
Sudoku: Revolution #9, or #4, or #16, …
Jef Newbern, Steve Allen and Rishiyur Nikhil

© Bluespec, Inc., 2007

www.bluespec.com



Filters

Do you know how to play Sudoku?

Could you write a program to solve Sudoku puzzles?

Could you write one that doesn’t use backtracking?

Could you write one in your favorite Hardware Description 
Language and synthesize it?

Could you write a puzzle generator as well as a solver?



BluDACu demo



Embedded BSV
communication transactors

Embedded C/C++ with 
socket communications

BluDACu: system architecture

Sudoku Testbench (BSV + C/C++)

Embedded C/C++ with 
socket communications

Sudoku Generator and
Solver (BSV)

C/C++ with socket 
communications

TCL/TK GUI

Note: C/C++ can be embedded in BSV, for SW control, early SW/HW 
codesign, verification, etc. 

Verilog sim

Running on host workstation

Bluesim

EVE
FPGA
box

Three different execution platforms:



BluDACu fully parameterized for size

Generator and solver
4x4, 9x9, 16x16, …

Terminology: order 2, 3, 4, …



Cell values

Each cell value is 9-bit mask, representing 
remaining candidates for that cell

Initially 9’b111111111
Gradually eliminate candidates until 1 bit remains

If reaches 9’b000000000, puzzle is inconsistent

typedef Bit#(TSquare(order))    Cell#(order);

// Create a cell with a given solution x
function Cell#(order) given (UInt#(n)  x)

provisos (Mul#(order, order, size), Log#(size, index_bits),
Log#(TAdd#(1,size), n));

Index#(order) idx = unpack(pack(x-1)[valueOf(index_bits)-1:0]);
return (1 << idx);

endfunction



The Sudoku grid

// Grid values
typedef Vector#(nr, Vector#(nc, t)) Grid#(nr, nc, t);

// Grid of registers containing Cell values
typedef Grid#(TSquare#(o), TSquare#(o), Reg#(Cell#(o))) SudokuRegGrid#(o);

// Indexes of cells
typedef UInt#(TLog#(TSquare#(o))) Index#(o);

// Indexes of boxes (“rank and file index”)
typedef UInt#(TLog#(o)) RFIndex#(o);



Tactics
Instead of backtracking, the solver repeatedly 
applies tactics.  Example of a tactic:

repeated_2_set: If, in this cell A’s row, two other cells 
B and C contain the same “2-set” { j, k }, i.e., 
symbols j and k are the only remaining possibilities in 
cells B and C, then j and k can be eliminated from this 
cell A (because j and k must be in the cells B and C, 
even though we may not yet know which one goes in 
B and which one goes in C)

1
5

1
5

1 2
5 7

A B C



Tactics parameterized over Groups
The same tactic, described for a row, can also be applied 
to a column or a 3x3 box—i.e., more generally, a 
constraint group of 9 cells

typedef  Vector#(TSquare#(o), Cell#(o))    Group#(o);

// Determine all values which are possible in a group
function Cell#(order) possibles (Group#(order) g)

provisos (Add#(1,_,SizeOf#(Cell#(order))));
return fold(\| , g);

endfunction



Parameterized Tactics
All tactics are collected into a module

interface Tactics#(numeric type order);
method Cell#(order)  elim_other_singletons   (Group#(order) g, Index#(order) n);
method Cell#(order)  process_of_elimination  (Group#(order) g, Index#(order) n);
method Cell#(order)  forced_in_intersection   (Group#(order) g, Mask#(order) m);

// Tactic: If a value appears in a 2-set which is repeated twice in the
//            group (excluding this cell), then it can be eliminated from this cell.
// Arguments: g - constraint group containing the cell
//                    n - index of this cell in the group
method Cell#(order)   repeated_2_set  (Group#(order) g, Index#(order) n);

method Cell#(order)  hidden_pair  (Group#(order) g, Index#(order) n);
endinterface



Parameterized tactics

With suitable use of higher-order help functions, 
tactics can be as short as one line of code

// Tactic: If in a constraint group which intersects a constraint group
//             containing this cell (but which does not itself contain the cell),
//             a value does not appear in the portion outside of the
//             intersection, then it must appear within the intersection and
//             can therefore be eliminated from this cell.
// Arguments: g - constraint group intersecting a group containing the cell
//                          but not containing the cell itself
//                    m - mask of the portion of g outside of the intersection

method Cell#(order) forced_in_intersection(Group#(order) g, Mask#(order) m);
return possibles (maskN (g,m));

endmethod

5

5

g



Parameterized types, library functions, 
higher-order functions

Higher-order functions have functions as 
arguments or results, and are hence an 
extreme case of parameterization

typedef Bit#(TSquare#(order)) Cell#(numeric type order);

// Determine if a cell has only 2 possibilities
function Bool is2set(Cell#(order) c);

return (countOnes(c) == 2);
endfunction: is2set

// compute a mask over a constraint group that
// identifies the 2-sets in the group

let two_set_mask = map ( is2set, g );



Outer loop: apply tactics repeatedly across 
all cells, using BSV FSM facilities

Stmt tactic_sequence =
seq

while (True)
seq

action
found_inconsistent <= False;  all_cells_complete <= True; made_some_progress <= False;

endaction
for (r <= 0; r < fromInteger(valueOf(size)); r <= r + 1)

seq
for (c <= 0; c < fromInteger(valueOf(size)); c <= c + 1)

seq
apply(… singleton tactic to row r …);
apply(… singleton tactic to column c …);
apply(… singleton tactic to box containing row r and column c …);
… similarly, apply tactics Elimination, Pairs, HiddenPairs …

endseq
endseq
await(!results.notEmpty());
if (found_inconsistent || all_cells_complete || !made_some_progress)  break;

endseq
endseq;

FSM controller <- mkFSM(tactic_sequence);



BluDACu: composable state machines

For a legal Sudoku puzzle (unique solution) tactics can be 
applied in any order, and even in parallel

In the outer loop FSM
Statements can be reordered
The seq/endseq compositions can be replaced by par/endpar
compositions

But note the implication:
Each such change can have dramatic impact on control logic 
(because of shared resources accessed in parallel)

All of this control hardware is generated automatically

These choices affect area, clock speed, power
These are fundamental choices in microarchitecture exploration!



BluDACu parameterized for size

Generator and solver
4x4, 9x9, 16x16, …
Terminology: order 2, 3, 4, …

By simply changing instantiation line:
SudokuGenerator#(2) generator <- mkSudokuGenerator(); TO
SudokuGenerator#(3) generator <- mkSudokuGenerator()

all of the following change:
The width of each cell register
The number of cell registers in each row and column
The width of method arguments and values in the interfaces
All of the functions for accessing and modifying Sudoku grids
The logic for each tactic
The number of tactic applications
The sequence of states in the solver FSM
The sequence of states in the generator FSM
The logic to place a given in the grid



Completeness

Sudoku puzzles range in difficulty from “very 
easy” to “diabolical”
A solver is only as strong as its repertoire of 
tactics

Current tactic set solves “medium” difficulty puzzles
Will get stuck if given harder puzzles

Adding a new tactic, as we discover them, has 
a profound impact on the HW control logic

But it’s trivial to do this in the BSV program, because 
all this control logic is automatically regenerated



Puzzle generator

Just uses solver, in a brute-force manner 
(backtracking!).  Use BSV FSM for:

Note: therefore, produces legal puzzles that it 
can solve

Reset to blank puzzle (in all cells, all 9 digits are still candidates)

While (not done)
Randomly pick a cell, randomly choose one of its remaining candidates, kill remaining candidates
Apply the solver:

done if solved,
continue loop if stuck,
reset to blank puzzle if choice led to inconsistency/contradiction



BluDACu effort

Sudoku Generator & Solver (Jeff Newbern)
Developed in less than one man-week
(The tactics were developed earlier, over a longer period of 
time — Nikhil)
1044 lines of BSV for solver and generator

Compare: 926 lines for C code with similar tactics (solver only;
unparameterized 9x9 only)

GUI (Steve Allen)
Developed and integrated with
generator and solver in less than
one-man week

Running on EVE (Steve Allen)
Developed and running in less than one man-week



The final word: why?

It’s a novelty, of course
Sudoku solvers are quite easily implemented in SW on a 
small processor (unless speed or power were an issue)
Non-backtracking version not so easy, in SW or HW

But there are some serious messages:
With BSV, you can do some things in hardware that you 
might not have imagined doing in hardware because of the 
degree of difficulty (with obvious implications for 
performance and power)
BSV can match and exceed many software languages in 
expressive power and abstraction
(essential for correctness, rapid development, rapid 
architecture exploration, and reuse)
BSV can be combined easily with C/C++, Tcl/Tk, …
(essential for HW/SW codesign)
BSV can be run easily on FPGA HW accelerators
(essential for early SW development, verification)



BSV source code, paper at:
www.bluespec.com/products/BluDACu.htm

(ask if you also want the Tcl/Tk GUI)

Also, Google for the “BluDACu Song”
somewhere on George Harper’s blog

(sung to the tune of “Suzie Q”)

Thanks!


