
Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Publish & Subscribe
Larry Rudolph
May 3, 2006

SMA 5508 & MIT 6.883

1

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph2

➡ An agent is an autonomous program.

➡ It executes code and can communicate with
other agents.

➡ All the components in a pervasive computing
application (whatever that is) usually called agents

➡ An agent may be a “proxy” for a device

➡ Devices, like camera or keyboards, are
controlled by some proxy agent

➡ Agents may appear or disappear at any time

➡ There is some issue in how to start them

➡ There can be problems when they crash

➡ there may be replicates

Agents

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph3

‣ Parallel or distributed programming

‣ a bunch of communicating agents working to
solve a problem

‣ faster

‣ two heads better than one

‣ geographically distributed

‣ everyone can’t live together

A collection of agents

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph4

✴ Two main choices:

✴ (which was best used to be “religious battle”)

✴ Shared memory (SM)

✴ agents load and store values

✴ start with a set of numbers

✴ remove two numbers, insert their sum

✴ done when only one value remains

✴ issues: synchronization, locks, etc.

✴ Message-passing (MP)

Agent communication

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph5

➡ Message-passing

➡ two parts: destination, data

➡ Agent Bob: Send(Alice, “Do you want to go out?”)

➡ Agent Alice: Recv(from,msg)

➡ from = Bob; msg = “do you want to go out?”

➡ send(Bob, “No”)

➡ Issues:

➡ Sender must know destination, recv need not

➡ blocking or non-blocking

➡ low performance, lots of copying of data

➡ Note: MP can implement SM and vica-versa

➡ MP on clusters, SM on multiprocessors

Agent communication

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph6

‣ Sockets are general
Application can specify

‣ port

‣ protocol

‣ other attributes

‣ Message-Passing

‣ library does all the
specification

‣ may reformat data

Message Passing via
Sockets

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph7

✴ A third communication mechanism!

✴ formed basis of Linda programming language

✴ tuple: ordered collection of typed elements

✴ Basic Operations

✴ out: inserts a tuple, whose fields are either

✴ actual: a static value

✴ formal: a program variable

✴ in: extracts tuple, argument is template to match

✴ actuals match fields of equal type and value

✴ formals match fields of same type

✴ rd: same as in, but does not remove matched tuple

Tuple-space

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph8

Tuple-space example

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph9

Linda programming example

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph10

➡ Virtual shared memory

➡ tuples with [address,value]

➡ stores are inserts, loads are non-destructive
reads

➡ Virtual message passing

➡ tuples with [dest, data]

➡ recv are destructive reads

➡ Even more, when matching on multiple fields

➡ Allows many types of implementations

What is the big deal?

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph11

‣ Direct communication model

‣ Jini

‣ FIPA

‣ Indirect, Shared Data-space models

‣ EventHeap (centalized)

‣ MARS (fully distributed)

‣ Event-based publish/subscribe models

‣ Siena

‣ Jini Distributed Events

‣ Selective subscription

Agent Interaction Choices

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph12

✴ Based on Tuple Space paradigm

✴ tuple: arbitrary mix of typed fields

✴ mechanism for passing data & events

✴ Extensions make it useful for agents

✴ many projects exist based on different extensions

Stanford’s Event Heap

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph13

➡ Extended Delivery Semantics:

➡ Per-source ordering, always see events in order
they are generated by the source

➡ Total order: if tuple space is centralized, get this
even if multiple sources

➡ Persistent Queries:

➡ non-destructive read of those matching

➡ also matches tuples inserted in future

➡ Event Notification:

➡ like PQ, get notified of future matches

➡ at most once semantics

Event Heap Extensions

Need more than
simple event heap

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Suggested additions

✴ Need “distributed, replicated or federated local instances

✴ (from paper by Storz, Friday, & Davies)

✴ Multiple event heap instances -- but not easy of implement

✴ View: processes that share a view have consistent ordering

✴ Session identifiers

✴ non-destructive operation on per-session identifier basis

✴ can share, copy, or destroy id’s for different semantics

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph16

✴ Lots and lots of middleware systems

✴ no winner (may never happen)

✴ What gets communicated?

✴ services, events, XML records

✴ The shared space is often a: BROKER

✴ The broker stores the tuples and does the matching

More general issues

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph17

➡ Naming

➡ This is a big, big deal.

➡ e.g. how do you name a camera:

➡ model brand, IP, DNS name, location,
virtual space

➡ via attributes (color, 740x1024),
ownership?

➡ Is there only one name for the agent?

➡ Matching

➡ A big deal

➡ Which attributes explicit, which implicit

➡ Where to do the lookup?

Big Issues

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph18

‣ Addition information provided by broker

‣ for services: how to interface them

‣ filtering events

‣ higher level events implemented at broker

‣ based on multiple basic events

‣ Adaptivity

‣ When to discard services, events

‣ keep alive, heartbeats

‣ Invoke new instance of service automatically

‣ Fault tolerance

Issues

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph19

➡ Standards

➡ XML, SOAP, WSDL

➡ Proprietary Interfaces

➡ Middleware may be new Operating System

➡ Whoever controls it will dominate

➡ Not clear if there is or will be a winner

➡ Integration with web-services

➡ Lightweight devices are different

➡ May want stateful communication

Issues

