
Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Security & Privacy

Larry Rudolph

1

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

➡ Everybody? Nobody? Criminals? Governments?
Corporations?

➡ Privacy is the right to keep information hidden. But
there is lots of information.

➡ You do not have to use stuff that can be tracked, or
do you?

➡ We in academia can have real impact here

Who cares about
Privacy?

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

‣ Mobile Location Protocol

‣ another standard

‣ Used to keep track of your mobile phone

‣ In case you make an emergency call

Do we have privacy?

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Who cares about
Security?

✴ Today, nearly everyone

✴ Limit discussion to information security

✴ Are you allowed to use this device?

✴ authorization
✴ Are you who you say you are?

✴ authentication

✴ Is this device what you think it is?

✴ authentication

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

➡ I am having a conversation with Alice

➡ Do you know we are talking?

➡ Do you know what we are talking about?

➡ Do you know who we are?

➡ Need indirection

➡ but also many-to-one (so things get lost)

➡ think about publish/subscribe

➡ think about multiple personalities

➡ multiple credit cards, cell phones, BlueTooth IDs

➡ rent personality every 5 min from trusted server

Anonymity

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Where security?
‣ Communicate thru insecure area

‣ Over internet

‣ Through air (bluetooth, 802.11, ..)

‣ USB keyboard, Monitor via cable

‣ Assumed to be secure

‣ Shared resources or devices

‣ RFID Tags -- very insecure

‣ stand next to you and listen to your
cards response and replicate it later

‣ Want active RFID tags

‣ use radio power to drive computation

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Public Key Crypto-system

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Public Key Crypto-system

✴ Very quick overview

✴ Ke=Public Key, Kd= Private Key

✴ Encrypt message, E = Encrypt(M,Ke)

✴ Decrypt message, M = Decrypt(E,Kd)

where M = Decrypt(Encrypt(M,Ke), Kd)

and M = Encrypt(Decrypt(M,Kd), Ke)

✴ Given Ke, M, Encrypt(M,Ke)

✴ cannot easily compute Kd.

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Signing Messages

➡ Alice & Bob have keys A1, A2, B1, B2

➡ Alice sends message M to Bob

➡ Encrypt(M & Encrypt(Alice, A2) , B1)

➡ Bob decrypts message M using B1 and then uses
Alice’s public key, A1 to decrypt the name Alice.

➡ Does Bob know that Alice sent the msg M?

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Certification Authority

‣ No, it all depends on having correct public keys.

‣ How did Alice know that B1 is Bob’s public key?

‣ Use a certification authority:

‣ some trusted site that associates keys with names.

‣ Hierarchy of CA’s

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Point to point
communication

✴ Public Key scheme: many people can send messages
to Alice

✴ But basically a one-to-one protocol:

✴ With signing and with replies

✴ Not well suited for pervasive computing

✴ Environment filled with devices

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Want group keys

➡ Want all students in SMA 5508 and 6.883 to access
course web site

➡ Want all SMA students to access SMA’s main site, etc.

➡ A person belongs to many groups

➡ Grant access based on group

➡ Add/remove people from group

Student

DirectorDirector

…

ACL

Director

…

ACL

K1 Students

Director

…

ACL

K1 Students

K1 TAs

TA

Director’s Office

TA

TA

Student Student

Usage Scenario

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Access Control
➡Security Model

➡Useful mechanism in guarding access to resources

➡Suitable for dynamic environments

➡Each resource maintains a list referencing a set of valid
keys

➡ Granting, delegating, revoking access

➡ user/application does not know accessibility of resource without
explicitly attempting access

UserUser User

Resource

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

SPKI/SDSI Introduction
(Simple Public-Key Infrastructure/Simple Distributed Security Infrastructure)

‣A group key infrastructure

‣Build secure, scalable distributed computing
systems

‣Fine-grained access control over an
untrusted network

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

SPKI/SDSI Introduction
(Simple Public-Key Infrastructure/Simple Distributed Security Infrastructure)

✴ Designed by Ron Rivest, Butler Lampson and Carl Ellison

✴ Each public key is a CA

✴ Name certificate: defines a name in issuer’s name space

✴ Authorization certificate: grants a specific authorization from
issuer to subject

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

SPKI/SDSI: Name
Certificates

• Local name spaces

• Groups

SPKI/SDSI:
 {Kc friends, Kd }K
 {Kc friends, Ke }K
 {Kc friends, Kf }K

If ‘Kc friends’ is on an ACL,
Kd, Ke and Kf are allowed to
access the object.

c
c
c

Traditional:
{MIT Larry, KL}Kmit

SPKI/SDSI: Name
Certificate(cert

 (issuer
 (name
 (public-key
 (rsa-pkcs1-md5
 (e #23#)
 (n
 |AMMgMuKpqK13pHMhC8kuxaSeCo+yt8TadcgnG8bEo+erdrSBveY3C
 MBkkZqrM0St4KkmMuHMXhsp5FX71XBiVW1+JGCBLfI7hxWDZCxGTMg
 bR4Fk+ctyUxIv3CQ93uYVkg9ca6awCxtS0EI7sLuEB+HKuOLjzTsH+
 +Txw9NAHq4r|)))
 friends))
 (subject
 (public-key
 (rsa-pkcs1-md5
 (e #23#)
 (n
 |AKg3tOzoJ5PGQ5q9jzxzwxE8o6bIZ6/cE8gEL+1xJa23viE3bz68ru
 hpD5muqJ+uyDCNxgAZ0JVXJazmX1QjiGudj9kEmuni8gJRLZRu0T5E3
 K7OU2dodu0kdDg32kym7+ooZNe/F0zWGekfESeezyQ25kvNO3XQvMHX
 afWcYjRw|)))))

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

SPKI/SDSI: Authorization Model

✴ Simple trust policy model

✴ Authorizations specified in flexible, user-defined tags

✴ Authorizations can be defined as specific or as general
as desired

✴ Delegation (specific)

SPKI/SDSI:
Authorization Certificate

(cert
 (issuer
 (public-key
 (rsa-pkcs1-md5
 (e #23#)
 (n
 |AMMgMuKpqK13pHMhC8kuxaSeCo+yt8TadcgnG8bEo+erdrSBveY3C
 MBkkZqrM0St4KkmMuHMXhsp5FX71XBiVW1+JGCBLfI7hxWDZCxGTMg
 bR4Fk+ctyUxIv3CQ93uYVkg9ca6awCxtS0EI7sLuEB+HKuOLjzTsH+
 +Txw9NAHq4r|))))
 (subject
 (public-key
 (rsa-pkcs1-md5
 (e #23#)
 (n
 |AKg3tOzoJ5PGQ5q9jzxzwxE8o6bIZ6/cE8gEL+1xJa23viE3bz68ru
 hpD5muqJ+uyDCNxgAZ0JVXJazmX1QjiGudj9kEmuni8gJRLZRu0T5E3
 K7OU2dodu0kdDg32kym7+ooZNe/F0zWGekfESeezyQ25kvNO3XQvMHX
 afWcYjRw|))))
 (tag
 (http
 (* set GET POST)
 (* prefix http://ostrich.lcs.mit.edu/demo/)))
 (propagate))

Proxy to Proxy

Alice (Client Proxy) Bob (Server Proxy)

Da (private key)
Ea (public key)
Alice’s client certs
List of CA certs

Db (private key)
Eb (public key)
ACL
Server certs

Set up SSL connection:
Server auth
Session key for privacy
Freshness (nonce)
Protection from MIM

Initialization:

Proxy to Proxy
Case 1: user’s key is directly on the ACL

Alice (Client) Bob (Server)

Da (private key)
Ea (public key)
Alice’s client certs
List of CA certs

Db (private key)
Eb (public key)
ACL
Server certs

[tag]Da

Response

ACL: {Ec,
 Eb,
 Ea}

Signed by alice

Proxy to Proxy

Alice (Client Proxy) Bob (Server Proxy)

Da (private key)
Ea (public key)
Alice’s client certs
List of CA certs

Db (private key)
Eb (public key)
ACL
Server certs

[tag]Da

Rejected:

[tag]Da, certs

ACL

 Case 2: user’s key is “indirectly” on the ACL

Client performs
certificate chain
discovery.

Server verifies
certificate
chain.

ACL: {‘Eb friends’}

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Certificate Chaining
Example

➡Bob’s ACL says only MIT faculty are allowed to access his
server.

➡Alice’s first request is simply signed with Alice’s key, and Bob
rejects this request.

➡Alice’s second request contains a chain consisting of the
following certificates:

➡A certificate saying she is an CSAIL Professor

➡A second certificate saying CSAIL Professors are MIT
faculty

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Certificate Chain Discovery
(Client Proxy)

• Derive certificate chains

• Input: device’s ACL, requestor’s public key,
requestor’s set of signed certificates, tag

• Output: a chain of certificates leading from an
entry on the ACL to the requestor’s public key.

(The certificate chain consists of signed certificates. It proves that the
requestor is authorized to perform the tag’s operations on the device.)

* Recall, intuitively, a tag is a set of requests.

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Certificate Chain Verification
(Server Proxy)

• Verify certificate chains

• Input: device’s ACL, requestor’s public key,
requestor’s certificate chain, tag

• Output: 1 if certificate chain proves that the
public key is authorized to perform the tag’s
operations on the device; 0 otherwise.

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Proxy to Proxy

Alice (Client Proxy) Bob (Server Proxy)

Da (private key)
Ea (public key)
Alice’s client certs
List of CA certs

Db (private key)
Eb (public key)
ACL
Server certs

[tag]Da

Rejected:

[tag]Da, certs

ACL

 Case 2 revisited
user’s key is “indirectly” on the ACL

• Signed request provides proof of authenticity of the request

• Certificate chain provides proof that the request is authorized

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Example: Public resource

Mary wants to turn on/off a public light switch.

1. Mary sends request (either signed or unsigned) via her
proxy to the light switch’s proxy.

[tag]Dm

 Light switch’s proxy may require requests to be
signed for auditing purposes.

“ok”

2. Light switch’s proxy has no ACL. It honors Mary’s request.

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

User’s key directly on ACL
 Mary wants to log into an account on a dialup machine.

ACL: {Ec,
 Ef,
 Em}

1. Mary sends signed request via her proxy to the dialup’s
proxy.

[tag]Dm

“ok”

1. Dialup’s proxy has an ACL which contains Mary’s
public-key. It checks the signature on Mary’s request,
 and honors Mary’s request to login if the signature verifies.

 Example:user’s key is indirectly on ACL

Mary wants to play music on John’s speaker.

ACL: {‘Ej friends’}

1. Mary sends signed request via her proxy to John’s speaker’s proxy.

[tag]Dm

“ok”

4. John’s speaker’s proxy verifies second request.

[tag]Dm, {‘Ej friends’, Em}Ej

1. Mary’s proxy derives a chain of certificates and sends second
request to John’s speaker’s proxy.

ACL

2. John’s speaker’s proxy rejects first request, and returns the ACL.

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

More “fun”

➡ Integrating access control with name lookup services

➡ Trusting untrusting devices

➡ Using public terminals in Startbucks as a cache for
handheld

