
Hardware Acceleration of Matrix Multiplication on a Xilinx FPGA

Nirav Dave, Kermin Fleming, Myron King, Michael Pellauer, Muralidaran Vijayaraghavan
Computer Science and Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Email: {ndave, kfleming, mdk, pellauer, vmurali}@csail.mit.edu

1 Introduction
This year, the first MEMOCODE hardware/software co-

design contest [2] posed the following problem: optimize
matrix-matrix multiplication in such a way that it is split
between the FPGA and PowerPC on a Xilinx Virtex IIPro
30. In this paper we discuss our solution, which we im-
plemented on a Xilinx XUP development board with 256
MB of DRAM. The design was done by the five authors
over a span of approximately 3 weeks, though of the 15
possible man-weeks, about 9 were actually spent working
on this problem. All hardware design was done using Blue-
spec SystemVerilog (BSV) [1], with the exception of an im-
ported Verilog multiplication unit, necessary only due to the
limitations of the Xilinx FPGA toolflow optimizations.

For this exercise, all data was stored as complex numbers
with 2.14 signed fixed-point representations of both the real
and complex components. The three matrices (two multipli-
cands and the product) were specified by their size and start-
ing DRAM address in code running on the PowerPC. Matri-
ces were assumed to be square with sides of length ranging
from 64 to 1024 in powers of two. The given test frame-
work featured a software-only implementation and our task
was to use the FPGA as an accelerator to decrease execution
time.

1.1 Design Principles
Early on, we realized the strict contest deadline meant

that the main resource to conserve was designer time. With
such a limited design timeframe, any small delay could
mean failure, so as a result, we decided to decouple the var-
ious aspects of our design so that work on different mod-
ules could progress independently. This decision led us to
a latency-insensitive modular design with FIFO channels as
the only form of communication.

Keeping all datatypes in sync between different mod-
ules was another issue of concern. In the hardware speci-
fication, it was relatively straightforward to use Bluespec’s
algebraic types to avoid dealing directly with bits. Main-
taining consistency with the software, however, was a more
complicated task. To solve this, we wrote parameterized
functions to keep track of the exact bit packing, taking care

that the implementations matched the default bit packing of
the Bluespec compiler.

The last major issue was testing. With so many modules,
so many developers, and so much fluctuation in the sys-
tem, it was important that we be able to quickly isolate and
fix bugs. The approach we used was to maintain a verified
reference implementation for each module which we could
either plug into the larger system simulator or run in a sim-
ple testbench. These golden models would then be used to
verify each change in our hardware implementation. The
ease with which BSV modules interface made this process
completely natural, allowing us to swap out reference and
experimental module implementations with ease.

2 Design Infrastructure and Architecture
A major design decision was whether to choose matrices

or vectors as the primitive datatype for the Functional Unit.
Since our algorithms make use of sub-matrix blocking, we
decided that choosing n × n sub-matrices as our primitive
would give the hardware more flexibility in its operation,
possibly resulting in better circuit-level design.

We partitioned our architecture into several blocks as
shown in Figure 1, each with a specific task listed below:

PowerPC: Code running on the PowerPC orchestrates the
computation. Communication with the Feeder takes place
through two memory-mapped FIFOs.

Feeder: The Feeder is responsible for passing instructions
from the PowerPC to the hardware controller as well as sig-
naling to the PowerPC when an instruction is complete. For
debugging purposes, it also sends periodic heartbeats to the
PowerPC.

Controller: The controller decodes the ISA instructions
into various control commands which are then forwarded
in an asynchronous manner to the appropriate system mod-
ules.

PLB Master: The PLB Master communicates directly with
the Processor-Local Bus (PLB), handling all memory ma-
nipulation directly.

Memory Switch: The memory switch routes memory traf-



Func.

Unit

Func.

Unit

Func.

Unit

Switch

 

CPU

Controller

PLB Master

P L B

Feeder

Network

Figure 1. Block Diagram of Matrix Design

fic between the functional units and the PLB Master.

Functional Unit: The functional unit handles all matrix
computation, containing three logical matrix registers (A,
B, and C).

Functional Unit Network: The functional unit network al-
lows data to be passed from functional unit to functional
directly without going through memory.

2.1 ISA
The hardware accelerator implements a simple ISA con-

sisting of 3 types of Operations: Memory, Compute, and
Forward. Memory ops move data between main memory
and the logical registers of Functional Units. Forwarding
ops move data between functional units, while Compute ops
move data between registers within a functional unit. The
compute opcodes are accumulate (C = C ± A), multiply
(C = A×B), multiply-accumulate (C = C ± A×B), and
zero (C = 0).

3 PLB Master
Given the size of the matrices, efficient communication

with the system memory on the XUP board was of utmost
importance. We considered three possible solutions: the
PowerPC could be used to orchestrate the communication,
our hardware could connect to the system memory bus and
communicate with the memory controller directly, or we
could implement our own DRAM controller, and commu-
nicate directly with the DRAM. While the first option is
attractive since it is easy to implement and the majority of

the design effort is in software, it is also the slowest, with a
maximum bandwidth of 150 MB/s. The second option adds
some hardware complexity, as a bus protocol must be im-
plemented in hardware, but offers a significant bandwidth
improvement of up to 800 MB/s. Though the final op-
tions provides the most memory bandwidth, the it requires
a complex control state machine — a significant increase
in complexity over the other two approaches. We were un-
sure whether we could complete such an ambitious design
within the deadline so we chose the second option, since
it offered a good combination of bandwidth potential and
design complexity.

The Processor Local Bus (PLB) [3] is an IBM-specified
bus used on the Xilinx XUP board to connect the DRAM
memory controller to the processor. We implemented a
bus master interface capable of loading and storing matri-
ces from memory, parameterized to support different matrix
sizes. Our PLB master transfers data in bursts of sixteen
32-bit words, thereby amortizing the cost of the bus proto-
col and resulting in a typical transfer rate of just over one
word every two cycles. Extending the controller to support
64-bit transfers would increase the memory bandwidth, and
though this is fully supported by the PLB Master, no other
part of the system was designed to use this feature.

3.1 PLB Master Timing Issues
When synthesized independently, our PLB master im-

plementation had a 7 ns critical path, but when connected to
the PLB, the synthesis tool reported a critical path of nearly
12 ns. This large change occurred because the PLB Master
had a combinational path that ran through the PLB arbitra-
tion logic. Because the arbitration logic is a black-box, we
had to heavily modify our PLB Master to ensure its critical
path was short enough to make timing.

Fortunately, most of the offending logic could be re-
timed, a procedure which pushes logic across state ele-
ments. This transformation preserves the observable behav-
ior of the module, but can reduce the critical path of the sys-
tem. By retiming the logic that touched PLB control wires,
we were able to remove almost 3ns from our critical paths,
and achieve our timing goal of 10ns.

4 Functional Units
The functional unit is responsible for doing the block-

level computations and consists of a command FIFO hold-
ing operations to be executed, a pair of FIFOs interfacing
to the memory switch, and another pair for the functional
unit network. In addition it contains three local “memo-
ries” corresponding to three logical registers A, B and C
used as operands in its instruction set, supporting the com-
mands zero, load, store, multiply, multiply-accumulate, and
forward (from one FU to another through the network).

Our original design consisted of a FIFO of outstanding
commands, and a series of FSMs, generated via Bluespec’s
StmtFSM embedded language, each responsible for execut-
ing one of the opcodes (i.e. load, store, mul, etc.). These



FSMs contained most of the address generation logic and
were required to run mutually exclusively, thereby expos-
ing all memory transfer latency.

We refined the design by first extracting out the memory
address lookup logic for each operation and merging them
into a single FSM module handling various read and write
orders for each of the three registers. This caused three im-
portant benefits. First, this simplified all of the operation
FSMs to the point that they need only call the appropriate
“startRead” and “startWrite” methods on the memory mod-
ules with the appropriate patterns and do their simple per-
step operation until the “doneRead” and “doneWrite” sig-
nals are set, making the FSMs simple rules. Second, since
all the accesses were all localized into these new register
modules, it was trivial to replace the combinational mem-
ories with more efficient single-cycle BRAM models (im-
portant for efficient FPGA synthesis). Last, with all the in-
formation of where reads and writes are localized, allowing
operations to run two operations concurrently in a stream-
ing fashion (e.g. load A happening in tandem with multi-
ply) needed only a little additional logic to prevent reads
and writes to the same register from getting out of order.
This allows the functional units to almost completely hide
memory latency.

As a final optimization we extended the blocking from
one complex multiply per cycle to n per cycle. This re-
quired changing the memories to have n-word blocks and
slightly complicated the logic designed to keep things in or-
der. By parameterizing our functional units by the number
of parallel multiplies, we can easily change the profile of the
design until we achieve the most effect use of implementa-
tion resources.

4.1 Sub-block Multiplication Algorithms
In our original design we used naive N3 multiplication,

where each value of C is computed one element at a time.
Assuming n complex multiplications per cycle, the compu-
tation looked like:

for(i=0; i < N; i++)
for(j=0; j < N; j++)

for(k = 0; k = N; k+=n)//cycle
for(z = 0; z < n; z++)

c[i][j]+=a[i][k+z]*b[k+z][j];

To improve memory access we needed to store the B
matrix in column major order, a somewhat awkward task.
Additionally, each step of computation requires us to sum
the n products from each round. This means we have a
log2(n) depth adder-tree, which greatly limits the size of n
that we could generate. Instead the following algorithm was
proposed:

for(i=0; i < N; i++)
for(j=0; j < N; j++)

for(k = 0; k = N; k+=n) // cycle
for(z = 0; z < n; z++)

c[k+z][j]+=a[i][j]*b[j][k+z];

While we have not fundamentally changed the cycle-
level performance of the design the logic required to im-

plement this algorithm is much faster. Now instead of a
single adder-tree, we have n parallel additions, resulting in
a shorter critical path. It also allows us to keep the B matrix
in row-major simplifying the loading and storing logic. Of
course now we must write to the C matrix many times, but
since the logical registers in the Functional Units synthesize
to fast BRAMs this is a negligible penalty.

4.2 Design Variation
We generated two designs in parallel, both of which

did essentially the same work. One used hardware to
calculate when two operations could be executed simul-
taneously, while the other used a slight variant of the
ISA to explicitly merge the high-level instructions. While
the hardware-pipelined design implemented generalized in-
struction chaining, the software-pipelined design was far
less general purpose and subsumed the memory switch. In
addition, the design which implemented hardware instruc-
tion chaining also included a higher degree of parameteri-
zation and could (for example) be parameterized by the de-
gree of add parallelization. The fully parameterized design
was faster, since we found 64 × 64 blocks hid more of the
memory latency.

5 Algorithm
At first we thought that the various clever algorithms,

such as Strassen’s algorithm [4] would yield better perfor-
mance by replacing expensive multiplies with less expen-
sive additions. While relatively limited on an FPGA, mul-
tipliers are quite cheap when compared to the routing costs
of complicated muxing logic needed to implement these al-
gorithms. We therefore focused exclusively on simple n3

algorithms. Our initial algorithm, made use of only one
functional unit:

for(i = 0; i < NumBlocks; i++){
for(j = 0; j < NumBlocks; j++) {

zero();
for(k = 0; k < NumBlocks; k++){

loadIntoFU(B, k, j);
loadIntoFU(A, i, k);
mulAccumulate();

}
store(C, i, j);

}}

It loads the in the data to calculate sub-matrix C(i,j) and
then stores the result in the appropriate memory location.
One slight optimization we made was to load the B matrix
before the corresponding A matrix. This completely hides
half the total load latency since the functional unit’s access
of A naturally matches the order in which it is loaded, al-
lowing the computation to begin as soon as the first element
of A returns from memory.

Our second algorithm was made use of multiple func-
tional units, though the per-block computation remained
identical. Data loads were spread across the n functional
blocks to allow n multiplies to happen concurrently.

Our last implementation attempted to reduce the number
of sub-matrix loads. We observed that the last sub-matrix in



SW Pipelined System - 16 muls, 16× 16 block
size time (µs)
642 578
1282 6,274
2562 48,374
5122 383,598
10242 3,043,532
HW Pipelined System - 8 muls, 64× 64 block
642 799
1282 5,122
2562 45,318
5122 332,011
10242 2,711,073

Pentium 4, Reference Algorithm
642 11,000
1282 75,000
2562 608,000
5122 12,805,000
10242 139,000,000

Figure 2. Performance Results

a column of B could be reused instead of reloading it from
memory. To accomplish this reuse, we changed the write
pattern of sub-blocks of C to column major. The input ma-
trices are accessed in a snaking fashion, first accessing a row
(or column) in one direction and then the other for the next
row (or column). This algorithm gives an approximately
1% improvement in performance:

forward = True;
loadIntoFU(B, k_index, i)
for(i = 0; i < NumBlocks; i++){

for(j = 0; j < NumBlocks; j++){
zero();
for(k = 0; k < NumBlocks; k++){

k_idx = (forward)? k : MaxBlocks-k;
if(k > 0)

loadIntoFU(B, k_index, i);
loadIntoFU(A, j, k_index);
mulAccumulate();

}
storefromFU(C, j, i);
forward = !forward;

}}

6 Results
Figure 2 shows the time each design took to multiply

matrices of various sizes. While the hardware-pipelined de-
sign is generally faster, the fact that the software-pipelined
design beats it for the smallest size indicates there could be
room for further optimization.

7 Further Work
Due to the time constraints imposed by the contest, many

shortcuts were taken. There are many aspects of this design
left to be explored and a number of obvious points still left
to be optimized. While we successfully parameterized the
both the number of functional units, as well the number of

multipliers in each functional unit, not enough exploration
was done to find the optimal points for these parameters.

Our final design used a single clock, but due to our
communication format, partitioning the design into multi-
ple clock domains would have been a natural optimization
to try.

To do a single complex multiply we used the simple al-
gorithm requiring four fixed-point multipliers:

function complex_mult(a,b);
return CMult{

i: a.i*b.i - a.q*b.q,
q: a.i*b.q + b.i*a.q

};
endfunction

However, we can save one of the multipliers (a limited re-
source on the FPGA) with the following technique:

function complex_mult(a,b);
let ii = a.i*b.i
let qq = a.q*b.q
let iqiq = (a.i+a.q)*(b.i*b.q);
return CMult{

i: ii-qq,
q: iqiq - (ii+qq)

};
endfunction

It is possible that this saving of multipliers would be worth
the additional logic coupling.

Finally, not enough work was done to optimize the soft-
ware and block-level algorithmic aspects. Simple optimiza-
tions could easily improve performance, the most notable
of which would be to alter the block data layout. In the
original scheme, the matrix is stored in row-major order,
causing each read and write to the memory to “jump” ad-
dresses on each line, which in turn leads to an increased
number of RAS misses per block load. Taking the n2 cost
to reorder the matrix that blocks are stored in a contiguous
area of memory would greatly improve runtime costs. This,
along with modifications to the PLB master could result in
full memory bandwidth saturation.

Acknowledgments
The authors would like to thank Chris Batten, Joel Emer,

and Mieszko Lis for their advice and insight in algorithmic
organization.

References

[1] Bluespec Inc. http://www.bluespec.com.
[2] Forrest Brewer and James C. Hoe. The First

MEMOCODE HW/SW Co-design Contest.
https://memocode07.ece.cmu.edu/contest.html,
March 2007.

[3] IBM, Inc. The CoreConnect (TM) Bus Architecture, 1999.
[4] V. Strassen. Gaussian elimination is not optimal. In Nu-

merische Mathematik 13, pages 354–356, 1969.


