

GPS (cont)
<pre>buf = sock.recv(1)</pre>
<pre>while buf != '\$' :buf = sock.recv(1)</pre>
<pre>while buf[-1] != '\r':buf += sock.recv(1)</pre>
if buf[0:6] == "\$GPGGA":
(GPGGA,utcTime,lat,ns,lon,ew,postfix,sats, hdop,alt,altunits,sep,sepunits,age,sid) = buf.split(",")
<pre>latitude = float(lat)</pre>
<pre>longitude = float(lon)</pre>
TI TI S A I L Prraise Company MT 688 Sprig 200 Larry Religio

JOFGGA		
Global Positioning System Fix Data		
g1. \$GPGGA,170834,4124.8963,N,0815	51.6838,W,1,05,	1.5,280.2,M,-34.0,M,,,*75
Name	Example Data	Description
Sentence Identifier	\$GPGGA	Global Positioning System Fix Data
Time	170834	17:08:34 UTC
Latitude	4124.8963, N	41d 24.8963' N or 41d 24' 54" N
Longitude	08151.6838, W	81d 51.6838' W or 81d 51' 41" W
Fix Quality: - 0 = Invalid - 1 = GPS fix - 2 = DGPS fix	1	Data is from a GPS fix
Number of Satellites	05	5 Satellites are in view
Horizontal Dilution of Precision (HDOP)	1.5	Relative accuracy of horizontal position
Altitude	280.2, M	280.2 meters above mean sea level
Height of geoid above WGS84 ellipsoid	-34.0, M	-34.0 meters
Time since last DGPS update	blank	No last update
DGPS reference station id	blank	No station id
Checksum	*75	Used by program to check for transmission error

Courtesy of Brian McClure, N8PQI.

Global Positioning System Fix Data. Time, position and fix related data for a GPS receiver. eg2. \$GPGGA,hhmmss.ss,ddmm.mmm,a,dddmm.mmm,b,q,xx,p.p.a.b,M,c.d,M,x x,nnnn

eg2. SGPGGA hhrmsss.sddmm.mmm.adddmm.mmm.b.qxx.p.p.a.b.M.c.d.M.x.x.mnn hhrmss.se UTC of position ddmm.mmm = laitude of position a = N or S, laituude hermisphere ddmm.mmm.b.ngitude of position a = N or S, laituude hermisphere GPS Quality indicator (0=No fix, 1=Non-differential GPS fix, 2=Differential GPS fix, 6=Estimated fix) xs = number of statellines in use p.p = horizontal dilution of precision a b = Antenna altitude abvected M = units of antenna altitude, meters c.d = Geoidal height M = units of geoidal height, meters xx = Age of Differential GPS data (seconds since last valid RTCM transmission) nnnn = Differential reference station ID,0000 to 1023

Information gotten from: http://home.pacific.net.au/~gnb/gps/nmea.html

Using Towers to find location • We saw that towers may cover large range • We saw that there is large overlap (urban) • care more about precise location in urban areas • Key insight: the pattern of cell tower handoffs is a good indicator of location • leave phone in same place for few hours • see same pattern of handoffs at same location

CSAIL

- ullet how objects spatially relate to each other
- many geometry types and typical queries

CSAIL

Service	Description
Service A: Ringing profiles in private settings	The mobile phone 'knows' when the user is in a meeting or in class
Service B: Ringing profiles in public settings	The mobile phone 'knows' when the user enters a movie theater or a restaurant
Service C: Lunch service	A suggestion for lunch is pushed by the retailer to the mobile phone when the user is around a restaurant or fast food place
Service D: Localization of predefined friends	The mobile phone can locate predefined friends and alert the user when they are within a certain distance

Table 1: Location-Based Services.

Service	Rated useful- ness	Rated intrusi- veness	Average # of daily use
Service A: Private ringing profiles	3.75	2.1	1.5
Service B: Public ringing profiles	2.6	2.2	0.4
Service C: Lunch service	2.2	3.7	0.3
Service D: Localization of predefined friends	3.75	3.25	1.3

 Table 2: Average rating of the services.

Service	Personalization	Passive Context- Awareness	Active Context- Awareness
A: Private ringing profiles	Different ringing profiles that are set manually	The phone prompts the user to adjust the profile when sensing it is in a meeting or class	The phone auto- matically changes profile when sens- ing the user is at a meeting or in class
B: Public ringing profiles	Different ringing profiles that are set manually	The phone prompts the user to adjust the profile when sensing it is in a movie theater or at a restaurant	The phone auto- matically changes profile when sens- ing the user is at a movie theater or at a restaurant
C: Lunch service	Manual search for appropriate lunch place	Single alert around noon for lunch place according to users' preferences	Alerts the user when passing by a lunch place of rele- vance and suggests places at noon
D: Class slides	Manual search to see if class slides are available online	If signed up, the phone alerts user of available slides for class	Automatic alert ev- ery time the teacher updates class slide website
E: Location tracking	Manually location tracking of prede- fined friends	Locations tracking of friends and set- ting to alert when they are within a certain range	Location detection of friends that alerts when they are within 300 feet of user
F: Activity tracking	Display of potential call-receiver's so- cial situation (e.g. meeting, home, out)	In a new context, the phone prompts the user to display the user's situation to possible callers	Automatic switch to display of social situation when entering a new context

Does Age Matter? • Not much in this sample of 23 participants. • surprising result Table 2. General participant demographics. Personalization Passive Context-Awareness Active Context-Awareness N=23N Average age 8 23.7 22.925Average mobile phone ownership 2.2 years 2.6 years 2.7 years Average user level (a scale 3.1 from 1-6) 3.8 3.4 Massachusetts Institute of Technology Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Their Conclusions

The finding that participants felt they had less control in the context-aware groups but still preferred the context-aware approaches, might at first seem contradictory. However, it should be considered that owning a mobile phone in itself constitutes some lack of control since the user can be reached anywhere at anytime; the user might have less control, but are aware that this is the cost of becoming more interactive and in achieving a smoother everyday experience.

Although our study results provide support for highly interactive applications for mobile computing, by indicating that people would use them to a fairly high degree, the applications should still be developed with caution. The incurred cost due to loss of control can result in users turning off a service. While the participants initially liked many of the active context-aware services, they might become frustrated by their perceived lack of control and eventually turn the service off.

Massachusetts Institute of Technology

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph