
1

Bluespec: Why chip design
can’t be left EE’s

Arvind
CSAIL (formerly LCS and AI Lab)
Massachusetts Institute of Technology

University of California, Irvine
March 22, 2004

2

A looming crisis in chip
design

Microprocessors
100M gates ⇒ 1B gates

ASIC’s
5M to 10M gates ⇒ 50M to 100M gates

Issues:
design time,
cost,
team size, ...

5M gate ASIC costs $10M to design/fab
~20 manyears ≅ $3M
Tool cost ≅ $2.5M + $1.5M(Hardware)
NRE ≅ $1.5M + $1M for each spin

18 months to design but only an eight-month
selling opportunity in the market

3

Pressing problems of chip
design

Problems of the small
Leaky transistors, porous oxide, multiple Vt
and their control

The “electrical engineering” in IC design

Problems of the large
Millions of transistors, thousands of
complex blocks working together correctly
Design methods must scale: Hierarchical
organizations, correctness by construction,
abstractions and static analysis, formal
verification ...

The “computer science” in IC design

4

Example:
Power Management

EE’s have identified the problem and
shown the solution at the circuit level

Clock gating
Power gating

but an application of these ideas requires
analysis of a design at a much higher
level (e.g., microarchitecture, RTL) than
circuits

CS folks have better tools and methodologies
for solving these problems provided they
don’t tune out at the first mention of clock
skews and leakage currents.

5

By hand
C++ Model

synthesis

Place & Route

Verilog RTL netlist

Tapeout

Bluespec Model/
Design

Assertional Synthesis
(Bluespec Compiler)

A Gap in Chip Design FlowBluespec Design Flow

6

What Ails High-Level Synthesis?
People have viewed “high-level synthesis” or
“behavioral synthesis” as moving hardware
languages closer to C, C++

this has created a semantic gap for hardware
designer’s, and
a nightmare for hardware synthesis tools

Conventional S/W languages H/W

semantic
gap

7

Bluespec & SystemVerilog
La

ng
ua

ge
 L

ev
el

Synthesis Quality
highlow

(ok for simulation)

high
(good for

modeling, arch.
exploration)

low

VHDL/
Verilog

SystemC
(sim)

Bluespec
&

System Verilog

SystemC
(synth)

8

What is Bluespec

An register transfer language with
Atomicity assertions

Any behavior can be understood in terms
of a series of atomic actions on state
elements (e.g., FFs, Registers, Reg Files,
FIFO’s, RAMs, ...)

Powerful “generics” and “generate”
Static elaboration of source code to
generate both datapaths and control

9

Bluespec: State and Rules
organized into modules

All the state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:

Rule: condition action
Modules are like objects (private state, interface methods, rules).
Rules can manipulate state in other modules only via their interfaces.

interface

module

10

compilation

Object code
(Verilog/C)

Bluespec:
Two-Level Compilation

Rules and Actions
(Term Rewriting System)

• Rule conflict analysis
• Rule scheduling

James Hoe & Arvind
@MIT 1997-2000

Bluespec
(Objects, Types,

Higher-order functions)

Level 1 compilation
• Type checking
• Massive partial evaluation

and static elaboration

Level 2 synthesis

Lennart Augustsson
@Sandburst 2000-2002

11

module mkGCD (GCD);

endmodule;

GCD in Bluespec

Internal
behavior

State

External interface

`rule’
is like

`always’

method start(ix,iy) when (y==0) begin x <= ix; y <= iy; end
method result when (y==0) return x;

rule ((x > y) && (y != 0)) begin x <= y; y <= x; end
rule ((x <= y) && (y != 0)) y <= y – x;

Reg#(int) x; Reg#(int) y;
x = mkReg(_); y = mkReg(0);

NB: Not the syntax of the current compiler

12

GCD Hardware Module

rdy
enab

32

32
rdy

st
ar

t
re

su
lt

G
C
D

m
o
d
u
le

32

implicit
conditions

interface GCD;
method Action start (int x, int y);
method int result;

endinterface

Nikhil’s visualization

13

Generated Verilog RTL: GCD
module mkGCD(CLK, RST_N,start__1, start__2, E_start_, ...)
input CLK; ...
output start__rdy; ...
wire [31 : 0] x$get; ...
assign result_ = x$get;
assign _d5 = y$get == 32'd0;
...
assign _d3 = x$get ^ 32'h80000000) <= (y$get ^ 32'h80000000);
assign C___2 = _d3 && !_d5;
...
assign x$set = E_start_ || P___1;
assign x$set_1 = P___1 ? y$get : start__1;
assign P___2 = _d3 && !_d5;
...
assign y$set_1 =

{32{P___2}} & y$get - x$get | {32{_dt1}} & x$get |
{32{_dt2}} & start__2;

RegUN #(32) i_x(.CLK(CLK), .RST_N(RST_N), .val(x$set_1), ...)
RegN #(32) i_y(.CLK(CLK), .RST_N(RST_N), .init(32'd0), ...)

endmodule

14

Examples

Processor and FIFOs
MIPS on FPGA

Multicast Arbiter
how to pipeline on the fly

15

Processor Pipelines and
FIFOs

fetch execute

iMem

rf

CPU

decode memory

pc

write-
back

dMem

Synthesis: Dan Rosenband @ MIT

16

interface FIFO #(parameter type t, tr);
method Action enq(t); // enqueue an item
method Action deq(); // remove oldest entry
method t first(); // inspect oldest item
method Action clear(); // make FIFO empty
method Bool find(tr); // search FIFO

endinterface

FIFO (glue between stages)

n = # of bits needed
to represent the
values of type “t“

m = # of bits needed
to represent the
values of type “tr"

not full

not empty

not empty

rdy
enab

n

n
rdy

enab

rdy

en
q

de
q

fir
st

FI
FO

m
o
d
u
le

cl
ea

renab

fin
dm

bool

17

Rules for Add

rule (match(iMem[pc],Add{rd,ra,rb})) begin
bu.enq (EAdd{rd, rf[ra], rf[rb]});
pc <= pc + 1;

end

rule (match(bu.first(),EAdd{rd,va,vb})) begin
rf[rd] <= va + vb;
bu.deq();

end

implicit
checks:
bu notfull

bu
notempty

fetch &
decode execute

pc rfCPU

bu

18

Fetch & Decode Rule: Reexamined

Wrong! Because instructions in bu may be
modifying ra or rb

stall !

fetch &
decode execute

pc rfCPU

bu

rule (match(iMem[pc],Add{rd,ra,rb})) begin

bu.enq (EAdd{rd, rf[ra], rf[rb]});

pc <= pc + 1;
end

19

Fetch & Decode Rule: corrected

fetch &
decode execute

pc rfCPU

bu

rule (match(iMem[pc],Add{rd,rb,ra}) &&
!bu.find(ra) && !bu.find(rb)) begin

bu.enq (EAdd{rd,rf[ra],rf[rb]});
pc <= pc + 1;

end

20

Rules for Branch

rule (match(iMem[pc], Bz{rc,addr})) &&
!bu.find(rc) && !bu.find(addr))

begin bu.enq (EBz{rf[rc],rf[addr]});
pc <= pc + 1;

end

rule (match(bu.first(),EBz{vc,va}) && (vc == 0))
begin pc <= va; bu.clear(); end

rule (match(it, EBz) && (vc != 0))
bu.deq;

fetch &
decode execute

pc rfCPU

bu

rule-atomicity
ensures that
pc update, and
discard of pre-
fetched instrs
in bu, are done
consistently

21

Modular organization

Read method call

Action method call

Method calls embody both data and control (i.e., protocol)

iMem RFile rf FIFO bu dMem

fetch & decode
pc

execute
set pc

Current focus@MIT:
Modular compilation of
large designs (e.g.,
Reorder buffer)

22

IA64 Modeling in Bluespec
CMU-Intel collaboration

Develop an Itanium µarch model that is
concise and malleable
executable and synthesizable

FPGA Prototyping
XC2V6000 FPGA interfaced to P6 memory bus
Executes binaries natively against a real PC
environment (i.e., memory & I/O devices)

An evaluation vehicle for:
Functionality and performance: a fast µarchitecture
emulator to run real software
Implementation: a synthesizable description to
assess feasibility, design complexity and
implementation cost

Roland Wunderlich & James Hoe @ CMU
Steve Hynal(SCL) & Shih-Lien Liu(MRL)

23

The “Arbiter” Project @ Sandburst
Apples-to-apples comparison

Re-code product chip (“arbiter”) in Bluespec
2 Bluespec engineers, 2 ASIC designers; 9/1/02 to
12/31/02 (all of them on a learning curve)
Completed synthesis, test insertion, physical layout,
timing analysis on each sub block (hard macro)

Mieszko Lis, Joe Stoy, Scott Winterble, Brad Sheldon

3 major alternatives explored without
affecting verification

Architectural Exploration

66% fewer bugsVerification

4.7K (versus 65.5K)Lines of code

Both ~ 1.55M gates
Multicast arbiter: 19% smaller, 228K gates

Area

Both met goal: 200MHzSpeed

Comparison with Verilog for Multicast Arbiter

24

.

.

.

.

.

.

ingress
nodes

egress
nodes

egress set
priorites:

#1

#2

#3

1. find highest-priority valid egress set for each ingress
2. remove all but highest-priority of conflicting grants

10 Gbs/line Multicast Arbiter

25

Push<VectorN<64,Pri>>>
indexOfMax =

pass (maxs) >>
pass (maxs) >>
pass (maxs) >>
pass (maxs) >>
pass (maxs) >>
pass (maxs) >>
pass (get_index) >>
tramToPush (emapMem);
outputMemValue;

Design Problem
64 Items: Index of Item with Max Value

maxs

maxs

maxs

maxs

maxs

maxs

Memory
Lookup maxs: takes a list & compares

priority of adjacent pairs, return
list of half the size

26

Push<VectorN<64,Pri>>>
indexOfMax =

pass (maxs) >>
pass (maxs) >>
qbuffer >>
pass (maxs) >>
pass (maxs) >>
qbuffer >>
pass (maxs) >>
pass (maxs) >>
qbuffer >>
pass (get_index) >>
tramToPush (emapMem);
outputMemValue;

maxs

maxs

maxs

maxs

maxs

maxs

Memory
Lookup

Pipeline to meet throughput
constraints

··· pass(f) >> qbuffer >> pass(g) ···

f gEnabled by higher-
order programming

27

Some advanced features
Connectables

A class with “get” and “put” operations
Useful for modeling a variety of interfaces

direct, registered, FIFO-based, credit-based ...

Multiple clock domains
A class of types that are permitted to cross
clock domains (e.g., some Connectables)

Collecting and implicitly connecting
some objects spread over various
modules

e.g., PCI addressable registers

28

Related (non-MIT) work
Use of atomic actions

to describe concurrent and distributed
systems

Dijkstra, Hoare, Milner
Chandy & Misra (Unity), Lamport, LynchMIT (I/O
Automata)

in hardware verification and modeling
Dill (Murphi), ...

in hardware synthesis
Straunstrup (Synchronous Transactions)
Black & Sere (Action Systems)

Static elaboration, embedded languages
Functional languages (Lisp, Scheme, Haskell, ML)
Modern HDLs (Verilog 2001’s “generate”)

Whom have
I forgotten?

29

MIT work, 1997-2000
TRAC compiler (TRS notation to Verilog)

pipelined MIPS core, superscalar, RC6 encryption, ...
~35K gates, ~50MHz
Area & speed comparable to hand-coded Verilog

[VLSI 99, ICCAD 00]

Modeling and stepwise refinement
speculative & superscalar microarchitectures [IEEE Micro99]

memory models [ISCA99]

cache coherence protocols [ICS99]

Verification of an implementation TRS against a
reference TRS [IEEE Micro99, FME01]

Source-to-source transformation on TRS’s
Superscalar versions of TRS’s can be derived
mechanically from pipelined TRS’s. [Lis MS MIT 00]

30

Summary
High-level synthesis is ready for exploitation

Key enablers (the magic)

Hardware model: Atomic actions on state elements

A two level language where all the programming
sophistication is used to “generate” the hardware model via
static elaboration

Benefits

Dramatically reduce design time to verified netlist

More architectural exploration and more robust designs
(in the same schedule)

Rapid evaluation of micro-architectures using FPGAs

Enabling IP creation, maintenance and deployment

31

Contributors

MIT
Arvind
Dan Rosenband
Alfred Man Ng
Byungsub Kim
Nirav Dave
...

Bluespec Inc
R.S. Nikhil*
Mieszko Lis*
Jacob Schwartz*
Joe Stoy*

* Previously at Sandburst

James Hoe, CMU Lennart Augustsson, Sandburst

Xiaowei Shen, IBM

32

Sandburst Corp, 10Gb/s core router ASICs
(Bluespec: internal tool)

Bluespec, Inc.

Research@MIT on high-level synthesis & verification

Technology

Technology
VC funding

VC funding

~1996 2000 2003

Bluespec, Inc.
High-level synth. tool

33

Extras

34

Pong in Bluespec
Bluespec code
(~ 1K lines)

Bluespec Compiler

Verilog code

Xilinx tools

bitfile

XSA download tool

XSA board (w. Xilinx XC2S100 FPGA)
•VGA socket pins connect directly to FPGA
pins (no video hardware; video signal
generated by Bluespec code)
•PS2 keyboard pins … ditto …

Niklas Rojemo @ Sandburst

35

Synthesis from Bluespec

36

TRS Execution Semantics
Given a set of rules and an initial term s

While (some rules are applicable to s)
♦ choose an applicable rule

(non-deterministic)
♦ apply the rule atomically to s

Synthesis problem: Generate a hardware
scheduler that allows execution of as many
enabled rules as possible at each clock without
violating the semantics and generate all the
associated control logic.

37

Scheduling and control logic
Modules

(Current state) Rules

δ1

π1 Scheduler

φ1

φn

π1

πn

Control logic

δ1

δn
δn

πn

Modules
(Next state)

rdy signals
read methods

enable signals
action parameters

38

Compiling a Rule

pc

rf

bucurrent
state

next
state
values

δ

π

enable

pc’

rf’

bu’

“Bz Taken”:
when (Bz rc ra) <- bu.first, rf.sub rc == 0
==> action pc := rf.sub ra

bu.clear

π = enabling condition
δ = action signals & values

rdy signals
read methods

enable signals
action
parameters

39

Combining State Updates:
strawman

next state
value

latch
enable

R

OR

π1

πn

δ1,R

δn,R

OR

π’s from the rules
that update R

δ’s from the rules
that update R

What if more than one rule is enabled?

40

Combining State Updates

next state
value

latch
enable

R

OR

δ1,R

δn,R

OR

Scheduler:
Priority

Encoder

φ1

φn

π1

πn

δ’s from the rules
that update R

Scheduler ensures that at most one φi is true

π’s from all
the rules

41

Miscellaneous slides

42

Verification Solutions
Assertions (Specman/Vera etc.)
improve the productivity of the
verification engineer but don’t
address the root cause

Design complexities increasing
Verilog/VHDL has seen no
fundamental enhancements in
synthesis capability in almost 15
years

Bluespec can change this.

43

Technology validation
@ Sandburst

Modeling of Hibeam chip set
12K lines of Bluespec code, accurate chip and block boundaries,
accurate inter-chip & inter-block messaging
Used for QoS algorithm analysis and validation
This is the model of Sandburst's Hibeam chip set (there is no
other C++ or SystemC model)
Learning: capable of supporting large programs and models

Synthesis – Mesa Project 2001
IP Packet lookup. Subset of a Sandburst Hibeam product chip;
same tools, libraries
~ 8K lines Bluespec,
~ 400K gates, 3mm sq die, 185 MHz
Included Verilog cores: on-chip memory, BIST, off-chip memory,
jtag, scan, high-speed serial I/O, PCI bus, etc.
Learning: fits comfortably in ecosystem of other tools

Synthesis - Re-code product chip (“arbiter”) in Bluespec 2002

44

Key concept: “Push”
interface, and transformers

··· pass(f) >> pass(g) ···

f() g()

interface Push<a>
Action push (a x);

endinterface

pass(f) pass input through f
>> connect two Push blocks

45

Key concept: “Push”
interface, and transformers

interface Push<a>
Action push (a x);

endinterface

··· pass(f) >> qbuffer >> pass(g) ···

f g

pass(f) pass input through f
>> connect two Push blocks
qbuffer buffer input in a FIFO (>> with a register)

