
Bluespec and Co-Simulation

Myron King
Work done at NRC-Cambridge with: 
Nirav Dave, Elliott Fleming, Gopal 
Raghavan, Jamey Hicks, and John 

Ankorn

The First Bluespec Workshop

Monday, August 13, 2007



Outline
Description of the task at hand
Some initial attempts (since discarded)
How we are currently tackling the problem 
of Co-Simulation with Bluespec Compiler 
tools
All in the context of the HS-TDEC (High 
Speed Turbo Decoder) implementation effort 
at NRCC this summer N

uts and Bolts



The Problem
Traditional HW Simulation is very slow
Reliance on massive Co-Simulation 
infrastructures

Complexity makes reimplementation prohibitive
Much effort put into speeding up RTL simulation

What about C-level HW Simulation?
Carbon’s RTL to C solution?

Not synthesizable 
Equivalence of simulator  and HW not guaranteed

BSV and BlueSim?
HW simulation C-speed (almost!)
Equivalence to generated Verilog guaranteed
Synthesizable



Replacing ModelSim with BlueSim

We must fit Into 
Nokia’s Test 
Framework
Current HW written in 
VHDL
Simulated using 
ModelSim in large 
testing environment.

Unacceptably 
slow!

Replace ModelSim with 
BlueSim

Our solution



The Plan
Connect BlueSim with Co-Verification 
Environment
Must support detailed simulation 
control

Module level API including clock & 
reset
Timed and functional verification

We have a Test bench
We need to use it
Our design must pass!



Seamless by Mentor

Establishes a boundary between HW and SWRun SW on Host Machine

Run SW on target simulator

Open Chip Bus Protocol interface



Some Issues
BlueSim doesn’t have a simulator interface

Should we build our own API?
How do we support module-level testing?
Easier for decoupled testing

Push data on a fifo, dequeue result when it 
appears

Need control over the clock for timed simulation
Requirement for timed simulations

What is a simulator interface?
Clock control
Access to module interfaces

All Bluesim gives you is an executable



Nokia’s Test-Bench 
 

 

GMTB 

Testcases Shell scripts 

CAVS 

Command 
user interface 

Testcase 
execution 

Log files 

C reference 
model 

OCP Transactor 

OCP Transactor 

OCP Transactor 

OCP Transactor 

C code 
UNIX process 

SU 

MC 

C code 
UNIX process 

Test driver 
(DSP code) 
 
 
Compare result 
from HS-TDEC 
with result from 
C reference 
model 

 Seamless

HS-TDEC 

Testbech 
controller 

Reset 
Clock 
Interrupts Master

Processor 

CDI 

HS-CDI 

SU 

SU 

100’s of 1000’s of lines of code



First Attempt
New implementation Of Seamless SW 
interface

Implement  required subset of functionality
Guarded FIFOS implemented in C

All HW/SW interaction  through these
Imported into Bluespec through BDPI interface

Guaranteed not to break BSV semantics
But very conservative

Doesn’t permit fine-grained modular 
interaction between Bluesim and C 
(restrictive)



Custom Seamless Implementation

Only FIFO-based communication

Unable to support more complex OCP communication protocolscertainly no processor pin support!

• Abandoned when Gopal 
discovered the undocumented 
BSC –systemC flag!



Second Attempt
Seamless supports the OSCI 
SystemC reference simulator
Need to Link:

BSC-generated SystemC objects
OSCI SystemC kernel
Seamless systemC objects for comm. 
w/infrastructure

Lots of complications getting 
everything to work together

Most resulting from new tool-flow 
combination



Bluespec Interface Restrictions

We’d like to do it like 
this:

interface CDI;
method 
ActionValue#(Bit#1) cmdIn
(Bit#(2) mAddr,
Bit#(3) mCmd,
Bit#(5) mData);        

endinterface

We need to do it like 
this:

Interface OCPSlave;

method Bit#(1) cmdAccept();

method Action cmdIn(
Bit#(2) mAddr,
Bit#(3) mCmd,
Bit#(5) mData);        

endinterface



Bluespec Interface Restrictions
No Combinational Loops through interface
Only ValueMethods and Actions

Violations still possible
BSC will detect these

Restrictions are due to scheduling issues
Bluespec team claims these are temporary

Small Efficiency Hit
Single Cycle Bus Interface is now Multicycle
Sometimes requires extra registers + logic



Semantics of SystemC
TLM is being promoted as modeling 
methodology for SystemC

Semantics not well Understood
TRS is the semantics we want

Well understood
We think this gives the proper semantics of 
TLM

Current picture some sort of unholy 
union

Not sure what **exactly** is happening 
here



Question

Do we want to TRS in SystemC?
Overhead of rule scheduling logic is 
large!
Sequential Connective

Real SW generated from rules (Nirav’s 
thesis!)



In Conclusion

BlueSim SystemC integration is 
proving Very useful
It’s convenient to write test-benches 
in C and drive the HW model through 
exposed interface
You don’t sacrifice simulation speed 
and still get all the goodies from 
SystemC
We have this up and running at 
Nokia


