

- 1978 US Department of Defense begins project
- 1984 Crash of Korean Flight due to poor navigational equipment ==> gps for civilian use
- 1985 Complete system fully operational
 - 24 satellites (11,000 mile orbit) & \$12 billion
- 2000, selective availability turned off
 - 3 to 15 meter accuracy for everyone

GPS (cont)						
ł	<pre>buf = sock.recv(1)</pre>					
v.	while buf != '\$' :buf = sock.recv(1)					
7	<pre>while buf[-1] != '\r':buf += sock.recv(1)</pre>					
-	if buf[0:6] == "\$GPGGA":					
	(GPGGA,utcTime,lat,ns,lon,ew,postfix,sats, hdop,alt,altunits,sep,sepunits,age,sid) = buf.split(",")					
	<pre>latitude = float(lat)</pre>					
	longitude = float(lon)					
CSAIL	Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph					

\$GPGGA

Global Positioning System Fix Data

eg1. \$GPGGA,170834,4124.8963,N,08151.6838,W,1,05,1.5,280.2,M,-34.0,M,,,*75

Name	Example Data	Description
Sentence Identifier	\$GPGGA	Global Positioning System Fix Data
Time	170834	17:08:34 UTC
Latitude	4124.8963, N	41d 24.8963' N or 41d 24' 54" N
Longitude	08151.6838, W	81d 51.6838' W or 81d 51' 41" W
Fix Quality: - 0 = Invalid - 1 = GPS fix - 2 = DGPS fix	1	Data is from a GPS fix
Number of Satellites	05	5 Satellites are in view
Horizontal Dilution of Precision (HDOP)	1.5	Relative accuracy of horizontal position
Altitude	280.2, M	280.2 meters above mean sea level
Height of geoid above WGS84 ellipsoid	-34.0, M	-34.0 meters
Time since last DGPS update	blank	No last update
DGPS reference station id	blank	No station id
Checksum	*75	Used by program to check for transmission errors

Courtesy of Brian McClure, N8PQI.

Courtesy of Brian McClure, N8PQI.

Global Positioning System Fix Data. Time, position and fix related data for a GPS receiver.

eg2. \$GPGGA,hhmmss.ss,ddmm.mmm,a,dddmm.mmm,b,q,xx,p.p,a.b,M,c.d,M,x.x,nnnn

hhmmss.ss = UTC of position ddmm.mmm = latitude of position a = N or S, latitutde hemisphere dddmm.mmm = longitude of position b = E or W, longitude hemisphere q = GPS Quality indicator (0=No fix, 1=Non-differential GPS fix, 2=Differential GPS fix, 6=Estimated fix) xx = number of satellites in use p.p = horizontal dilution of precision a.b = Antenna altitude above mean-sea-level M = units of antenna altitude, meters c.d = Geoidal height M = units of geoidal height, meters x.x = Age of Differential GPS data (seconds since last valid RTCM transmission) nnnn = Differential reference station ID, 0000 to 1023

Information gotten from: http://home.pacific.net.au/~gnb/gps/nmea.html

Enhanced Method E-OTD: Enhanced observed time difference Time from base station to phone

• Time from base station to phone

SALL

- Time from base station to fixed location
 - Ratio gives better estimation of position
- Also use triangulation (from several bases)
- Both yield order of magnitude improvement
 - and lots of research for even better results

 Different people have different views of the world.

SALL

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Service	Description
Service A: Ringing profiles in private settings	The mobile phone 'knows' when the user is in a meeting or in class
Service B: Ringing profiles in public settings	The mobile phone 'knows' when the user enters a movie theater or a restaurant
Service C: Lunch service	A suggestion for lunch is pushed by the retailer to the mobile phone when the user is around a restaurant or fast food place
Service D: Localization of predefined friends	The mobile phone can locate predefined friends and alert the user when they are within a certain distance

	-		
Service	Rated	Rated	Average
	useful-	intrusi-	# of
	ness	veness	daily use
Service A: Private	3.75	2.1	1.5
ringing profiles			
Service B: Public	2.6	2.2	0.4
ringing profiles			
Service C: Lunch	2.2	3.7	0.3
service			
Service D:	3.75	3.25	1.3
Localization of			
predefined friends			

1= not useful at all, 5 = very useful

1= not intrusive, 5 = very intrusive

 Table 2: Average rating of the services.

Tabl	e 1. The three levels of	f services presented to	participants.
Service	Personalization	Passive Context- Awareness	Active Context- Awareness
A: Private ringing profiles	Different ringing profiles that are set manually	The phone prompts the user to adjust the profile when sensing it is in a meeting or class	The phone auto- matically changes profile when sens- ing the user is at a meeting or in class
B: Public ringing profiles	Different ringing profiles that are set manually	The phone prompts the user to adjust the profile when sensing it is in a movie theater or at a restaurant	The phone auto- matically changes profile when sens- ing the user is at a movie theater or at a restaurant
C: Lunch service	Manual search for appropriate lunch place	Single alert around noon for lunch place according to users' preferences	Alerts the user when passing by a lunch place of rele- vance and suggests places at noon
D: Class slides	Manual search to see if class slides are available online	If signed up, the phone alerts user of available slides for class	Automatic alert ev- ery time the teacher updates class slide website
E: Location tracking	Manually location tracking of prede- fined friends	Locations tracking of friends and set- ting to alert when they are within a certain range	Location detection of friends that alerts when they are within 300 feet of user
F: Activity tracking	Display of potential call-receiver's so- cial situation (e.g. meeting, home, out)	In a new context, the phone prompts the user to display the user's situation to possible callers	Automatic switch to display of social situation when entering a new context

Their Conclusions

The finding that participants felt they had less control in the context-aware groups but still preferred the context-aware approaches, might at first seem contradictory. However, it should be considered that owning a mobile phone in itself constitutes some lack of control since the user can be reached anywhere at anytime; the user might have less control, but are aware that this is the cost of becoming more interactive and in achieving a smoother everyday experience.

Although our study results provide support for highly interactive applications for mobile computing, by indicating that people would use them to a fairly high degree, the applications should still be developed with caution. The incurred cost due to loss of control can result in users turning off a service. While the participants initially liked many of the active context-aware services, they might become frustrated by their perceived lack of control and eventually turn the service off.

