
Lab 1: Combinational Circuits

SNU Computer Architecture Short Course
January 9, 2011

1 Introduction

The left shift (>>) and right shift (<<) operations are employed in computer programs to manip-
ulate bits and to simplify multiplication and division in some special cases. Shifting considered a
simple operation because shift has a relatively small and fast implementation in hardware; shift can
typically be implemented in a single processor cycle, while multiplication and division take multiple
cycles.

Shifts are inexpensive in hardware because their functional implementation involves wiring, rather
than transistors. For example, a shift by a constant value is implemented with wires, as shown in
Figure 1(a). Variable shifting is more complicated, but still efficient. Figure 1(b) shows the
microarchitecture of the barrel shifter, a logarithmic circuit for variable length shifting. The key
observation in this microarcitecture is that any shift can be done by applying a sequence of smaller
shifts. For example, a left shift by three can be decomposed into a shift by one and a shift by two.
At each level of the shifter, the shifter conditionally shifts the data, using a multiplexer to select the
data for the next stage.

In this series of labs we will implement the right shift operation, for which there are two possible
meanings, logical and arithmetic which differ in preservation of the two’s complement sign bit.
Figure 2 shows the high-level code describing an ALU that we saw in lecture. In this code, both
right shift implementations are implemented with independent operators. As a result, downstream
tools will implement two pieces of shift hardware. However, just as the adder we designed in lecture
could be reused, with minor modification, for subtraction, so too can the logical right shift hardware
be reused to do arithmetic right shift. To obtain efficient hardware, we must describe the low-level,
shared implementation.

1.1 Lab Organization

The lab begins by describing how to use the Bluespec Workstation to compile and simulate your
design. Bluespec code for a trivial barrel shifter implemented using the >> primitive function is
provided as a reference.

You will build up a barrel shifter from gate primitives. First, you will build a simple 1-bit
multiplexer. Next, you will write a simple polymorphic multiplexer using for loops.

Using the gate-level multiplexer function, you will then construct a combinational barrel-shifter.
Finally, we will add a simple gate-level modification to the barrel shifter to support the arithmetic
right shift operation. This allows us to use the barrel shifter for both logical and arithmetic opera-
tions.

2 Getting Started

All of the SNU Computer Architecture Short Course laboratory assignments should be completed
on the class virtual machine. We will be using Virtualbox 3.2, which can be downloaded at
http://www.virtualbox.org. More recent versions of Virtualbox are also acceptable. All the
tools and commands described in this and subsequent labs can be run directly from command line
in the virtual machine.

We will be using subversion for laboratory handouts. To get the harness for this lab, execute:

% svn co https://asim.csail.mit.edu/svn/snuw12/lab1

1

0 0

(a) Constant Shift

0 0

00

(b) Barrel Shift

Figure 1: Two different four-bit shift implementations. The barrel shifter is more general, but
requires more hardware. The two registers on the left of the barrel shifter determine how far to
shift.

Data res = case(di.func)

Add : (src1 + src2);

Sub : (src1 - src2);

And : (src1 & src2);

Or : (src1 | src2);

Xor : (src1 ^ src2);

Nor : ~(src1 | src2);

Slt : slt(src1, src2);

Sltu : sltu(src1, src2);

LShift: (src1 << src2[4:0]);

RShift: (src1 >> src2[4:0]);

Sra : signedShiftRight(src1, src2[4:0]);

endcase;

Figure 2: Bluespec code for ALU. Note that each shift function will infer separate hardware.

3 Compiling and Simulating with the Bluespec Workbench

The lab1 project contains Bluespec code we will be using for this lab. The directory layout is shown
in figure 3.

common/BarrelShifterTypes.bsv defines the Bluespec interface we will be using for our barrel
shifter in this series of labs. This file contains a polymorphic interface Multiplexer, and the
BarrelShifter interface, which contains a single method doShift.

common/Gates.bsv defines the primitive gates that we will be using to build our barrel shifter. And,
or, not and xor gates are defined.

2

lab1/

common/

BarrelShifterTypes.bsv

TestDriver.bsv

Gates.bsv

barrelshifter/

BarrelShifter.bsv

barrelshifter.bspec

Figure 3: Lab1 code directory structure.

common/TestDriver.bsv contains Bluespec code to drive the barrel shifter module in simulation.

barrelshifter/BarrelShifter.bsv defines an initial implementation of a barrel shifter using the
’>>’ and ’>>’ primitives.

We can simulate the hardware described by the Bluespec code to get an idea of how it works
without having to deal with the complications of real hardware.

• Navigate to the barrelshifter/ directory and start up Bluespec Workstation.

lab1% cd barrelshifter

lab1/barrelshifter% bluespec barrelshifter.bspec&

• The Bluespec Workstation GUI will appear. Select Build->Compile This compiles the Blue-
spec source code.

• Select Build->Link. This creates the executable out which can be used to simulate the
hardware described by the top level module mkTestdriver. The executable file can then be
run like any program. The test driver code provided will exercise your code with a number of
different inputs, and compare the result against a reference implementation.

• To simulate the barrel shifter select Simulate from the Build menu in the Workstation.

If everything worked correctly, you should see PASSED.
We can also direct the Bluespec Workstation to generate Verilog code, which can then be used by a

whole slew of tools to build the hardware as an ASIC or programed into an FPGA. Under the Project
menu select Options. In the window that popped up go to the Compile tab and select the compile to
Verilog option. If you compile the project now, it will create the file fir/bscdir/mkTestDriver.v.
Remember to change this back to bluesim when you go to simulate the design.

4 Building an Efficient Barrel Shifter in Bluespec

4.1 Multiplexers

The first step in constructing or barrel shifter is to build a basic multiplexer from gates. Let’s
examine barrelshifter/BarrelShifter.bsv.

import BarrelShifterTypes::*;

import Gates::*;

This line import definitions from other Bluespec files. BarrelShifterTypes and Gates are defined
in the common/ directory and contain function and interface definitions.

3

function Bit#(1) multiplexer1HighLevel#(Bit#(1) sel, Bit#(1) a, Bit#(1) b);

This begins a definition of a new function called multiplexer1HighLevel. This multiplexer
function takes several arguments which will be used in defining the behavior of the multiplexer.
This multiplexer operates on single bit values, the concrete type Bit#(1). Later we will learn how
to implement polymorphic functions, which can handle arguments of any width.

We call this multiplexer function “HighLevel” because it uses C-like constructs in its definition.
Simple code, such as the multiplexer can be defined at the high level without implementation penalty.
However, because hardware compilation is a difficult, multi-dimensional problem, tools are limited in
the kinds of optimizations that they can do. As we shall see later with the high-level barrel shifter,
high-level constructs can sometimes result in inefficient hardware. As a result, even complicated
designs like processors may be implemented at the gate-level (or even transistor-level) to achieve
maximum performance.

return (sel == 0)?a:b;

endfunction

The return statement, which constitutes the entire function, takes two input and selects between
them using sel. The endfunction keyword completes the definition of our multiplexer function.
You should now be able to compile and simulate the module. After simulating verify the output is
correct.
Exercise: Using the and, or, and not gates, re-implement multiplexer1. How many gates are
needed?

4.2 Static Elaboration

The data path width of the SMIPS processor is 32 bits, so we will need multiplexers that are larger
than a single bit. However, writing the code to manually instantiate 32 single-bit multiplexers to
form a 32-bit multiplexer would be tedious. Fortunately, Bluespec provides constructs for powerful
static elaboration which we can use to make writing the code easier. Static elaboration refers to
the process by which the Bluespec compiler evaluates expressions at compile time, using the results
to generate the hardware rather than generating hardware to evaluate the expressions dynamically.
Static elaboration can be used to express extremely flexible designs in only a few lines of code.

In Bluespec we can use bracket notation ([]) to index individual bits in a wider Bit type, for
example bitVector[1].

We can use a for-loop to copy many lines of code which have the same form. For example, to
aggregate the multiplexer1 function to form a larger multiplexer, we could

function Bit#(8) multiplexer8(Bit#(1) sel, Bit#(8) a, Bit#(8) b);

Bit#(8) aggregate = 0;

for (Integer i = 0; i < 8; i = i+1)

begin

aggregate[i] = multiplexer1(sel, a[i], b[i]);

end

return aggregate;

endfunction

4

The Bluespec compiler, during its static elaboration phase, will replace this for-loop with its fully
unrolled version.

aggregate[0] = multiplexer1(sel, a[0], b[0]);

aggregate[1] = multiplexer1(sel, a[1], b[1]);

aggregate[2] = multiplexer1(sel, a[2], b[2]);

...

aggregate[7] = multiplexer1(sel, a[7], b[7]);

Exercise: Write a mkMultiplexer32 module in BarrelShifter.bsv using for-loops.

4.3 Polymorphism and Higher-order Constructors (Optional)

So far, we have implemented two versions of the multiplexer function, but it is easy to imagine
needing an n-bit multiplexer. It would be nice if we did not have to completely re-implement the
multiplexer whenever we want to use a different width.

Using the for-loops introduced in the previous section, our multiplexer code is already somewhat
parametric because we use a constant size and the same type throughout. We can do better by
changing the size and type to use type parameters rather than concrete types and changing our code
to use those type parameters.

Our new multiplexer code looks like:

typedef 8 N;

function Bit#(N) multiplexerN(Bit#(1) sel, Bit#(N) a, Bit#(N) b);

Bit#(N) aggregate = 0;

for (Integer i = 0; i < valueof(N); i = i+1)

begin

aggregate[i] = multiplexer1(sel, a[i], b[i]);

end

return aggregate;

endmodule

The typedef gives us the ability to change the size of our multiplexer at will. The valueOf

function introduces a small subtlety in our code: N is not an Integer but a numeric type and must
be converted to an Integer before being used in an expression.

Even though it is improved, our implementation is still missing some flexibility. All instantiations
of the multiplexer must have the same type, and we still have to produce new code each time we
want a new multiplexer. However, in Bluespec, we can further parameterize the module to allow
different instantiations to have instantiation-specific parameters. This sort of module is polymorphic
– the implementation of the hardware changes automatically based on compile time configuration.
Polymorphism is the essence of design-space exploration in Bluespec.

Our multiplexer functions are already almost polymorphic, but we have only used it with
concrete types. Polymorphic modules either use type variables or take functions or values as compile
time arguments, which are used during static elaboration to construct the correct module. The
simplest polymorphic module, mkReg is already present in our code:

Reg#(Int) anInt <- mkReg(0);

Reg#(Bool) aBool <- mkReg(True);

Here, two different types of registers are created from the same module, mkReg. The values 0

and True are being provided as an initializer to the register, permitting us to instantiate a register
with any well-typed initial value.

5

The question, then, is how to write a multiplexer module accommodating this level of parame-
terization. Given our previous filters, this is simple:

// Not needed

// typedef 8 N;

function Bit#(n) multiplexerN(Bit#(1) sel, Bit#(n) a, Bit#(n) b);

....

The variable n represents the width of the multiplexer, replacing the concrete value N. As usual,
Bluespec variables are lower case and definitions are upper case. Otherwise, n and N function in the
same way.
Exercise: Complete the definition of the mkMultiplexerN function. Verify that this function is
correct by replacing the original definition of mkMultiplexer32:

let multiplexer32 = multiplexerN;

This redefinition allows the test benches to test your new implementation without modification.

4.4 Building a Barrel Shifter

We will now use the multiplexers that we implemented in the previous section to build a logical
barrel shifter. To build this shifter we need a logarithmic number of multiplexers. At each stage,
we will shift over twice as many bits as the previous stage, based on the control value, as shown in
Figure 1(b).

Notice that barrel-shifter is declared a module, as opposed to a function. This is a subtle,
but important distinction. In Bluespec, functions are inlined by the compiler automatically, while
modules must be explicitly instantiated using the < − notation. If we made the barrel shifter a
function, using it for arithmetic and logical shift would instantiate two barrel shifters. One purpose
of this lab was to build shift algorithms that share as much logic as possible, so we make the barrel
shifter a module.
Exercise: Complete an implementation of the 32-bit barrel shifter. Use exactly five 32-bit multi-
plexers.
Exercise: In the logical barrel shifter, we always shift in 0 to the high-order bits. The arithmetic
right shift preserves sign, so we need to examine the two’s complement sign (high-order) bit and the
shift mode to fill in the correct bits. Using for-loops and a multiplexer, implement this functionality
in your barrel shifter. Use no more than one additional multiplexer.

5 Discussion Questions

1. How many gates does your one-bit multiplexer use? The 32-bit multiplexer? Write down a
formula for an N-bit multiplexer.

2. (Optional) We wrote a polymorphic function implementing an N-bit multiplexer. Explain how
to write a polymorphic version of the barrel shifter.

3. One purpose of this lab was to demonstrate a microarchitectural optimization. How many
gates did we save by combining the logical and arithmetic right shifts?

4. Our barrel shifter handles right shifts only. However, with a small extension, it can handle left
shifts as well. Draw a microarchitecture for this kind of combined barrel shifter. How much
hardware do we save?

6

	Introduction
	Lab Organization

	Getting Started
	Compiling and Simulating with the Bluespec Workbench
	Building an Efficient Barrel Shifter in Bluespec
	Multiplexers
	Static Elaboration
	Polymorphism and Higher-order Constructors (Optional)
	Arithmetic Right Shift

	Discussion Questions

