Lecture I Introduction Pervasive & Mobile Computing MIT 6.883

Larry Rudolph (MIT)

Course Structure Overview

- Class is "hands-on" but also lectures
 - Mostly, you will enjoy and learn from programming for the problem sets
 - The price you pay is listening to my lectures
- Materials (which is why enrollment is limited)
 - Nokia Series 60 Phones (Symbian OS)
 - Hand-held linux machine (iPaq and/or N800)
 - Bluetooth GPS, Crickets, Bluetooth dongle
 - Slides, handouts, notes (raw)

• some readings

Administration

- Official Web Site
 - <u>web.mit.edu/6.883</u>
 - (http://people.csail.mit.edu/rudolph/Teaching/home883.html)
- Official Wiki
 - Last year's site: <u>http://org.csail.mit.edu/mode</u>
 - A new twiki will be setup and visible by the world and people will come to view it.
- Grade: 30% problem sets, 30% quiz, 30% project, 10% participation

The good, the bad, the ugly

- The course should be fun because
 - you get to program cell phones get a glimpse of the future
- The course should be challenging because
 - if covers a large range of topics and you may have to discover a lot by yourself
- It should be frustrating because there is not enough support (welcome to the real world)

Problem Sets

- Preliminary Ideas:
 - Analyze a data set that contains cell towers and the gps coordinates where my phone "heard" the tower
 - geographically distributed "race"
 - 2-d boggle

Aassachusetts nstitute of echnology

- location-aware lying
- parallel search over the brains of your friends
- guided tour of campus
- conference kiosk support

Where to find me?

- I track my indoor and outdoor locations.
- My website lists some of these

http://people.csail.mit.edu/rudolph

Professor Larry Rudolph Principal Research Scientist MIT CSAIL 32 Vassar Street Cambridge, MA 02139 Phone: 617-253-6562 (cell phone: 617 818-8758) Fax: 617-253-6652 Email: rudolph at csail.mit.edu

- · Head of the Oxygen Research Group (ORG) (this is not the main Oxygen project, rather a subgroup part of Oxygen)
- Member of the Computational Structures Group (CSG)
- · Co-Faculty member of the New England Complex Systems

I am a member of CSAIL: Computer Science and Artificial Intelligence

Workshop in Experimental Computer Science

The Workshop will be part of ACM FCRC, San Diego, 13 June 2007.

- This is not a conventional "systems" conference in computer science! · First, it takes a broad view including both software and hardware systems, networking, applications, software engineering, and even
 - Second, the focus is on the experimental approach to doing research. High-quality papers are solicited on the nine themes

In particular, we proactively encourage papers that advance the methodological aspects of experimental computer science, or present new real-world data and observations about computer systems and use. A major criterion for acceptance will be that the paper contributes to the discourse on the subject; it does not have to be the definitive final word

Paper submission deadline: Feb 9, 2007

Current Interests

(Dec 2007) I am currently thinking about cell phones and controling my own personal information. This includes searching, security, privacy, preciction, managing multiple devices, and interacting with distributed data, services, and

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Organization of material

- Top-down
 - would be nice to start writing apps
 - but we are not there yet
- Bottom-up

assachusetts

echnology

- Build on what is known
 - Keyboard, mouse, pen
 - Location, Speech, Multimodal
 - Integrative Technologies

Monday	Tuesday	Wednesday	Thursday	Friday
Feb 6 (Reg Day)	Feb 7 L1: Overview	Feb 7	Feb 8 L2: Mobile Phones	Feb 9
Feb 12	Feb 13 L3: Python, Connectivity	Feb 14	Feb 15 L4: Socket Programming & Bluetooth	Feb 16
Feb 19	Feb 20	Feb 21	Feb 22	Feb 23
President's Day	Monday Schedule		L5: Location GPS	
Feb 26	Feb 27	Feb 28	March 1	March 2
	L6: Location Cell Towers		L7: Location Cricket	
March 5	March 6	March 7	March 8	March 9
	L8: C++ on Series 60		L9: User Interface, GUIs	(add date)
March 12	March 13	March 14	March 15	March 16
	L10: Flash Programming		L11: GUI's Keyboards	
March 17	March 18 XWand & Arrays	March 19	March 20 QUIZ	March 21
March 26 SPRING BREAK	March 27 SPRING BREAK	March 28 SPRING BREAK	March 29 SPRING BREAK	March 30 SPRING BREAK

March 26 SPRING BREAK	March 27 SPRING BREAK	March 28 SPRING BREAK	March 29 SPRING BREAK	March 30 SPRING BREAK
April 2	April 3 L12	April 4	April 5 L13: Speech	April 6
April 9	April 10 L14: Speech II	April 11	April 12 L15: Vision	April 13
April 16 (no class patriot's day)	April 17 (no class patriot's day)	April 18	April 19 L16: Kiosk	April 20
April 23	April 24 L17: Sketching	April 25)	April 26 (drop dat) L18: Security PUFs	April 27
Apr 30	May 1 L19: Debugging	May 2	May 3 L20: Publish-Subscribe & Middleware	May 4
May 7	May 8 Project Presentations	May 10	May 11 Project Presentations	May 12
May 14	May 15 Fun	May 16	May 17(Last day of classes)Fun	

What is pervasive computing?

- Post PC -- PC not the center
- Digital devices all around us
- Ubiquitous Computing
 - Mark Weiser -- Calm Computing

The origin of the course: Project Oxygen

To bring an abundance of computation & communication within easy reach of humans through natural perceptual interfaces of speech and vision so computation blends into peoples lives enabling them to easily do tasks they want to do: collaborate, access knowledge, automate routine tasks

OXYGEN

SIVE, HUMAN-CENTERED COMPUTING

MIT

Pervasive, Human-Centric Computing

What do these words mean?

- Computers are already pervasive
 - even in Boston
- Computers are already human-centric
 - are they for the birds?
- It's not really about computing
 - we already know how to do that

So, what do we mean?

- Pervasive
 - Should be where we need them
 - not have to go to them or set them up
- Human-centric

- Computers should adapt to humans
 - computation enters our world/environment
- Computing
 - Computer-mediated function
 - digital media

Look back to see ahead

- Monolithic Programs & Hardware
- Decompose into interactive pieces
 - Compose to build large thing
- Continue decomposing into autonomous, interacting components

Finding and naming stuff

- Few items
 - Use list
- Many items
 - Use hierarchy
- Very many items
 - Use multi-index

Linux on Handheld

- Why Linux?
 - Linux allows full access to all software
 - Common development with desktop
 - Can use open source code from many sources
- Porting Linux to a handheld device
 - More difficult than standard PC or Laptop
 - Non-standard interfaces (screen, control FPGAs, touch screen, ...)
 - Requires rewritable Flash ROMs

Linux Handheld Devices

- Linux phones are coming (here already)
 - we only care if linux is exposed to user
 - OpenMoko -- open source linux phone
 - why is this important?
- Lots of other devices. Some alive some gone.
 - Add any that you find to our wiki

HP iPAQ 3870 3870 ipaq

- 206 MHz Strong Arm
- 64 Mbytes SDRAM
- 32 Mbytes flash storage
 - Bluetooth
 - SD/MMC card slot
 - 16 bit color display

5500 iPAQ

- 400 MHz Xscale
- 128 Mbytes SDRAM
- -48 Mbytes flash storage
 - Bluetooth & WiFi
 - SD/MMC card slot
 - 16 bit color display

Nokia N800 Internet Tablet

CPU: 330 MHz TI OMAP 2420 OS: Linux (Maemo 3.0) Connectivity: WiFi/Bluetooth (including Bluetooth DUN) ROM: 256M Flash **RAM: 128M RAM** Hard Disk: None (internal SD up to 4GB) Display: 800x480 LCD touchscreen, 4.1" diag. Interface: Dual SD cards, USB, Earphones, microphone, power socket, retractable webcam Keys: Power, 5D navigation, Home, Escape, Menu, zoom in, zoom out, fullscreen Battery: 1500 mAh rechargable GPS: None (Optional Bluetooth with Navicore software due Spring 2007) Size: 144x75x13 mm Weight: 206 grams

Mobile Phones What's the big deal

< 200 Million PC's sold last year
> 200 Million Phones sold last quarter
.5 Billion PC's in 2003

I.5 Billion consumers own mobile phones worldwide -- Economist, Jan 2006

3 Billion subscribers by 2008

Number of Connections, Total

September 18, 2005 -- 2 Billion connections.

CSALL

Perspective

6.4 Billion people 2 Billion mobile phones

OK, so lots of phones

But there are lots of digital watches as well They have chips inside, but who cares? Today, there are Basic phones (modem chip) Regular phones (modem + microprocessor) Smart phones (modem + micro + ...) Tomorrow, will all be smart, difference in ø extra features ø extra fashion

Smartphones == 1996 PC?

Smartphones (and PDA's) are like old PC's
If they are the same, then
"been there, done that"
If they are different, then in what ways?

1996 Pentinum

200 MHz CPU; 60 MHz memory bus Floating point; expansion bus for graphics, sound, other accelerators 3 million transistors; Voltage 3.3 Primary Cache: 8 KB; Level 2: 512 KB Memory: usual ??? MB; Max 4 GB Disk capacity: ??? find out 160 MB ???

Phone's two major cores

DSP Core

220 MHz

64 KB on-chip Ram; 24 KB Instr. Cache

I/2 instructions per cycle

ARM Core

@ 229 MHz

32 KB Data Cache; 16 KB Instr. Cache

Phone == Lots of Integration

Not really the same

More connectivity
More parallelism
More advanced in

Hardware features
Software features & necessities

More sophisticated expectations

cannot turn back time; people have evolved

Phones are different

They are mobile
They will always be bounded by power
They will follow a different Mores' law
The economics are different
different producer-consumer relationship
hw --> operators --> end users
ISP, independent software vendors, role?

The Point?

Phones are different from PC's
Claim: people want PC functionality
They do not want the PC's overhead
There will be billions of smart phones
Time to start taking up the challenge!

Scientists from the RAND Corporation have created this model to illustrate how a "home computer" could look like in the year 2004. However the needed technology will not be economically feasible for the average home. Also the scientists readily admit that the computer will require not yet invented technology to actually work, but so years from now scientific progress is expected to solve these problems. With teletype interface and the Fortran language, the computer will be easy to use and only

Research Areas I

Subser Interface (Huge) Configuration Syntax-free Accessibility: physical & mental disabilities Security, Reliability, Fault Tolerance Solution Naive users; harsh physical world Synchronization & Sharing Interoperability (no platform)

Research Areas II

Architecture: Phone chips as building blocks
 ø wireless expansion bus (no other board) Ø Power & heat management @ e.g. streaming video via DSP or ARM Iocal vs remote compute & store No H/W upgrades

Research Areas III

Applications

Services not applications; easier on user Finding features (e.g. 287 menu items) Ø Platform independence (?) Same app for server; pc; phone too many models (binary rewrite?) (location, user, env)-aware computing 0 Phone as Sensor+Actuator Server Phone as (out-of-band) debugger

Conclusion

Whatever your expertise, phones offer
 different set of constraints
 different levels of abstractions

If you think technology is frustrating today, just wait...

