

pCmt <= True;
endmethod    
method Bool done = pDone;  
method UInt#(TimeWidth) getTime = tgtTime;

endinterface

interface ConsumerPort c;  

method Action deq() if (init && !blockDEQ);  
buffer.deq();
toDeq <= toDeq - 1;
deqCount <= deqCount + 1;

endmethod
method data_t first() if (init && !blockDEQ);   

return buffer.first();
endmethod
method Action commit () if (init && !blockCcmt);

cCmt <= True;
endmethod
method Bool dataReady = ( init && !blockDEQ );    

method Bool done = cDone;
method UInt#(TimeWidth) getTime = tgtTime;

endinterface



Example FAST Architecture
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Modeling Time
Two target-cycle times are LOGICALLY maintained, 
one at each end of the connector
Decoupling the logical time at each end of the 
connector is possible to enable modules to advance 
as soon as data is ready 
Target-cycle times are incremented upon receipt of 
‘commit’ thus enabling multiple host-cycles to be 
used in modeling the behavior


