Bluespec and Co-Simulation

The First Bluespec Workshop

Monday, August 13, 2007

Myron King Work done at NRC-Cambridge with: Nirav Dave, Elliott Fleming, Gopal Raghavan, Jamey Hicks, and John Ankorn

Outline

- Description of the task at hand
- Some initial attempts (since discarded)
- How we are currently tackling the problem of Co-Simulation with Bluespec Compiler tools
- All in the context of the HS-TDEC (High Speed Turbo Decoder) implementation effort at NRCC this summer

The Problem

Traditional HW Simulation is very slow

- Reliance on massive Co-Simulation infrastructures
 - Complexity makes reimplementation prohibitive
 - Much effort put into speeding up RTL simulation
- What about C-level HW Simulation?
 - Carbon's RTL to C solution?
 - Not synthesizable
 - Equivalence of simulator and HW not guaranteed
 - BSV and BlueSim?
 - HW simulation C-speed (almost!)
 - Equivalence to generated Verilog guaranteed
 - Synthesizable

Replacing ModelSim with BlueSim

- We must fit Into Nokia's Test Framework
- Current HW written in VHDL
- Simulated using ModelSim in large testing environment.
 - Unacceptably slow!
- Replace ModelSim with BlueSim
 - Our solution

The Plan

- Connect BlueSim with Co-Verification Environment
- Must support detailed simulation control
 - Module level API including clock & reset
 - Timed and functional verification
- We have a Test bench
 - We need to use it
 - Our design must pass!

Seamless by Mentor

Some Issues

- BlueSim doesn't have a simulator interface
 - Should we build our own API?
 - How do we support module-level testing?
 - Easier for decoupled testing
 - Push data on a fifo, dequeue result when it appears
 - Need control over the clock for timed simulation
 - Requirement for timed simulations
- What is a simulator interface?
 - Clock control
 - Access to module interfaces
- All Bluesim gives you is an executable

First Attempt

- New implementation Of Seamless SW interface
 - Implement required subset of functionality
- Guarded FIFOS implemented in C
 - All HW/SW interaction through these
 - Imported into Bluespec through BDPI interface
- Guaranteed not to break BSV semantics
 - But very conservative
- Doesn't permit fine-grained modular interaction between Bluesim and C (restrictive)

Second Attempt

- Seamless supports the OSCI SystemC reference simulator
- Need to Link:
 - BSC-generated SystemC objects
 - OSCI SystemC kernel
 - Seamless systemC objects for comm. w/infrastructure
- Lots of complications getting everything to work together
 - Most resulting from new tool-flow combination

Bluespec Interface Restrictions

We'd like to do it like We need to do it like this:

Interface OCPSIave;

interface CDI; method ActionValue#(Bit#1) cmdIn (Bit#(2) mAddr, Bit#(3) mCmd, Bit#(5) mData); endinterface

method Bit#(1) cmdAccept();

method Action cmdln(
Bit#(2) mAddr,
Bit#(3) mCmd,
Bit#(5) mData);

endinterface

Bluespec Interface Restrictions

- No Combinational Loops through interface
- Only ValueMethods and Actions
 - Violations still possible
 - BSC will detect these
- Restrictions are due to scheduling issues
 - Bluespec team claims these are temporary
- Small Efficiency Hit
 - Single Cycle Bus Interface is now Multicycle
 - Sometimes requires extra registers + logic

Semantics of SystemC

- TLM is being promoted as modeling methodology for SystemC
 - Semantics not well Understood
- TRS is the semantics we want
 - Well understood
 - We think this gives the proper semantics of TLM
- Current picture some sort of unholy union
 - Not sure what **exactly** is happening here

In Conclusion

- BlueSim SystemC integration is proving Very useful
- It's convenient to write test-benches in C and drive the HW model through exposed interface
- You don't sacrifice simulation speed and still get all the goodies from SystemC
- We have this up and running at Nokia