
Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Phony Programming
(Series 60 Symbian Phones)

Larry Rudolph
MIT 6.883

Feb 13, 2007

1 1

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• Ignorant Owner
• perhaps a really ignorant owner or user

• Scarce Resources
• Power -- slow processor, small memory, small disk (expanding)

• Size -- Screen and keyboard area

• Heat -- To keep this low, must constrain above

• Price -- Different than PC, since each feature costs the same, due to volumes

• Reboot -- these are rare events

• Brand loyalty -- hardly any, mistakes are costly

• It’s new and exciting!

What’s so special about
phones?

The introductory lecture briefly addressed the issue as to why phones are di!erent.
Mobility was the big reason, and we will see that this simple term has many implications.

We are all used to using computers. At times we may get frustrated and at times we may
be impress, but
no matter what, we understand how to use computers. People understand how to use a
telephone. Turn it on, dial a number and talk. It is an appliance with a well defined basic
interface.

Is important that any user will always be able to use the device as a phone? The answer is
important to the
design. If the answer is yes, then one must make sure that an ignorant user will not keep
poking at things
causing lots of damage. If the answer is no, we can assume that the device is a personal
one and can be tailored to the owner.

There are several features of phones that make them di!erent. Conservation of power is
important. The processor is slow and ram is small. It is interesting that the speed of

2

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• Inherently very little -- but in practice ...

• History

• originally: phones were h/w appliances

• past: s/w - h/w co-design reduced costs

• near past: new features all s/w

• near future: 3rd party software

• In computer world, two approaches

• Intel: H/W, Microsoft: O/S, separate h/w from s/w

• Apple: H/W & S/W, easier to integrate, high costs $

• Companies have no history of being open !!

What’s so special about phony
programming?

Why do we need to think about programming the phone in any special way? PDAs and
handhelds are not so di!erent than PCs. Phones seem much di!erent, why?

There are the constraints, but there is also history. Phones grew up as being appliances
with fixed functionality, and then to appliances with additional features. Currently they are
devices that are still pretty much co-owned by the operators and manufacturers. Although
we buy them, it feels like we are renting them from the operators. Many have the name of
the operator inscribed on the device itself.

Operators do not want their subscribers call the service department. It is very expensive.
On the other hand, it seems clear that software helps sell hardware. The killer application
is what makes people choose one device over another. Earlier, we tried to argue that it is
fashion. Which do you think is more important.

But the trends are hard to fight. Software and interesting applications will be developed by
third parties.

To be fair, there is functionality within the phone that should be protected -- namely

3

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• Most smart phones have two ASICs

• Modem/Telephone service (DSP)

• Embedded processor and extra features

• Palm-Based: Slow to integrate

• Pocket-PC: Appears to be aggressive

• Can they maintain two OS’s (Windows &
WinCE)?

• Linux: (actually, Linux+Java)

• Still hidden from user Motorola phones

• Symbian: Mostly on Nokia and Sony/
Ericsson

• IDC Predicts: Pa:10%, Po:27%, Li:4%, Sy:53%

Current Choices

What is interesting is that the choice is so limited. In the early days of computers, and the
early days of any technology that is high risk, high payo!, there are lots of choices. As
time goes on, the choices narrow.

Actually, there are many operating systems for phones and handhelds. The only problem
is that we do not get to see them or program with them. Most of the operating systems
are hidden and embedded into the phone. We only see the user interface.

4

Palm Phones

Palm was one of the companies that started the PDA revolution. They had a wonderful
user interface. It is still surprising to see people with PDAs that are not also cell phones.
They do one thing right. Many people do not want the compromises that are inherent in
“convergent” devices. The palm phones are more expensive, have smaller screens and
other limitations. They are not such great
phones either, having touch screens, which many people do not like on their phones.

But what really happened to Palm? It had a very loyal customer base. Any opinions?

5

Pocket PC Phones

PocketPC phones are popular for the obvious reasons -- familiarity and presumed
streamlined integration. Of course there is a di"cult balancing act. Microsoft operating
systems are well known to require lots of resources -- memory and cpu. The strength of
microsoft has been its ability to handle a wide range of third party hardware devices. This
is of little help on an integrated phone. The other feature is the familiar “look and feel”.
But the look and feel that is geared for a large screen and easy to use multi-button mouse
does not easily translate to the phone device’s constraints.

Does anyone know how much microsoft charges manufacturers for PocketPC?

The good news is that PocketPC is programmable. There are lots of third party
applications. One web site claims over 20,000 applications. Anyone have any experience
with them?

I have had two bad experiences with pocket-pc. The first is the fact that third party
applications get installed into sdram and not onto flash. There is a second backup battery
for keeping the data in sdram valid, but if the device fully discharges, all the software must
be reinstalled. The second has to do with bluetooth. Although the API is well documented,

6

Linux Based Phones

OpenMoko promises to be highly programmable. They are trying very hard to keep the
software open. Some of us are paranoid and only when we can see the code, do we trust
that it is not doing anything that might compromise our privacy. But even with open
software, there is still the treat that the phone could be upgraded over the air without our
knowledge.

7

Apple’s iPhone
But its not like the walled garden has gone away.

You dont want your phone to be an open

platform, meaning that anyone can write

applications for it and potentially gum up the

provider's network, says Jobs. You need it to

work when you need it to work. Cingular doesnt

want to see their West Coast network go down

because some application messed up.

We define everything that is on the phone, he said. You dont want your phone

to be like a PC. The last thing you want is to have loaded three apps on your

phone and then you go to make a call and it doesnt work anymore. These are

more like iPods than they are like computers.

The iPhone, he insisted, would not look like the rest of the wireless industry.

These are devices that need to work, and you cant do that if you load any

software on them, he said. That doesnt mean theres not going to be software

to buy that you can load on them coming from us. It doesnt mean we have to

write it all, but it means it has to be more of a controlled environment.

We can have an interesting discussion about the iPhone. It appears that it will not be so
easy to write your own code to run on the phone. That would be too bad, since I believe
there is lots of innovation that is just waiting
to happen.

8

Symbian Phones

Symbian is a di!erent operating system and currently, it is the easiest platform on which to
program. The choice was based on Python, which makes it easy to prototype and test out
features. Symbian is trying hard to be the platform of choice for 3rd party software. As
usual, in the beginning, support was only for o"cial collaborators. There was little help
for non-companies. That seems to be changing, and the more we do in this class the
better.

9

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• Originally developed for the Psion handheld computer

• competition with Palm

• single user, small memory, instant-on, no network

• EPOC operating system

• Symbian independent company

• partly owned by Nokia, Sony/Ericsson, Panasonic, Seimans, Samsung (no one controls them)

• EPOC and Symbian names became intermixed

• Nearly all documentation and tools were for commercial
developers but things are changing

• high start-up cost,

• Three different major OS’s: for Nokia, Sony/Ericsson, NTT (more on this later)

Symbian Epoc OS

Although most people know of Windows and various flavors of Unix operating systems,
there have been a huge number developed for all di!erent types of special purpose
applications. Real time systems is an are of much diversity as are embedded systems.
Symbian grew out of the embedded PDA world and somehow manage to survive. The
situation is unique. Symbian is now jointly owned mostly by Nokia, and Sony/Ericsson --
and to a lesser degree, Pansonic, Seimans, Samsung -- but Nokia depends the mostly on
them. It is unique because in many ways Nokia is too dependent on them. There are
various versions, Symbian is up to version 9. Nokia calls them Series xx (e.g. 40, 60, 80 ...)

10

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• Despite the fact that

• Programmable Mobile Phones are new artifacts

• the OS and programming repeat mistakes

• Designs that make sense for disconnected, single use
devices, remain as devices become connected and
multi-use and multi-tasked.

• Inertia is a powerful force

 Deja Vu

We see this time and time again. Microsoft DOS is a prime example, but there are many
others. A system is developed without thinking about the implications of multi-user,
multi-tasking, security. It then gets adapted to be connected and security becomes a big
problem. Perhaps there is a “law” -- something like, every computer-based device
eventually evolves to be interconnected with other devices.

I am sure I will continue to repeat my fear of the new ability to update the firmware of a
phone over the air (OTA). This has so many serious implications.

11

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• C++ for Symbian

• access to all the phones functions

• not so easy

• Java

• highly sandboxed.

• no access to file system, phone, and more

• not the choice language for virus writers

• Python

• will have interface to all Symbian API’s via extensions

• Adobe Flash

Programming Languages Series
60 Phones

For a variety of reasons we will be programming Nokia Symbian Series 60 phones.
Unfortunately,
not all series 60 phones are the same; it is an unfortunate naming scheme, but we are
stuck with it.

Symbian was first developed as object oriented languages were starting to become popular
but the technology was not quiet mature yet. Symbian choose C++ as the language for its
OS. But there is no automatic garbage collection, and there was no good exception
mechanism either. They added their own and that has made it di"cult to program in
Symbian C++. We will use it, but only when needed.

Java should have been the ideal language for programming phones, especially with the
write once -- run everywhere philosophy. There are several problems. 1. Java is owned by
Sun and so Sun controls the JVM. You cannot just put a JVM on your machine without their
approval. 2. Java, at least on
many of the Nokia versions I know about, is highly sandboxed and does not allow access
to things like the file system, mailboxes, telephone functionality, and address book. 3.
Java implementations and APIs are inconsistent across phones.

12

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• Kernel: Protected Mode; Controls H/W

• Server: Manages one or more resources

• no UI (user interface)

• yes API (application program interface)

• may be device driver or kernel service

• Application: A program with a UI

• Each application is a process; own virtual address

• If interacts with server, can be called a client

• Engine: part of app. manipulates its data not UI

Symbian OS Basics

Symbian is organized around servers. Resources are managed by servers. Servers run in
the background and do not have a user interface. They may be part of the operating
system and provide basic service, like incoming phone call notification or controlling the
audio driver. They may also be user defined servers. Since it is di"cult for a user to see if
a server is running, it makes a great place to hide a virus.

There is usually only one copy of a service for each resource. They run in their own
address space, and they are interrupt driven. They do not run without an event first
waking them up.

An application interacts with one or more servers. An application has a user interface. It
runs in its own virtual address space (but there is no swapping).

Symbian also uses the term engine which is kinda like a server. It is part of an application
but without the user interface part. I like this distinction, as the user interface is crucially
important for devices with limited screen area and keys. I think the di!erence between an
engine and a server is that an engine exits when the application exits. It is like a thread of
the process. But sharing memory between threads in a symbian application is tricky.

13

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• Three boundaries

• DLL or module: cheap to cross

• Privilege: medium to cross

• Process: expensive to cross

• Processes, Threads, Context Switches

• Process: has its own address space (256 MB)

• Thread: Unit of execution within a process

• Preemptively scheduled; 2MB nonshared ==> 128 thds/pro

• Executables

• exe: single entry point

• dynamic link library (DLL): multiple entries

• Shared (OS) vs Polymorphic (app)

Processes & Threads

The truth is that I keep confusing symbian’s definitions with those of unix. There are
subtle di!erences, mostly in restrictions. I am always very careful when using threads in
symbian (and nearly always get caught with some hard to track bug).

14

RAM Memory Parts

The ARM v6 processor has virtual memory and paging, however, Symbian does not use the
paging facility. When physical memory runs out, processes die and new ones cannot be
started. It also does not use the variable sized pages the ARM supports. However, virtual
memory provides lots of good protection. When a process terminates, its pages are freed.

Symbian makes a big deal about trying to prevent or limit memory leaks. This is because
applications may run for a very long time -- e.g. the calendar application. But things like
games, or our prototype applications, should not have to worry too much about memory
problems.

15

16

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• RAM: partitioned into 4k pages

• kernel, process, DLL, MMU tables, Video, C:

• Thread memory: Shared:Heap, Nonshared:Stack

• DLL -- no writable static data (yes for exe’s)

• requires multiple copies of instantiated dll

• Files (does this remind you of something)

• C: RAM -- r/w file system. Zero’d on cold boot

• restored from ROM on cold boot

• Z: ROM -- can be reflashed (not easy)

• D: Memory Card

• 512 byte blocks written atomically; VFAT format

Memory

17

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• Efficient handling major OS design

• native OS server is single event-handling thread

• Symbian organized as Event-driven

• Active Objects: non-preemptive event
handling

• and client-server structure

Event Handling

18

Response to key-press

19

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• Each active object has virtual member function
called RunL()

• gets called when event happens

• events have associated priority

• Active Objects execute non-preemptively

• RunL() should execute for short time

• no need for mutex, semaphores, critical sections

• fewer context-switches

• Compute-intensive threads:

• Simulate using pseudoevents

• split task into pieces, generate low-prio event

Active Objects

20

21

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• Lots of examples at www.forum.nokia.com

• great for games and network connectivity

• Compile on server

• Install on phone via:

• bluetooth connection

• mms message (email)

• upload from web server

• On phone, java applet must be opened to
install before being run.

Java Programming

22

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• The real stuff but documentation is difficult

• Everything depends on the SDK

• Software Development Kit runs under Windows

• The processor on phone is ARM (same as iPaq)

• Must do cross-compilation

• compile with different libraries and assembly instructions

• There is an “Emulator” -- but it is really a
simulator

• e.g. it executes x86 code not arm code

• so must compile either for ARM or x86

• emulator is needed for debugging

C++ Programming

23

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• Tutorials: C++ for Java programmers

•http://www.cs.brown.edu/courses/cs123/javatoc.shtml

•There are many others on-line

•Easier to go from java to c++ (java has less weirdness)

C++ Programming

24

Symbian Layers

25

26

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Symbian 60 Phone
Programming in Python

27 27

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Installing stuff

• a package or installation file in symbian:

• application_name.sis

• Get it onto the phone

• push via bluetooth (or send message)

• Open up message and install

• if there is flash memory, install it there

28

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph 29

• import appuifw # the application user interface fw(?)

• u’Hello World’, # u’ ‘ for a unicode string. All GUI

• # strings are unicode. Others can be

• u’info’ # specifies the type of note

 import appuifw
 appuifw.note(u’Hello World’,u’info’)

30

• “query()” pops up a dialog with prompt string and input type

• other types can be ‘number’ ‘date’ ‘code’

• the ‘+’ concatenates the two unicode strings

 import appuifw
 planet = appuifw.query(u’Which planet?’,u’text’)
 appuifw.note(u’Hello ’+planet , u’info’)

31

• The ‘menu’ method pops up the list of items in first param

• It returns with an index into the list of menu items

• Note that the prompt param must also be a unicode string

 import appuifw
 planets = [u’Mars’, u’Earth’, u’Venus’]
 prompt = u’Enter your home planet’
 index = appuifw.menu(planets, prompt)
 appuifw.note(u’Hello ’+planets[index] , u’info’)

32

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Our own interface:

S833.py
There are a bunch of annoyances in the current UI

Let’s put wrappers around basic calls

We should go back and do this for location

33 33

 # this is file s883.py
 # wrappers to appuifw, e32, and bluetooth

 def note(str , type = ‘info’):
! appuifw.note(unicode(str), type)

 def query(str , type = ‘text’):
 ! return appuifw.query(unicode(str), type)

 def menu(list, prompt = ‘select one’):
 ulist = [unicode(u) : for u in list]
! return appuifw.menu(ulist , unicode(prompt))

34

 import s883
 planets = [’Mars’, ’Earth’, ’Venus’]
 prompt = ’Enter your home planet’
 index = sma.menu(planets, prompt)
 sma.note(’Hello ’+planets[index])

35

• It is easier to go through the python
reference document, rather than
reproducing it all here...

36

