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Abstract 

Production cupabilities for complex VLsl chips have 
outpaced the abilio of current generation CAD tools IO de- 
sign and verify such chips effectively. Bluespec is designed 
to synthesize high-level descriptions in the form of guarded 
atoontic actions into high quality structural RTL. While inuch 
nork has been done 011 verzfviirg both the correctness and 
synthesizabilio of Bluespec descriptions, the work on re- 
alistic large scale designs is in early srages. This paper 
explores the design of rhe reorder bufferjor an out-oforder 
superscalar processor with a MIPS I ISA. We discuss the 
design methodologies which are suited for large scale Bhe- 
spec design and discuss some of the diflculties we encoun- 
tered. Even though the work is still in progress, we show 
what level of performance is  achievable under the current 
Bluespec compiler and what problems need to be solved 
to make the tool viable for comiiiercial production environ- 
ments. 

1. Introduction 

Bluespec has been used at Sandburst, MIT and CMU to 
describe complex hardware, Previous work has also shown 
that small but complex designs described using TRS, the 
formalism underlying Bluespec, are amenable to formal 
verification [I] ,  It has also been shown that a simple 5-stage 
MIPS pipeline can be synthesized from TRS’s quite eff- 
ciently [7,8] , What remains to be seen is if the correctness- 
centric Bluespec design approach is able to generate RTL 
that is comparable to handwritten Verilog. 

In this paper we present the Bluespec design process by 
designing a 2-way reorder buffer (ROB) to be used in a pro- 
cessor core for the MIPS I ISA. The focus of this paper 
is to determine whether this complex hardware design can 
be described in Bluespec such that its “cycle-level perfor- 

mance” is equivalent to what one would expect from hand- 
crafted RTL written to support the concurrency of the tasks 
ROB has to perform. One needs to see if the high-level 
description captures the inherent concurrency of the design 
appropriately before delving into low-level timing and area 
optimizations. 

1.1 ReIated Work 

There is a lot of interest in high-level hardware descrip- 
tion languages which make use of behavioral modeling, 
while still allowing for efficient hardware synthesis. Most 
commercial work in this field is focused on two approaches. 
The first is to increase the complexity level of RTL Ian- 
guages to be more suitable for modeling, such as Behavioral 
Verilog. The second is to modify a standard language (e.g. 
C or Java) to be more appropriate for describing hardware. 
In the latter case, Control Data Flow Graphs are extracted 
from the source description and techniques for compiling 
vector architectures are used to generate register transfer 
l0gic[4][6]. Neither of these techniques has yet to produce 
a widely accepted hardware description language for syn- 
thesis. 

One type of research has a focus an specialized 
programmable processors[b][ IO]. This effort is only 
marginally associated with the problem of general purpose 
hardware description languages, as most of its emphasis is 
on processor specific issues, such as instruction encoding, 
and the automatically generated assemblers. 

Two other types of languages have been explored by 
the research community to become an effective high-level 
HDL. The first of these types uses a synchronous specifi- 
cation language like Esterel, Signal, or Lustre. These lan- 
guages deal with real-time issues[2]. Methods to compile 
Esterel into hardware have been written, but the results are 
not comparable to handwritten Verilog designs. 

The second type uses an asynchronous language with 
atomic actions such as Dill’s Murphi[3], Sere’s Action 
Systems[9], Staunstrup’s Synchronized Transitions[ 11 J, 
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and Arvind and Shen's TRS[1]. The primary principle of 
these languages is that all hardware systems can be de- 
scribed in two parts: a physical state (e.g. registers and 
storage) and a set of guarded atomic actions which describe 
the state-change transitions. It has been shown that these 
atomic descriptions can be translated into efficient hardware 
if rules are assumed to take one cycle[7][8]. Bluespec is a 
member of this second group of languages. 

1.2 Paper Organization 

Section 2 of this paper gives a description of Bluespec's 
syntax and scheduling. Section 3 describes the rough design 
of the processor and the reorder buffer's function. Section 4 
discusses the initial implementation of the reorder buffer in 
Bluespec. A discussion of the debugging process is detailed 
in Section 5. We write about optimizations done to improve 
cycle performance in Section 6, and other optimizations in 
Section 7. Finally, in Section 8 we discuss the findings of 
this work, general Bluespec design tips, and areas for future 
work for Bluespec. 

2 Bluespec 

Bluespec is an object oriented RDL which compiles into 
TRS. In Bluespec, a module is the actual unit which gets 
compiled into hardware. Each module roughly corresponds 
to a Verilog module. A module consists of three things: 
state, rules which modify that state, and interfaces which 
allow the outside world to interact with the module. 

2.1 Bluespec Syntax 

A module is the representation of acircuit in Bluespec. It 
can be a primitive module which is just a wrapper around an 
actual Verilog module, or a standard module with state el- 
ements including other modules, rules, and interface meth- 
ods. 

The state elements such as registers, flip-flops, memories 
are all specified explicitly in a module. The behavior of the 
module is represented by rules which each consist of a state 
change on the hardware state of the module (an action) and 
the conditions required for the rule to be valid (apredicate). 
It is valid to execute @re) a rule whenever its predicate is 
true. The syntax for a rule is: 

"RuleName" : 
when predicate 
-- --> action 

The interface of a module is a set of methods through 
which the outside world interacts with the module. Each 
interface method has a predicate (a guard) which restricts 

when the method may be called. A method may either be a 
read method (i.e. a combinational lookup returning a value), 
or an action method, or a combination of the two, an action- 
Value method. 

An actionvalue is used when we do not want a value to 
be made available unless an appropriate action in the mod- 
ule also occurs. Consider a situation where we have a FIFO 
of values and a method that should get a new value on each 
call. From the outside of the module, we would want to 
be able to look at the value only when it is being dequeued 
from the FIFO. Thus we would write the following where 
do is used to signify an actionvalue. 

getVal = do 
fi€oVal.deq 

r e t u r n  fifoVal.first 

The abstract model of execution of a Bluespec circuit is 
as follows. For any initial hardware stale, we have some set 
of execubble rules. Each cycle, we randomly select one of 
these rules and execute it thereby changing the state. This 
is of course very inefficient, and SO we allow multiple rules 
to fire at once, but require that any transition from one state 
to another must be obtainable by a valid sequence of single 

c rule firings. 

2.2 Scheduling 
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Due to the possible complexity of determining when a 
rule will use an interface of a module, Bluespec assumes 
conservatively that an action will use any method that it 
might ever use. That is to say that if the action accesses 
a method only when some condition is met, the scheduler 
will treat it as always using it. Using this simplification, the 
compiler scans the rules for two kinds of parallel operations 
on rule pairs. The first is conflict free, which means that 
each rule in the pair does not read whal the other rule writes 
for either the predicate or the action, and the rules do not 
make the same method calls (e.g. writes). The second is 
sequential composition, which means that one rule does not 
read anything modified by the second and they do not both 
use the same methods. 

These definitions miss some parallel operations. One 
rule may write to a state element in the others predicate, 
but not affect the predicate. In this case, the compiler in- 
correctly considers this a conflict. In general, there is no 
effective solution for this problem. 

Describing the compiler's scheduling choices in detail 
is beyond the scope of this paper. For our purposes, it is 
enough to assume that we have some prioritizations on the 
sets of rules, where proper subsets of a set will have lower 
priority (i.e. the scheduling favors firing as many rules as 
possible). When a choice of which rule set must be made, 



the rule set with the highest priority that can be fired will be 
chosen. 

2.3 Verification 

One of the key benefits of [he Bluespec model is the ease 
of verification. The state change each cycle can be viewed 
as a sequential firing of rules. Thus, we can show a design 
i s  correct by verifying each rule is correct in isoIation. The 
messy issue of concurrency is entirely handIed for us by the 
Bluespec compiler. 

RWires, an abstract wire module which we describe in 
more depth in Section 6 can cause the design to become sen- 
sitive to concurrency issues. However, we can easily handle 
this in our model as long as provide that actions which read 
from a RWire can always fire whenever an action which 
writes to that RWire can occur. ’ 

3 Design Considerations 

In this section, we go over the high-level design of the 
processor and the roles of the subcomponents. We then dis- 
cuss the performance requirements which our reorder buffer 
must meet. 

3.1 Structure of the Processor 

A reorder buffer contains decoded instructions in pro- 
gram order. It is responsible for determining when these 
instructions are executable, sending them to the appropriate 
functional unit, updating the state of the register file, and 
handling branch mispredictions. 

We can view the processor abstractly as shown in Figure 
1. Each unit must follow the following abstract require- 
ments. 

The Fetch/Decode Logic must send the ROB a string 
of decoded instructions in  program order of a possible 
branch path. These instructions should be all tagged with 
an “epoch” value defined below. It also must contain an 
interface which the ROE can use to notify it of the new pro- 
gram counter (pc) and epoch whenever the ROB detects a 
branch misprediction. 

The epoch is an integer value which is incremented on 
every branch miss. The ROB ignores all incoming instruc- 
tions whose epoch values do not match the current value as 
they are part of the mispredicted path. 

The ALU Unit must be able to take ready to execute 
tagged instructions from the ROB and execute those instruc- 
tions. It must then eventually return each result with the as- 
sociated tag of the instruction. No restrictions are placed on 
the ordering of the replies. 

The Memory Unit takes memory instructions from the 
ROB with all operands resolved (the address and the value). 

To simplify the complexity of the Memory Unit, we require 
that the memory instructions must be sent in program order, 
and only after all previous branch instructions have been 
resolved. It is equally easy to express other more relaxed 
memory models in Bluespec. The Memory Unit makes any 
necessary memory accesses and returns the results to the 
ROB. Speculative stores must be kept until they are either 
invalidated or committed via two interfaces accessible by 
the ROB. 

The ROB keeps track of the ordering of instructions it 
receives. It keeps track of which instructions are dependent 
on each other, and passes the values CO instructions waiting 
for them. Whenever possible the ROB commits the oldest 
instructions which have been executed by writing the results 
back into the register file. 

In this design, ROB unit also contains the Branch Unit. 
On branch misses it  marks all the false path instructions as 
killed and increments the ROB’S current epoch value. It 
also notifies the FetchDecode Logic of the correct program 
counter and the new epoch, Subsequent instructions which 
do not have the correct epoch will be thrown away when it  
is enqueued into the ROB. 

We make the assumption that responses from functional 
units may not occur the same cycle as a request to the func- 
tional unit (i.e. there are no purely combinational functional 
units). There are no other timing requirements placed on the 
designing of the FetchlDecode Logic. 

3.2 Performance Goals 

A reorder buffer should be able to simultaneously en- 
queue instructions, commit instructions, send instructions 
to the functional units, and receive responses from each 
functional unit. When designing in Verilog, this comes at 
the price of a horrific verification task. By using Bluespec, 
we can easily generate a correct circuit, but initially it may 
not perform all these tasks concurrently. In order to be ac- 
ceptable our design must be able to achieve the same level 
of concurrency as i s  possible with handwritten RTL. We 
will examine if it is possible to transform the initial design 
such that the Bluespec compiler achieves the desired level 
of concurrency in the ROB module. 

4 The Initial Design 

This section details the work done to generate the initial 
design. The first implementation was the simplest natural 
way we could express the design in Bluespec. 

Though the emphasis o f  this work is on cycle time per- 
formance, to be relevant the design must be realizable in 
hardware. As such, our design reflects appropriate high- 
level circuit considerations but ignores circuit-level opti- 
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Figure 1. High Level Design of Processor 

mizations, which can be performed after the RTL is gen- 
erated. 

4.1 Representation Considerations 

First we considered how the ROB was going to inter- 
face with the rest of the processor. There are two general 
models for interaction. The first is a push model where we 
expect the module producing the data to,pass it to the re- 
ceiver. The second is a pull model, where the receiver grabs 
the result from the sender. The main difierence between 
these functions is in which module the rule describing the 
data transfer will reside. Both methods will generate nearly 
identical hardware as the only change is in which module 
that particular action is placed. 

To make the ROB module separately compilable, we 
adopted a combination of the two methods such that all 
interactions between the ROB and other modules could be 
performed by calling the methods of the ROB module. For 
example, the ALU gets the ready-to-execute ALU instruc- 
tions from the ROB 3nd process them. When it has com- 
pleted an instruction it checks if the ROB can handle a re- 
sponse and if so, sends it  to the ROB. Consider another 
interaction where the ROB must notify the FetchlDecode 
Logic of a branch miss. To avoid the necessity of having the 
ROB call an interface method of the FetcMIecode Logic, 
we added another interface method to the ROB which made 

F] Memory 

the branch resolution information available. We also had to 
add a rule to the FetchlDecode Logic to check for branch 
resolution updates. That is to say that on a branch miss we 
write to a register which can be accessed by the other mod- 
ules through an interface. Thus, the FetchlDecode Logic 
can look at this value, determine when the ROB had a 
branch miss and update the pc and epoch registers accord- 
ingly. This style handles all the interaction between the 
ROB and the other parts of the processor in a modular fash- 
ion. 

We decided to keep track of the speculative state via a 
combinational lookup through the slots. This could also be 
done with an additional structure which kept the speculative 
value or tag reference of each register. The state would get 
copied during branch instructions and restored if the branch 
was mispredicted. Although this does offer a faster circuit 
length for insertions, we chose the combinational lookup, 
because the added circuitry would greatly increase the com- 
plexity of the design while only offering an improvement in 
the clock period which is not the main focus of this paper. 

4.2 Storage 

Instructions are .kept in an ordered list of N slots. The 
slots contain the instruction and associated values required 
for execution, as well as the operand values, the result, and 
the slot’s state. We use a headTag and a tailTag pointer to 
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represent respectively, the oldest slot used and the next slot 
in which an incoming instruction will be placed. To differ- 
entiate having the slot list full and empty we assert that one 
slot must remain empty. 

struct Slot = 

tag : :  ROBTag --the Slot’s t a g  
s t a t e  :: Reg State 
ia :: Reg IA 
insType :: R e g  InstrType 
opcode : : Reg ( B i t  o s z )  --opcode size 
tvl :: R e g  TagOrValue --operand 1 
t v 2  : :  Reg TagOrValue --operand 2 
imm : :  R e g  Imm -- immediate field 
dval :: Reg Value -- result 
destReg : :  Reg RegOrHiLo 
predIa :: Reg PredIA --for branches 

Each slot consists of a number of registers as shown be- 
low which represent an instruction template: the Instruction 
address (IA), the predicted instruction address (predIA), the 
slot’s state, and two operand registers (tvl & tv2) that store 
either the tag of the slot generating the value, or the actual 
value of the operand. We could have represented each slot 
as a single register, but by using a multiple register design, 
we help the compiler partition the data and generate better 
schedules. 

Dis atched 2 1  
Figure 2. High Level Design of Processor 

The state of a slot is either Empty, Waiting, Dispatched, 
Killed or Done. The state transition diagram is shown in 
Figure 2. Empty signifies that the slot has no instruction 
in it. Empty instructions only exist in the region that the 
headTag and tailTag denote as non-active. Upon having an 
instruction inserted into it, a slot enters the Waiting state 
where it will wait for its inputs to be resolved into actual 
values. After both inputs have been resolved the instruction 
in  the slot can then be placed in the Dispatched state when- 
ever the instruction is sent to the appropriate functional unit. 
When the result is sent back to the ROB and written into the 
slot, the slot enters the Done slate where it can be committed 
and made Empty again. At any time, the branch resolution 
ruIe can set non-empty slot’s state to Killed. 

Instructions leave the ROB in the order hey  were in- 
serted. To remove an instruction, one increments the head- 
Tag and writes the associated slot’s state register as Empty. 
To insert an instruction, one increments the tailTag, places 
the instruction into the slot at which the tailTag pointed. ’ 

4.3 Design Complications 

To match the MIPS I ISA we need to add a few additional 
complications to our design. 

First, there is a branch delay slot. This means that when 
a branch instruction is killed we must keep the instruction 
directly after it. Tf we resolve the branch before this instruc- 
tion has been inserted, the delay slot instruction will have 
the wrong epoch. To prevent this from happening we assert 
that branch instructions cannot be resolved until the next 
instruction has been inserted into the ROB. 

Secondly, some instructions generate 64-bit results (i.e. 
multiply and divide instructions). To keep from having to 
double the size of the result in the slots, we place these in- 
structions into consecutive slots with the high order bits in 
the first slot, and the low order bits in the second. The slots 
wiIl then be treated as an atomic unit until the slots are com- 
mitted. 

4.4 The ROB Module 

Below is a stylized description of our initial design. The 
SE value is a integer which the ROB is passed at instantia- 
tion. It represents the number of slots in the ROB. We can 
change this number to any value larger than 2 and maintain 
correctness. 

mkROB :: Module (ROB s z )  
mkROB s z  = -- s z  is # of slots 

module 
let 
minTag = 0 
maxTag = fromInteger s z  
--auxiliary functions 
- - ( e . g .  mkSlot & incrTag) 
-- state elements 
r f  :: RegFile <- mkRegFile 
curEpoch : :  Reg Epoch <- mkReg 0 
headTag :: R e g  ROBTag 

tailTag :: Reg ROBTag 

handlemissReg : : Reg ( I A ,  PC, Epoch) 
<-mkReg  ( 0,O 1 

slotList : :  List Slot 

rules 

<- mkReg minTag 

<- m k R e g  minTag 

<- mapM (mkSlot) (upto minTag maxTag) 
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<rules> 

enqueueInst inst = ... 
getALUInstr = . . .  
getMEMInstr = . . .  
updateALU tag result = ... 
updateMEM tag result = . . .  
missvalues = . . .  

i n t e r f a c e  

The enqueueInst interface does two combinational 
lookups Lo see if the two operands were generated by an- 
other instruction in the ROB and writes either the tag of 
the associated slot, or the value from the register file as ap- 
propriate into the operand registers and marks the slot as 
waiting to be dispatched (i.e. the state is Waiting). 

enqueueInst inst = 

let 
- - s lo t  to write into 
slotJ = getslot tailTag 
--structure with values to write 
slotvals = (getSlotValues inst) 

in - 
action 

tailTag := incrTag tailTag 
w r i t e s l o t  SlotJ slotVals 

when (not slotListFull1 

There are two separate rules per slot which update the 
tagged values with [he actual values. They look as follows: 

"upda te  TagOrValue I" : 
when 

(T tag) <- slotJ.tv1 
==> let 

in 
slotTag = (getslot tag)  

a c t  i o n  
if (slotTag.state == Done) then 

slotJ.tv1 :=(V slotTag.dva1) 

noAct ion 
' else 

This checks to see if the insGction in the slot (slotJ) 
associated with the given tag has been executed and if so, it 
writes the value into the operand register. 

Additionally, for each slot there is a slot dispatch rule per 
functional unit type which takes ready waiting instructions 
and places them into the FIFOs which then dispatch to the 
appropriate functional units. 

"Dispatch to ALU" : 
when (slotJ.state == Waiting), 

(V vl) <- .slotJ.tvl, 
(V  v Z )  <- slOtJ.tv2, 

(ALUTYPE == slotJ.instType) 
==> let 

in 
aluInst = (aluInstfromSlot s l o t J )  

a c t i o n  
slotJ.state := Dispatched 
fifo2ALU.enq aluInst 

As a side note, it may appear initially that generating 
these rules for each slot can be quite difficult and restric- 
tive, but due to Bluespec's good static elaboration, the task 
is easily done. We do this by writing a function to generate 
rules for a single given slot. Then we can map this func- 
tion over the slotList and concatenate the list of rules to our 
current list of rules for the ROB. T h i s  also gives us the ad- 
ditional benefit of not limiting the number of slots in the 
ROB. 

let 
mkRules i = -- makes a slot's rules 

rules 
<rules> 

in 
mapM mkRules (upto minTag maxlag) 

The interfaces to get the instruction from the ROB and 
hand it to the functional unit was a simple dequeue from the 
associated FIFO. 

getALUInstr = do --actionvalue 
fifo2ALU.deq 
return fifo2ALU.first 

Branch instructions are executed by checking the result 
and killing a11 instructions after the branch and writing ihe 
register which is read by the Fetch Unit with the new pc 
and epoch value. These killed instructions are left in the list 
to be removed by the commit rule (Le. the tailTag is not 
modified on a branch miss). 

"Resolve Branch" : 
when canFireBranch 

==> let 
inst = fifo2branch.first 
correctIA = (calcNewIA inst) 
slotJ = ( g e t s l o t  inst.tag) 

fifo2branch.deq 
slotJ.state := Done 
if (correctTA /= 

in 

inst.predIA) then 
action 
--send information on 
--branchmiss 
handlemissReg:= 
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(correctlA, inst. IA, nextEpoch) TO determine why these rules conflict, we made use 
curEpoch:=nextEpoch 

else 
noAction 

The interface to get the new branch information just re- 
turns h e  vdue associated in the handlemissReg register. 

missvalues = handlemissReg 

Writebacks from the functional units write into the ap- 
propriate slot or slots, 

updateMEM tag result = 

l e t  

i n  
slotJ = getslot tag 

action 
slotJ.state := Done 
slotJ.err := result.err 
slotJ.dva1 := result.value 

Commits are done by removing the oldest instruction 
from the slot list and writing back any unkilled values to 
the register file. 

“Commit : 
when headTag /= tailTag, 

s l o t J  <- getslot headTag, 
slotJ.state == Done, 
not slotJ.err 

==> action 
headTag := incrTag headTag 
slotJ.state := Empty 
(rf-write slotJ.destReg 
s l o t J  . dval ) 

5 Debugging the Design 

After about a week of design and debugging we had the 
design completed. By this we mean that we were able to 
simulate the entire processor running MIPS I code using 
vcs . 

After a 20 minute compile we found that the design had 
a CPI of 5 for a single dependency chain of ALU insiruc- 
tions. The reason for this is that it took one cycle for an 
instruction to be inserted into the ROB, one for an instruc- 
tion to be committed, one to enter the instruction into the 
queue to the ALU, one to actually execute the instruction in 
the ALU, and one to propagate the executed value from one 
instruction to those requiring it. 

This CPI is clearly unacceptable. These actions were 
designed to be compIetely disjoint (i.e. conflict free) from 
each other. As such, all the rules should be able to fire in 
parallel. 

of the Bluespec compiler’s rule conflict analysis function. 
First, we used the -dschedule flag to get a list of rule 
conflicts. This list shows which rules conflict with each 
other and which rule will be chosen to fire if both rules are 
enabled. 

Once we have determined which rules conflict, we check 
to see whether the conflict was intentional. in the initial de- 
sign resolving a branch miss conflicted with fetching a new 
instruction. This conflict is supposed to exist, as we do not 
want to fetch down a wrong path once we know we are 
the wrong path. Other conflicts should 1101 exist like the 
conflict between writing values back to the reorder buffer 
into two different slots from two different functional units. 
After identifying a pair of rules which we want to not con- 
flict, we use the compiler’s -show-rule-re1 flag to get 
a list of state writes and reads each rule performs. From this 
list we can determine why the compiIer believes the two 
rules to be conflicting. From there we can formulate the 
appropriate change to avoid the conflict. 

6 Design Changes 

iFrom the initial design there were a number of prob- 
lems which limited the performance of the design. These 
problems and their solutions are described in detail below. 

6.1 Removing False Reads 

The most common cause of false conflicts between rules 
was due to redundant clauses in the predicate. An exam- 
ple of this is the conflict between dispatches and the insert 
rule. All the dispatch rules had as part of their predicate a 
clause which checked to see if the slot was in the active area. 
This required that the tailTag needed to be read. This caused 
lhese rules to no longer be mutually exclusive with the insert 
rule which changes the taiITag value and limits sequential 
composability so that the insert rule would have to be sim- 
ulated second. If the rules were only able to be sequentially 
composed in the opposite order naturally, it would cause 
false conflicts. The predicates were all rewritten to remove 
unnecessary references. 

6.2 Improving Value Propagation Timing 

In the original design, it took one cycle to propagate an 
executed value after execution from the generating slot to 
the slots waiting for the value. This was because the tags 
(tvl & tv2) cannot be updated until the value has reached 
the slots they are refemng to. For performance we must 
remove this 1 cycle delay. 

We need to write into all the slots’ operand registers 
when we are writing back the result. However, this causes a 



I slot 1 j Scheduling Logic 
I 
I 

Figure 3. Conflict from Initial Design 

huge number of possible writes which prevent two updates 
from being fired concurrently. This is also clearly not ac- 
ceptable. 

We would like to be able to split this rule into a rule per 
slot and thus avoid the unrealizable conflicts. However, be- 
cause this is an interface method we cannot do so. For a 
Bluespec module to be able to be compiled modularly, the 
interface cannot be changed depending on its implementa- 
tion. 

To work around this restriction we need to use RWires. 
RWires are similar to Verilog wires, but with the added en- 
abling bit for the signal exposed. That is we can view it as a 
register where writes are done before reads in a cycle with 
no ability to save values, which allows us to see when it has 
valid data. Using this allows us to know when values are 
being written and by doing so allows us to tailor what a rule 
does based on the other rules firing at the time. This must 
be used with caution, as i t  demands that you will now need 
to worry about some timing issues, but allows us to emulate 
some Verilog tricks which would otherwise be difficult. 

Figure 4. Solution with Mult. Update Ports 

The initial solution was to make a special operand regis- 
ter module which would act as a register with multiple write 
ports (as in Figure 4). Writing into one of these ports would 
write into an RWire. Then every cycle, a rule in the mod- 
ule would fire and look at all the RWires in some fixed or- 
der, select the enabled value and write that into the register. 
Then each update unit could write into a different port and 
there would be no conflicts. We can guarantee that this is 
as correct as before, because there is only one value which 
an operand register will ever be written with, so it. is not 
possible to miss any signals sent to the operand registers. 

Figure 5. Solution Using RWires 

Another solution, shown in Figure 5, was devised to im- 
prove the design's readability. Instead of having a separate 
RWire per slot per update rule, we only need one per update 
rule. Then the update rules can each read these values and 
do the updates to the register. This not only simplifies the 
description, but also allows us to make more complicated 
rule logics dependent on the state of the ROB more easily. 

6.3 Removing State Register Conflicts 

Another problem with the'initial design was that a num- 
ber of rules had false conflicts with each other. Analysis 
revealed that all the conflicts were caused by the rules writ- 
ing to the slots' state registers. Automatic sequential com- 
position by the compiler fails here, because the rules both 
needed to read and write the conflicting register, so compo- 
sition is not possible. The only solution i s  to make the rules 
parallel in some way. 

A natural thing to do is to add multiple prioritized write 
ports to each of these registers. However, we must be care- 
ful to give priority to the appropriate rules when two rules 
fire together, 

The update, dispatch, insert, commit, branch rules all up- 
date the slots' state values. Upon initial inspection it is clear 
that the branch rule will be part of every rule conflict pair 
and that it must be prioritized higher than all other rules or 
possibly result in false path instructions not being killed. 
Thus we should only need two porls for the state registers. 

Since during scheduhg slot rules are treated as though 
they are using a method, if it is possible that they might use 
that method, we need to add more ports to handle the cases 
where the rules overlaps (e.g. a commit rule which takes 
the oldest N slots, and a insert rule which takes the next N 
slots, when there are less than N available slots, would have 
an overlap of at least one slot). We chose the order of high- 
est precedence: the branch resolve rule, the commit rule, the 
updatelwriteback rules, the dispatch rules and lastly the in- 
sert rule. To make sure that any instructions inserted during 
a branch miss are not kept alive in the slot list we changed 
the resolve branch rule to also write the state of Empty into 
any slot which should not contain an active instruction to 
override the insert rule's values. 
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6.4 Reducing Dispatch Latency 

In the initial design, an instruction had to first be put into 
a FIFO before it was dispatched into the associated func- 
tional unit. This introduces an extra cycle far each instruc- 
tion to be able to pass its result along. We need this cycle to 
be removed. 

To do this we must remove the intermediate FIFO, This 
means having some sort of combinational logic to get the 
slot which we want to take the instruction from so we can 
change its state. For each functional unit, we do a scan 
through the list of slots for valid instructions to send to that 
functional unit and pick the first one available. We do not 
attempt to search for the oldest executable instruction, be- 
cause the hardware for this is very large. In Verilog designs, 
a similar simple static bias is used for instruction selection. 

slotALU = findALUInstZDispatch 

getALUfnstr = 
do 

them. The best method is to favor completion of instruc- 
tions over starting them. This will tend to reduce the amount 
of misspeculated instructions sent to the functional unit and 
reduce the number of cycles spent reclaiming killed slots. 

Unfortunately, there is no way currently to explicitly en- 
code a rule priority; the compiler selects what it believes 
to be a better preference weighting. However, in the case 
where the compiler has no preference it will tend to favor 
the rule first listed in the module description. By reorganiz- 
ing the rules with this in mind we can achieve more appro- 
priate prioriuzations for the ruies. 

7.2 Reducing Conflicts 

Some rules should never fire together, but they still are 
tested to see if they conflict. This can be quite expensive if 
the rules in question are both split into many pieces. 

For instance, the rule to insert an instruction into a slot, 
and the rule which updates one of the tag values in that slot 
conflict as they both write to the same register (tvl or tv2 
depending on the particular rule). However, at a high level 

slotALU,state.-write3 Dispatched 
r e t u r n  (makeALUlnstfromSlot slotALU) 

when validALUInst2Dispatch 

This change introduces a conflict with the state register 
for each slot as now it is possibly writing into each state reg- 
ister. However, by adding another port to the slate register 
as detailed in Section 6.3 we can avoid this conflict. 

6.5 Reducing Branch Miss Penalty 

When we added the extra interface to allow the ROB 
to be compiled separately from the rest of the design, we 
had to add a register on the path from the ROB to the 
FetchlDecode Logic. This caused an increase of one cy- 
cle in the branch penalty. By replacing the register with an 
RWire we were able to remove this extra cycle. 

7 Other Optimizations 

In addition to the above improvements to the concur- 
rency of the design, there are many simple improvements 
we can do which will reduce redundant hardware, and im- 
prove compilation. This section discusses the changes of 
this kind that we made to the design. 

7.1 Reducing the Instruction Window Size 

The first of such improvements we can make involves 
how we prefer which rules fire when given a choice between 

ing that the insert rule only operates on empty slots and the 
update on waiting slots, the compiler can very quickly de- 
termine the two rules are mutually exclusive. When this was 
done to the reorder buffer design, the compilation time was 
reduced by a factor of 20. 

7.3 Improving Compilation 

To remove some of the remaining issues, we need LO split 
the interface rules (i.e. the insert rule). However, this can- 
not be done if we want a variable-length ROB. It would also 
expose the internals of the ROB modules, which we want to 
avoid. We hand-split the insert rule to operate on a per slot 
basis by having a rule for each slot which reads the input 
value from an RWire. The RWire is written to by the insert 
interface. We also needed to add a guard on interface by 
hand to make sure that it would only fire. when there was 
a rule which would actually take the instructions put in the 
RWire. This may seem like a cycle sensitive change, but be- 
cause we have already added multiple ports to the slot state 
registers, no additional conflicts are removed by this rule 
splitting. Instead it reduces the amount of checks the com- 
piler has to do to determine that the rules do not conflict. 

8 Findings 

Within 100 man-hours we were able to generate our ini- 
tial design, which was slow, but provably correct. After 
another 300 man-hours we were able to optimize our de- 
sign so that it had a maximum theoretical CPI of l with 
a 2 wide insedcommit of the processor. This i s  50% of 
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what we should be able to achieve. This inefficiency was 
due entirely to the one conflict we were unable to remove, 
which was between the commit rules and the insert instruc- 
tion rules. 

Our initial belief was that this was due to the problems 
with changing the headTag and the tailTag at once. How- 
ever, the actual issue was with the register file and the head- 
Tag. The insert rule needs to read the headTag to verify if 
inserting is valid and the commit rule updates the headTag. 
Also, the commit rule writes back any unkilled rules i t  is 
committing and the insert rule reads the register file. 

Thus each rule is writing something the other must read 
and so the rules conflict. Nevertheless, this is a false depen- 
dency. Firing the rules together always results in the same 
state as firing them on separate cycles, since any value be- 
ing written into the register file is still contained in an active 
slot on that cycle. Thus the most current value would still be 
found by the insert rule if the rules were run concurrently. 

In the course of our work, it was discovered that by lim- 
iting or splitting rules to act on as little state as possible and 
reducing the number of method conflicts between rules, we 
achieve better performance. 

Unforpnately, this technique does not avoid this false 
read-write conflict for the current compiler. The Bluespec 
compiler is under revision with this problem in mind. 

Bluespec has made much progress into making large 
scale designs. Many of the difficulties encountered in this 
work were due to needing to make changes in the design 
process to suit the language mindset, and understanding the 
conflict analysis of the compiler. 

While our final CPI value was less than corresponding 
handwritten RTLs, steps to allow for directed relaxation of 
the conflict criteria will easily bridge this gap. 

Work into the Bluespec compiler should now be directed 
towards automatically finding and safely integrating high- 
level knowledge into designs. Additionally, designing a 
concise way for the designer to describe how to handle two 
conflicting rules would be worthwhile task. 
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