
Design and
Implementation of FAST

Module Connectors

Bill Reinhart
UT-FAST Group

University of Texas

FAST Methodology
FAST

Functional Model partition
Timing Model partition

Functional
Model

(SOFTWARE)

Timing
Model

(FPGA)

Instruction Stream

Feedback

The Design Challenge

Timing model complexity

Reduced development time

Relationship between Host Cycles and
Target Cycles

Statistic and Tracing Integration

FAST Connectors
Influenced by Asim Ports and
discussions with Joel and Michael

FAST Timing Model
FAST Timing Model

Modules model behavior
Connectors abstract
performance information
from modules

Connectors
Configurable interfaces
Time

Delay
Throughput
Outstanding
Transactions

Stats and Tracing

Fetch
L1

ICache

Decode

Rename

Res Stations

Br ALU Ld
St

L1
DCache

L2
Cache

Memory

ROB

BP

Arbiter

A
r
b
i
t
e
r

: Connector

FAST Connector

enq

getTime

done

commit

deq

getTime

done

commit

first

Stats
Module

Trace
Module

Producer Interface Consumer Interface

Stats & Trace Interface rtnStats triggerDump
trace_OnOff

In
Throughput

(Ti)

Out
Throughput

(To)

Delay

Transaction
Limit

Leveraging Bluespec

Parameters. Enable connector design to be reused
through the design
Arguments. Enable compile-time
targeting/allocation of FPGA resources
Function Passing. Enable Statistics and Tracing to
be easily customized for each instantiation
Building Blocks. Complex mechanism designed
from little more than a FIFO and handful of registers
Conditional Execution. Simple to enforce
simulation correctness

Example : Rename

Rename module written to handle one register
rename at a time
Connectors enable the same rename module to
model different architectures

Rename

To = 1 Ti = 1

Rename

To = 4 Ti = 4

Single Issue:

4-way Issue:

Simple Example
Ti = 1, To = 1, D = 1, Trans = 2

P C
0

A

cDone

0

P C
1 1

A

cCommit
P C

0 0
A

P C
0 1

pDone

A

pCommit
P C

0 1
A

Ti = 1, To = 1, D = 1, Trans = 2

Simple Example

cDone
P C

1 1

pDone

B

cCommit
P C

1 1

pCommit
B

P C
2 2

B

P C
1 1

B A

P C
1 1

B A

Stats & Tracing
Connectors used everywhere

Factor in common functionality
Statistics

Stats module passed into the connector
configured via a function for selective stats collection

Trace
Buffer maintains data past its transferal through the
connector
Log = all data, Trace = selective instructions
Dump of saved data can be event triggered or continuous
Triggered dump provides a record of events that precede
the trigger event

Our Challenges
RWires versus registers
Need Integer to Numeric Type conversion
Connections are specified by passing interfaces

Flattens the hierarchy
Prevents incremental synthesis
Move to soft connections

Enable efficient Routing on FPGA
Statistics and Trace Information
Desire a single-point of communication outside of
FPGA (possible to push back through connectors)

Pack / Unpack for C – Bluespec conversion

FAST Connector Conclusions
Simplifies modules by

Decoupling timing from behavior
Enables the sequential modeling of parallel actions

Automatically introduces configurability
Throughput
Delay
Outstanding events

Can relax lock-step behavior between modules
Facilitates debug and analysis enabling statistics
and trace capture

BACK UP SLIDES

FAST Connector Benefits

Simplifies modules by
decoupling timing from behavior
ENABLES THE sequential modeling of parallel actions

Increases flexibility of the design and enable design
exploration by enabling variable delay, to include 0-
delay (via a bypassed register), and variable
throughput
Increases simulation speed by removing the need
for global synchronization between data processing
and transferal between modules
Facilitates debug and analysis enabling statistics
and trace capture

? Backup (this is mostly

covered in “Design Challenge”)

Synchronizing Data Flow
Normal Operation

connector counts ENQs (DEQs)
asserts ‘done’ to the module and blocks buffer access
if Ti (To) is reached;
on receipt of ‘commit’ from the modules, increments
time and unblocks buffer access

Zero data flow modeled by …
Connector asserting ‘done’ without enabling
ENQ/DEQ
Module asserting ‘commit’ without ENQing/DEQing
The connector uses the enqueued count (or time
stamps) in lieu of explicit “null” messages to maintain
target-cycle synchronization

Connector Code
(Lockstep, Fully Buffered Implementation)

module mkConnect_lockstepFB#(…
…
// internal components

FIFOF#(Bit#(counterSize_t)) enqCntFIFO <- mkSizedFIFOF(delay);
ConnectFIFO#(data_t, Bit#(bufferIndex_t)) buffer <- mkConnectFIFO(mem, bufferSize);
Reg#(Bool) pCmt <- mkReg(False);
Reg#(Bool) cCmt <- mkReg(False);
Reg#(Bit#(counterSize_t)) toEnq <- mkReg(fromInteger(enqNum));
Reg#(Bit#(counterSize_t)) toDeq <- mkReg(0);
Reg#(Bit#(counterSize_t)) enqCount <- mkReg(0);
Reg#(Bit#(counterSize_t)) deqCount <- mkReg(0);
Reg#(Bit#(counterSize_t)) transCount <- mkReg(0);
Reg#(UInt#(TimeWidth)) tgtTime <- mkReg(0);
Reg#(Bit#(TLog#(MaxDelay))) delayTime <- mkReg(fromInteger(delay));

// internal variables
let blockENQ = (pCmt || toEnq==0);
let blockDEQ = (cCmt || deqCount==fromInteger(deqNum) || toDeq==0);
let blockPcmt = pCmt;
let blockCcmt = cCmt;
let pDone = (!pCmt && toEnq==0);
let cDone = (!cCmt && (deqCount==fromInteger(deqNum) || toDeq==0));

Connector Code (cont)

rule cycleEndProcessing (init && pCmt && cCmt);
// compute values for next cycle

let ntransCount = transCount + enqCount - deqCount;
let nEnq = min (fromInteger(enqNum),

(fromInteger(bufferSize)-ntransCount));
if (transLimit!=0)

nEnq = min(nEnq, (fromInteger(transLimit)-ntransCount));
if (nEnq < fromInteger(enqNum))

nEnq = 0;
enqCntFIFO.enq(enqCount);
let addnDeq = 0;
if (delayTime>0) begin

delayTime <= delayTime - 1;
if (delayTime==1) enqCntFIFO.deq();

end else begin
addnDeq = enqCntFIFO.first();
enqCntFIFO.deq();

end

endrule

// assign register values
tgtTime <= tgtTime +1;
transCount <= ntransCount;
toEnq <= nEnq;
toDeq <= toDeq + addnDeq;
pCmt <= False;
cCmt <= False;
enqCount <= 0;
deqCount <= 0;

Connector Code (cont)

interface ProducerPort p;

method Action enq(data) if (init && !blockENQ);
buffer.enq(data);
toEnq <= toEnq - 1;
enqCount <= enqCount + 1;
stats <= data;

endmethod
method Action commit () if (init && !blockPcmt);

pCmt <= True;
endmethod
method Bool done = pDone;
method UInt#(TimeWidth) getTime = tgtTime;

endinterface

interface ConsumerPort c;

method Action deq() if (init && !blockDEQ);
buffer.deq();
toDeq <= toDeq - 1;
deqCount <= deqCount + 1;

endmethod
method data_t first() if (init && !blockDEQ);

return buffer.first();
endmethod
method Action commit () if (init && !blockCcmt);

cCmt <= True;
endmethod
method Bool dataReady = (init && !blockDEQ);

method Bool done = cDone;
method UInt#(TimeWidth) getTime = tgtTime;

endinterface

Example FAST Architecture

BP

Arbiter

A
r
b
i
t
e
r

Modeling Time
Two target-cycle times are LOGICALLY maintained,
one at each end of the connector
Decoupling the logical time at each end of the
connector is possible to enable modules to advance
as soon as data is ready
Target-cycle times are incremented upon receipt of
‘commit’ thus enabling multiple host-cycles to be
used in modeling the behavior

