
Publish/Subscribe in a Mobile Environment

Yongqiang Huang, Hector Garcia-Molina
Department of Computer Science

Stanford, CA 94305

{yhuang, hector}@cs.stanford.edu

ABSTRACT
A publish/subscribe system dynamically routes and delivers
events from sources to interested users, and is an extremely
useful communication service when it is not clear in advance
who needs what information. In this paper we discuss how
a publish/subscribe system can be extended to operate in a
mobile environment, where events can be generated by mov-
ing sensors or users, and subscribers can request delivery at
handheld and/or mobile devices. We describe how the pub-
lish/subscribe system itself can be distributed across multi-
ple (possibly mobile) computers to distribute load, and how
the system can be replicated to cope with failures, message
loss, and disconnections.

1. INTRODUCTION
A publish/subscribe system connects together information
providers and consumers by delivering events from sources
to interested users. A user expresses his/her interest in re-
ceiving certain types of events by submitting a predicate
defined on the event contents, called the user’s subscription.
When a new event is generated and published to the system,
the publish/subscribe infrastructure is responsible for check-
ing the event against all current subscriptions and deliver-
ing it efficiently and reliably to all users whose subscriptions
match the event.

The publish/subscribe communication paradigm differs from
traditional point-to-point models in a number of ways. In
publish/subscribe, communication is anonymous, inherently
asynchronous and multicasting in nature. The system is able
to quickly adapt in a dynamic environment. Anonymity
means that the communication partners are not required to
identify the party they want to talk to. For example, instead
of naming a publisher to receive events from, the subscriber
simply describes the characteristics of the events it wants to
receive. Publish/subscribe is also inherently asynchronous
because the sender (publisher) does not have to wait for an
acknowledgment from the recipient (subscriber) before mov-
ing on. The reliable transmission of events to the subscribers

is taken care of by the infrastructure. Publish/subscribe re-
sembles multicast because it allows a publisher to send the
same event to many subscribers with only one publish op-
eration. Finally, the system can cope with a dynamically
changing operational environment where the publishers and
subscribers frequently connect and disconnect.

This combination of unique characteristics makes the pub-
lish/subscribe model well suited to a variety of application
areas, such as distributed information dissemination, finan-
cial analysis and factory automation. In the past decade
many problems related to publish/subscribe have been tack-
led and solved, with some systems having reached commer-
cial maturity ([19, 20]).

However, almost all of the research on publish/subscribe
systems so far has concentrated on publish/subscribe sys-
tems in a fixed network. We argue that publish/subscribe
systems are also advantageous in a mobile and/or wireless
environment ([9]). The anonymity and dynamism of pub-
lish/subscribe allow the systems to adapt quickly to frequent
connections and disconnections of mobile nodes, character-
istic of a mobile network. Asynchrony is helpful because
mobile devices are often turned off or disconnected from the
network for long periods of time. Wireless devices have lim-
ited capabilities and bandwidth. The multicasting nature of
publish/subscribe helps a system scale to millions of units.

With increasing popularity of mobile handheld devices, there
is a pressing need to extend publish/subscribe to a mobile
environment. As a sample application, in a military bat-
tlefield, thousands of wireless and mobile sensors such as
satellites and equipment sensors report all kinds of informa-
tion ranging from the location of enemy troops to whether
the engine of a tank has overheated. There are also many
parties interested in receiving certain types of information.
An individual soldier may need to know the location of the
nearest enemy troops, or whenever a missile has been fired.
The above scenario requires the deployment of a highly scal-
able and dynamic communication infrastructure, for which
a mobile publish/subscribe system is an ideal candidate.

In this paper, we briefly review a few publish/subscribe mod-
els and discuss how they might be adapted to a mobile en-
vironment. After presenting our framework (Section 2), we
start with the simplest model, namely, the centralized ap-
proach (Section 3). We then discuss distributed models that
address the scalability problem (Section 4). Finally, we look



at the use of replication and its impact (Section 5).

2. FRAMEWORK
The first generation of publish/subscribe systems use either
group-based (also known as channel-based) or subject-based
(also known as topic-based) addressing. In the former ([4,
10, 14, 18]), a set of “groups” (or “channels”) are desig-
nated by the system. Each event is published to one of
these groups by its publisher. A user subscribes to one or
more groups, and will receive all events published to the
subscribed groups. For example, in IP multicast ([10]), each
group is identified by a class D IP address. Subject-based
systems ([15, 13, 19, 20]) are slightly more flexible. Each
event is tagged with a short “subject” (or “topic”) that de-
scribes its content. The subject is either an arbitrary string
or a string taken from an agreed-upon domain. The sub-
scriber defines its subscription in terms of this subject line.
In addition to an exact match, the subscriber can also ask
for all subjects beginning with the word “jobs”, for example.

In recent years a more flexible paradigm called content-based
addressing has emerged. A content-based system gives more
flexibility and control to the subscriber by allowing him/her
to express his/her interest as an “arbitrary” query over the
contents of the events. Therefore, instead of relying on the
publisher to classify the events into groups or subjects, the
subscriber is now able to define sophisticated subscriptions
such as “give me all stock quotes for stock X issued between
time A and time B if the price is larger than 35.” A content-
based publish/subscribe system has also been called condi-
tion monitoring systems or event notification/distribution/-
delivery systems in various contexts.

However, the flexibility of content-based systems comes at
the expense of added challenges in design and implementa-
tion ([5]). Intuitively, because the subscriptions can be com-
plex, figuring out matches between events and subscriptions
is a lot harder than in traditional group- or subject-based
systems, where usually a simple table lookup is sufficient.

In this paper, we will assume a content-based system in
our discussions, because it is the more general and powerful
model. For instance, group- and subject- based systems can
be regarded as special cases of content-based systems where
the subscription syntax is restricted to simple tests on a
specific field of the event.

2.1 Basic model
Figure 1 illustrates the schematic of a basic publish/subscribe
system. It consists of one or more Event Sources (ES), an
Event Brokering System (EBS), and one or more Event
Displayers (ED). An Event Source generates events in re-
sponse to changes to a real world variable that it monitors,
such as the location of an enemy tank. We assume that
each event is labeled with its source and a consecutive se-
quence number to facilitate our description. Other than
that, we do not make any assumptions about an event’s
content. The events are published to the Event Brokering
System, which matches them against a set of subscriptions,
submitted by users in the system. For example, a soldier
could subscribe to receive all events reporting the location
of any tank within a certain range. Note that, as the core
of the publish/subscribe system, the EBS could be imple-

Figure 1: A content-based publish/subscribe sys-
tem. The bubbles represent filtering of events, and
are labeled with the respective filtering criteria.

mented as either a single server (Event Broker) or multiple
distributed ones working together. Additionally, an Event
Broker can be replicated to increase availability. Sections 4
and 5 discuss distributed and replicated architectures and
their mobile adaptations.

In Figure 1, we use ci to denote the subscription criterion of
user i. In other words, user i wants all events and only those
events that satisfy ci. If a user’s subscription matches, the
event is forwarded to the Event Displayer associated with
that user. The presence of a bubble labeled ci in the link
between the EBS and an ED implies that only events satis-
fying ci passes through on this link. The Event Displayer is
responsible for alerting the user. In our example, the soldier
will be notified by a message on his/her mobile communica-
tion device.

Note that some of the event services surveyed in this paper
provide additional functionality such as event stream manip-
ulation. For example, some systems can trigger on events
to generate new events. In this case, a subscription might
look like: “generate a buy order when the price of stock
X has climbed for more than 20 percent for three straight
quotes.” The ability to generate new events has been termed
“content-based with patterns” ([6]), “event stream inter-
pretation” ([3]) and “historical condition triggering” ([12]),
among other things. In this paper, we do not take into ac-
count any of the specific system extensions such as this. In-
stead, we will focus on the most fundamental functionality,
namely, to route events from their sources to their targets
efficiently and reliably.

3. CENTRALIZED ARCHITECTURES
A centralized Event Brokering System consists of only one
Event Broker (Figure 2). The central EB stores all currently
active subscriptions in the system. Every new event is pub-
lished to the EB, which is responsible for matching it against
all the subscriptions. Afterwards the event is forwarded to
all Event Displayers whose subscriptions match. Represen-
tative systems in this category include the SIFT Information
Dissemination System ([21]) and active databases ([7]).

An important problem that any centralized system would



Figure 2: Centralized architecture: one server does
all the matching and filtering.

need to address is how to efficiently match a new event
against a large set of subscriptions to figure out which ones
match. Although the matching problem is challenging and
interesting to study, it is beyond the scope of this paper.
Interested readers are referred to [21, 1, 7] for more detailed
discussions.

Even though the central EB may be a performance bottle-
neck and a single point of failure, it is important to under-
stand how it could operate in a mobile environment. In later
sections, we will look at how distribution alleviates the scal-
ability problem, and how replication helps with reliability.

3.1 Mobile adaptation
When adapting a centralized architecture to the mobile en-
vironment, we argue that, while the Event Sources and the
Event Displayers can reside on a mobile device, the central
Event Broker server should be placed on a separate com-
puter in the fixed network if possible. Typically an Event
Source resides near the real world variable it monitors, while
an Event Displayer resides near the end user (e.g., on a
PDA). Since in a mobile environment both the information
providers and the consumers tend to be mobile, the ES and
the ED are likely to be placed on a mobile device.

The central EB, however, should reside on a computer sep-
arate from the ESs or the EDs. There are three reasons
why the EB should not in general be placed on the same
device as an ES. Firstly, the EB will likely require a fair
amount of computing resource for data logging and sub-
scription matching, while an ES is usually a simple sensor
device. Secondly, the Event Sources can be autonomous and
do not allow the users to store their own subscriptions there.
For example, the ES can be a stock trading center giving out
stock quotes. Individual investors usually cannot ask these
sources to monitor a stock condition for them. Finally, the
EB may need to store a matched event and repeatedly at-
tempt to resend it to its target as the target has gone offline.
It is unreasonable to require a mobile Event Source to pro-
long its connection to the fixed network just because the
event recipient is not connected for the moment.

Likewise, the EB should be hosted on a separate device from
an ED as well. The PDA can be powered off or disconnected

from the network most of the time to conserve battery, mak-
ing it unsuitable to host the EB, which needs to listen con-
stantly for new events. Furthermore, the computer hosting
the EB should be placed in the fixed network if possible,
because otherwise when the central EB is disconnected, the
whole system is paralyzed.

Once we figure out where each part of the system resides,
it would seem that we can simply rely on previous work
on mobile networking ([16]) to provide us with connectivity
between the components and to hide the idiosyncrasies of
mobile communication. However, as we will illustrate next,
there are issues unique to publish/subscribe in a mobile en-
vironment that we have to consider.

Mobile/wireless devices can be frequently disconnected from
the fixed network because they are off (running out of bat-
tery or turned off to conserve battery), or they cannot be
contacted (transient wireless communication problems or
wandering into an area without radio reception etc.). A
good mobile publish/subscribe system has to deal gracefully
with both the ES’s and the ED’s going offline. For example,
when a user is out of reach, it is reasonable to expect the
EBS to log and queue the user’s events so that they can be
delivered later when the user comes back online.

More issues arise when an Event Source is disconnected.
One option of course is to have the ES queue all the events
that are generated when it is not connected. Such an op-
tion may not be feasible, however, as the ES is often a low
capability device without too much storage. Consequently,
the ES may have to discard older events once the buffer fills
up.

Ad-hoc networks pose additional challenges. An ad-hoc net-
work is formed by wireless devices wanting to talk to each
other without the benefit of a fixed network infrastructure.
Ad-hoc networks are extremely useful in scenarios where a
natural disaster has wiped out the infrastructure, or where
rapid deployment is required and an infrastructure is not
possible, for example in the battlefield.

The lack of a fixed network in ad-hoc networks implies that
the central EB must also be mobile. Hence we can no longer
assume that it is always connected. When an Event Source
wants to publish, it must first search for an existing EB. If
one cannot be found, a new EB might have to be elected.
Likewise, an Event Displayer must periodically poll the EB
and refresh its subscription information. Otherwise, the old
EB could have gone out of reach and a new EB elected with-
out knowing about this ED’s subscription. Finally, when
one EB becomes aware of the existence of another EB (for
example when two previously partitioned wireless subnets
come into physical proximity), a merging protocol might
have to be invoked to combine them into one central EB.
Alternatively, both could operate in a coordinated fashion
as discussed in Section 4.

3.2 Centralized with quenching
Quenching has been proposed ([17]) as an enhancement to
the straightforward centralized approach in fixed networks
(Figure 3). An Event Source is given a “combined active
subscription expression” (call), which represents the logical



Figure 3: Centralized architecture with quenching.

OR of all the currently active subscriptions on the Event
Broker. Essentially, we have call = c1 ∨ c2 ∨ . . .∨ cN . When
a new event e is generated, the ES first checks it against call.
If call(e) = false, that means no subscription will match e
at the EB. Hence the event is discarded (quenched) at the
source. If e matches call, then at least one subscription will
match, and the event is forwarded to the EB as usual. This
quenching behavior is represented by the bubbles labeled
call in Figure 3.

Note that in order for quenching to make sense it must be
much easier to figure out whether or not an event e matches
the combined call than to figure out the exact subset of
{c1, c2, . . . , cN} that matches, so that the Event Source does
not have to duplicate all the work that is being done at the
EB1. Quenching has proved to be particularly effective in
reducing network traffic and the load of the central EB if
a significant portion of the events generated do not match
any subscriptions.

However, the appropriateness of using quenching in a mo-
bile environment needs to be further examined. We have
said previously that an ES can be a wireless low capabil-
ity sensor device. Thus it might not be feasible for the ES
to evaluate a complicated condition for every event gener-
ated. Moreover, informing the sensor of newly added or
deleted subscription could consume valuable wireless band-
width. On the other hand, effective quenching can also sig-
nificantly reduce the bandwidth needed to transmit events.
Fundamentally, quenching represents a tradeoff between the
bandwidth required to send all events and the computation
power needed to match and filter events. Since a mobile de-
vice is usually limited in both resources, the answer is not
apparent.

Quenching can be a particularly attractive option when an
ES is disconnected, since it allows the ES to discard certain
events on the fly, thus reducing the potential size needed for
the event queue. However, quenching is also problematic
since the system cannot contact an ES about newly added
subscriptions when the ES is disconnected. A reasonable

1A trivial example where this is true is the following. Sup-
pose c1 = (e.value > 10) and c2 = (e.value > 20). To figure
out whether an event matches either c1 or c2, it is sufficient
to only test whether its “value” is larger than 10.

Figure 4: Distributed broadcast. The dotted lines
are the path of an example event which satisfies c1

and c2.

strategy might be to save all events in the buffer at the be-
ginning of a disconnection in case a new subscription not
known to the ES matches them. When the buffer overflows,
however, the ES can then start to discard older events ac-
cording to the quenching criteria it has.

4. DISTRIBUTION
As explained in Section 3, centralized systems are limited by
the capability of a single server, beyond which distribution
has to be used. This section illustrates two typical ways
that work is partitioned among multiple servers, and their
extensions to the mobile world.

4.1 Distributed broadcast
In distributed broadcast (Figure 4), the EBS consists of M
Event Brokers, each responsible for a portion of the N total
subscriptions. The EBs are connected to each other by the
network and form a general connected graph.2 An Event
Source publishes a new event to any one of the M EBs. (In
reality, the ES probably connects to the nearest EB in the
network.) That EB is then responsible for forwarding the
event to all other EBs in the system (hence the name “dis-
tributed broadcast”). The forwarding “broadcast” can be
implemented with network layer multicasting ([10]). Alter-
natively, the event could be sent along a “forwarding tree”
rooted at the originating EB, using unicast at each leg of
the trip.

When a new event arrives, each EB matches the new event
against all subscriptions it is responsible for, and delivers the
event as necessary. Note that the matching and delivering
workload at each EB is reduced compared to a centralized
approach because, although each EB still processes all the
events generated in the system, it only has to match them
against a fraction of the total subscriptions. The dotted
lines in Figure 4 give an example of the path traversed by an
event which matches c1 and c2. An example of a distributed
publish/subscribe system using broadcast is the SIFT Grid
([21]).

2Actual systems may connect the EBs in other typologies
such as a hierarchical tree instead of a peer-to-peer graph.
To be most general, our paper assumes a graph structure,
although our discussion is equally valid for other structures.



Figure 5: Distributed multicast.

4.2 Distributed multicast
Distributed broadcast can create a lot of network traffic be-
cause events are flooded to all the Event Brokers. An al-
ternative approach, called distributed multicast (Figure 5),
prunes the forwarding tree. Specifically, when an event ar-
rives at each EB in the forwarding tree, it is forwarded onto
one of the EB’s outgoing branches only if the event might
match a subscription at some EB leading from this branch.
In other words, the EB selectively forwards an event based
on the result of “partial matching.” In effect, the event
is matched against the logical OR of all the subscriptions
stored at all the EBs downstream from a particular branch.
If the result is false, that branch is “pruned” for this event.
The behavior is very similar to what happens at the routers
in IP multicast, hence the name “distributed multicast.”

The need for partial matching implies that, unlike in dis-
tributed broadcast, it is no longer sufficient for each Event
Broker to know about only its share of the active subscrip-
tions. In the worst case, each Event Broker may need to
store all the currently active subscriptions in the system.
The Siena system ([6]) proposes a solution where multiple
subscriptions can be collapsed into one condition, at the ex-
pense of restricted subscription syntax.

Unlike distributed broadcast, distributed multicast can no
longer take advantage of network layer multicast directly to
forward events to needed EBs, because potentially complex
partial matching needs to be performed at each step. An
efficient implementation of the forwarding tree without using
IP multicast is given in [2].

4.3 Mobile adaptation
In addition to the challenges facing a mobile centralized
system, there are more issues associated with adapting a
distributed publish/subscribe architecture to a mobile en-
vironment. Because EDs often move around, an ED may
disconnect and connect to a different EB quite often. When
the ED reconnects to a different EB, two things need to hap-
pen. First, the new EB needs to be informed of the ED’s
subscription so that the routing tree can be adjusted to di-
rect relevant events this way. Second, the new EB needs to
obtain all the events queued on behalf of the ED while the
ED was disconnected and deliver them to the ED. For both
tasks, the new EB may contact the EB previously in charge

of the user’s subscription to obtain the information as part
of a “handoff” protocol ([8]).

Alternatively, however, an ED can carry its own subscrip-
tion information, and upload it onto the new EB when the
ED reconnects. The advantage of this approach is that the
ED can still receive new events even if the old EB is tem-
porarily down or partitioned from the new EB. (Of course
the new EB still needs to attempt contact with the old EB
periodically to cancel the old subscriptions.)

The potential downside is that the ED may end up with
more than one EBs monitoring the same subscription for
it. Reference [11] proposes several schemes for mobile hand-
held devices which ensure that the ED receives the same
message exactly once. For example, one variation requires
the ED to keep a log of its past connections, which includes a
timestamp and the id of the EB for each connection. When-
ever the ED makes a new connection, this information is
uploaded to the new EB, which uses it to check for any
potential danger of duplicate delivery. For instance, events
generated after the ED’s last previous connection can safely
be delivered. Moreover, if another EB cannot be contacted
at the moment, but the log shows that the last connection
to that EB happened “long enough” ago in the past, then
queued events may still be delivered without worrying about
duplication.

The subscription handoff protocol needs to be designed care-
fully so that, as the new routing information slowly perco-
lates up the forwarding tree, no event from any potential
source is lost. Ideally the same event should not be delivered
both to the old and to the new EBs (unless the alternative
approach above is taken). If that is impossible to guarantee,
however, mechanisms to eliminate duplicates will be needed
again.

Because a wireless device can be turned off or disconnected
for long periods of time, a lot of missed events can accrue in
the meantime. Even if storage at the EB is not a concern
(which can be in an ad-hoc environment, for example), the
sheer amount of time and precious wireless bandwidth re-
quired to transmit all of the queued events to the ED when it
reconnects might be unreasonable. Again, knowledge about
the semantics of a subscription often helps. For example,
an EB can purge old events from the queue if it knows that
the subscription is time-sensitive. Or it may keep only the
more “important” events (e.g. the current high water mark
if the client is interested in only maximums).

In a wireless system, it is sometimes possible to further op-
timize the connection behavior by using an “integrated” ap-
proach. Base stations are used as access points of wireless
devices into the fixed network. A wireless device is con-
trolled by one and only one base station at any time it
is connected. When it moves out of the range of an old
base station and into the range of a new one, a wireless
handoff protocol is invoked. Naturally, the base stations
are ideal candidates as Event Brokers in a distributed pub-
lish/subscribe system. In this case, subscription handoff can
be handled as merely an additional step in wireless connec-
tivity handoff, thus saving valuable time and resources.



Figure 6: Replicated publish/subscribe.

The discussion thus far in this section has assumed that
the EBs are placed in the fixed network for efficiency and
robustness. In an ad-hoc network where the EBs have to be
mobile, additional problems arise similar to those discussed
in Section 3.1. We do not discuss these issues due to space
limitations.

5. REPLICATION
Replication can be used in a publish/subscribe system to in-
crease its availability and reliability when faced with server
failures or network partitions. In a replicated publish/-
subscribe system (Figure 6), a user’s subscription is mon-
itored by multiple Event Brokers independently. In partic-
ular, in Figure 6 we assume that two EBs, EB1 and EB2,
simultaneously monitor the subscriptions for each user. On
the other hand, we assume that there is still only one Event
Displayer associated with each user, because, as we have
discussed before, the ED is usually a program running on
the PDA which the user carries with him/her. Hence, the
two streams of events generated by EB1 and EB2 will merge
at the ED. Note that for simplicity we use a centralized ar-
chitecture as the basis for replication. Although we do not
discuss it here, replication can also be introduced in a dis-
tributed system like the ones in Figures 4 and 5.

With replication, a user is less likely to miss events. For
instance, suppose that EB1 misses some events from a par-
ticular mobile source which can only communicate with EB2
due to temporary network problems3. Then the events can
still be matched by EB2 and delivered to the appropriate
EDs. However, without any safeguards, replication can cre-
ate “consistency” problems in a publish/subscribe system.
Specifically, the user may receive a sequence of events that
are confusing or even contradictory. As a simple example,
without a mechanism to eliminate duplicates, the same event
may get delivered to the user twice, once from each EB. The
user will get confused if he/she relies on the events to keep
track of an important count, such as the exact number of
missiles that have been fired.

As another example, although it is not difficult to make

3We assume that events can be lost when they are sent from
their source to an EB. However, since we assume that the EB
buffers and retransmits events as necessary, the link between
the EB and the ED is assumed to be lossless.

a single EB always deliver events from the same source in
order, replication can often result in an unordered event se-
quence when events from the two EBs are interleaved at the
ED. For instance, suppose event number 3 is missed by EB1
but received by EB2. It is therefore entirely possible for EB1
to deliver the next event, say number 4, to the user before
EB2 could have a chance to deliver event 3. Out-of-order
event streams can be a problem if the order of events is sig-
nificant, for example to establish a trend in the movements
of a stock’s price.

We can define three desirable properties for a replicated pub-
lish/subscribe system: Orderedness, Consistency and
Completeness. The goal in general is to rule out deliv-
eries of events to a user that could not have occurred with
a non-replicated system. Intuitively, orderedness indicates
that events from the same ES are delivered to the user in the
order they are generated at the ES. Since a non-replicated
system delivers events in this order, a replicated system that
is ordered behaves similarly in this respect.

For a replicated system to be consistent, the set of events
it displays to an end user over time must be a set that can
possibly be generated by a non-replicated system (although
perhaps in a different order). In other words, a user should
not be able to tell, from observing the events that are dis-
played to him/her, that replication is being used (except for
possibly increased reliability and responsiveness). For ex-
ample, a replicated system that delivers duplicates to the
end user is trivially not consistent.

Lastly, completeness requires a replicated system R to dis-
play all events that would be displayed by an equivalent
non-replicated system N had the single EB in N received
all events that were received by EB1 or EB2 in R. For exam-
ple, if an event matching the user’s subscription arrives at
EB1 but is missed by EB2 due to network packet loss, then
a complete replicated system will need to ensure that the
event is not discarded (see next on Event Displayer filter-
ing) and is ultimately delivered to the user. Completeness
is a measurement of how effective a replicated system is at
guarding against loss of events in the network. Our three
notions of correctness are defined more formally in [12].

Obviously, if the Event Displayer simply passes along any
event it receives to the user, the resulting replicated system
will be neither consistent (due to duplicates) nor ordered.
Table 1 summarizes properties satisfied by a replicated sys-
tem under various configurations, with the first row being
when no special processing is done by the ED. However, as
we will see next, some system properties can be enhanced or
enforced if the ED performs an extra step to filter out some
events (e.g., duplicates) before passing them on to the user.

In the simplest example, the ED can implement a straight-
forward “exact duplicate elimination” algorithm, in which
an event is discarded by the ED if an “identical” one has
already been displayed previously. The exact definition of
“identical” is given in [12]. The modified system properties
under this ED filtering algorithm are listed in the second row
of Table 1. As shown in the table, the system has gained
consistency as a result.



ED filtering Ord. Cons. Comp.

No filtering X X
√

Duplicate removal X
√ √

Out-of-order and
duplicate removal

√ √
X

Table 1: Properties satisfied by a replicated pub-
lish/subscribe system under various ED filtering al-
gorithms.

For situations where an ordered event stream is imperative,
an ED filtering algorithm has been proposed in [12] to en-
force orderedness of a replicated system. Essentially, the
ED records the last seen sequence number from each Event
Source and discards any new event that arrives out of or-
der. The disadvantage of this algorithm, however, is that
the system is no longer complete, since some events may
be “unnecessarily” filtered out based on their arrival order
rather than their content. The tradeoff of completeness ver-
sus orderedness should be decided by the individual appli-
cations. The last row in Table 1 gives the system properties
under a combined filtering algorithm that guarantees both
orderedness and consistency.

Reference [12] offers an in-depth study of replication in pub-
lish/subscribe systems. For instance, it discusses systems
with the ability to generate new events based on patterns in
a stream of events. It is shown that such systems are usually
inconsistent, because event loss can often lead to divergent
perceptions between the two EBs about what constitutes a
triggering pattern. Consequently, more sophisticated ED fil-
tering algorithms are developed to guarantee consistency in
such scenarios. Additionally, subscriptions defined on event
“joins” from different streams are also studied. The pa-
per also investigates multiple subscriptions submitted by the
same user that are interrelated and need to be monitored in
a coherent fashion.

6. CONCLUSION
In this paper we discussed how to adapt a publish/subscribe
system to a mobile operating environment. We described
several architectures of a publish/subscribe system, starting
from the simple centralized approach, to distributed ones
with improved scalability, and finally to replication that in-
creases reliability but may cause consistency problems. We
discussed issues and possible solutions specific to adapting
the various architectures to a mobile and/or wireless en-
vironment. We also sketched solutions to the more chal-
lenging problems posed by ad-hoc networks. In presenting
our work, we also surveyed some of the important work on
content-based publish/subscribe systems in fixed networks.

7. REFERENCES
[1] M. K. Aguilera, R. E. Strom, D. C. Sturman,

M. Astley, and T. D. Chandra. Matching events in a
content-based subscription system. In Proceedings of
the 18th Annual ACM Symposium on Principles of
Distributed Computing, pages 53–61, 1999.

[2] G. Banavar, T. Chandra, B. Mukherjee,
J. Nagarajarao, R. E. Strom, and D. C. Sturman. An
efficient multicast protocol for content-based

publish-subscribe systems. In Proceedings of the 19th
International Conference on Distributed Computing
Systems, pages 262–272, 1999.

[3] G. Banavar, M. Kaplan, K. Shaw, R. E. Strom, D. C.
Sturman, and W. Tao. Information flow based event
distribution middleware. In Proceedings of the 1999
ICDCS Workshop on Electronic Commerce and
Web-Based Applications, 1999.

[4] K. Birman. The process group approach to reliable
distributed computing. Communications of the ACM,
36.12:36–53, 1993.

[5] A. Carzaniga, E. Nitto, D. Rosenblum, and A. Wolf.
Issues in supporting event-based architectural styles.
In 3rd International Software Architecture Workshop,
1998.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Achieving scalability and expressiveness in an
Internet-scale event notification service. In Proceedings
of the 19th Annual ACM Symposium on Principles of
Distributed Computing, pages 219–227, 2000.

[7] S. Ceri and J. Widow. Active Database Systems:
Triggers and Rules for Advanced Database Processing.
Morgan Kaufmann, 1996.

[8] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI
event-based infrastructure and its application to the
development of the OPSS WFMS. IEEE Transactions
on Software Engineering, to appear.

[9] G. Cugola, E. D. Nitto, and G. P. Picco.
Content-based dispatching in a mobile environment.
In Workshop su Sistemi Distribuiti: Algoritmi,
Architetture e Linguaggi, 2000.

[10] S. E. Deering. Multicast Routing in a Datagram
Internetwork. PhD thesis, Stanford University, 1991.

[11] Y. Huang and H. Garcia-Molina. Exactly-once
semantics in a replicated messaging system. In
Proceedings of the 17th International Conference on
Data Engineering, 2001.

[12] Y. Huang and H. Garcia-Molina. Replicated condition
monitoring. In Proceedings of the 20th ACM
Symposium on Principles of Distributed Computing,
2001. To appear.

[13] B. Kantor and P. Lapsley. Network News Transfer
Protocol: A proposed standard for the stream-based
transmission of news. Request for Comments: 977,
1986.

[14] Object Management Group. CORBAservices - event
service specification. Technical report, Object
Management Group, 1997.
ftp://ftp.omg.org/pub/docs/formal/97-12-11.pdf.

[15] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The
Information Bus - an architecture for extensible
distributed systems. Operating Systems Review,
27.5:58–68, 1993.



[16] C. Perkins. IP mobility support. Request for
Comments: 2002, 1996.

[17] B. Segall and D. Arnold. Elvin has left the building: A
publish/subscribe notification service with quenching.
In Proceedings of the 1997 Australian UNIX Users
Group Technical Conference, pages 243–255, 1997.

[18] Sun Microsystems, Inc. Jini(TM) technology core
platform spec - distributed events. Technical report,
Sun Microsystems, Inc., 2000. http://www.sun.com/
jini/specs/jini1.1html/event-spec.html.

[19] TIBCO Inc. TIB/Rendezvous.
http://www.tibco.com/products/rv/index.html.

[20] Vitria BusinessWare. http:
//www.vitria.com/products/businessware.html.

[21] T. W. Yan and H. Garcia-Molina. The SIFT
information dissemination system. ACM Transactions
on Database Systems, 24.4:529–565, 1999.


