i Bluespec: Why chip design
can’t be left EE’s

Arvind
CSAIL (formerly LCS and Al Lab)
Massachusetts Institute of Technology

University of California, Irvine

N

March 22, 2004

A looming crisis In chip

design
b Issues:
@ Microprocessors design time,
= 100M gates = 1B gates COS,
#® ASIC’s team size, ...

= 5M to 10M gates = 50M to 100M gates

= 18 months to design but only an eight-month
selling opportunity in the market

#5M gate ASIC costs $10M to design/fab
» —20 manyears = $3M
m Tool cost =z $2.5M + $1.5M(Hardware)
» NRE =z $1.5M + $1M for each spin

Pressing problems of chip
design

N

#® Problems of the small

s Leaky transistors, porous oxide, multiple Vt
and their control

The “electrical engineering” in IC design

#® Problems of the large

= Millions of transistors, thousands of
complex blocks working together correctly

s Design methods must scale: Hierarchical
organizations, correctness by construction,
abstractions and static analysis, formal
verification ...

The “computer science” in IC design

Example:
Power Management

N

#® EE’s have identified the problem and
shown the solution at the circuit level
= Clock gating
= Power gating

but an application of these ideas requires
analysis of a design at a much higher
level (e.g., microarchitecture, RTL) than
circuits

s CS folks have better tools and methodologies
for solving these problems provided they
don’t tune out at the first mention of clock
skews and leakage currents.

Bluespec Design Flow

/N

‘-Il--...-..h
[34
.

*

v
Bluespec Model/ Assertional Synthesis
Design (Bluespec Compiler)
4

[Verilog RTL J—>

synthesis —{ netlist J—>

—* Place & Route

—{ Tapeout }

N

designer’s, and

Conventional S/W languages

-

g N

o\

(T

semantic

9ap

= a nightmare for hardware synthesis tools

What Ails High-Level Synthesis?

#® People have viewed “high-level synthesis” or
“behavioral synthesis” as moving hardware
languages closer to C, C++
m this has created a semantic gap for hardware

/m%m\

NELY]

1l

/

6

N

high |
(good for
modeling, arch.

exploration) SystemC

(sim)

Language Le\E
v

ow

Bluespec & SystemVerilog

Bluespec
&
System Verilog

- VHDL/
Verilog

low
(ok for simulation)

hig:h
Synthesis Qualit>

What Is Bluespec

N

An register transfer language with

s Atomicity assertions

+ Any behavior can be understood in terms
of a series of atomic actions on state
elements (e.g., FFs, Registers, Reg Files,
FIFO’s, RAMSs, ...)

s Powerful “generics” and “generate”

+ Static elaboration of source code to
generate both datapaths and control

Bluespec: State and Rules
organized into modules

=" H= =
i%wb/ﬁ\774é>jx
| — e
\.4/‘

P

All the state (e.g., Registers, FIFOs, RAMs, ...) is explicit.
Behavior is expressed in terms of atomic actions on the state:
Rule: condition =>» action

Modules are like objects (private state, interface methods, rules).
Rules can manipulate state in other modules only via their interfaces.

Bluespec:
Two-Level Compilation

N

Bluespec Lennart Augustsson

~ (Objects, Types, @Sandburst 2000-2002
Higher-order functions)

» Type checking
Level 1 compilation e Massive partial evaluation
and static elaboration

Rules and Actions
(Term Rewriting System)

» Rule conflict analysis

Level 2 synthesis = Rule scheduling
¥ James Hoe & Arvind
Object code @MIT 1997-2000

(Verilog/C)

10

GCD In Bluespec

N

State

modulle mkGCD (GCD); *—;B
(Reg#(int) X; Reg#(int) vy; }

(x = mkReg(_); Yy = mkReg(0);

Internal
behavior

(rule ((x>y) & (y = 0)) begin x <=vy; y <= X; end *—/B
rule (X <=y) & (y 1= 0)) y <=y — X;

‘method start(ix,1y) when (y==0) begin X <= IX; Yy <= 1y; enﬂ

\method result when (y==0) return Xx;
endmodule;
\/ External interface
“rule’
IS like
always’

NB: Not the syntax of the current compiler 11

GCD Hardware Module

g
N
32
’
\32 > =
enab A g
Ly a3
implicit ol
conditions 32 |= S
-
Ldy %

interface GCD;
method Action start (int X,
method 1nt result;
endinterface

Int y);

Nikhil’s visualization

12

N

Generated Verilog RTL: Gebp

module mkGCD(CLK, RST N,start 1, start 2, E start , ...)
input CLK; ;
output start rdy;
wire [31 : 0] x$get;
assign result_ = x$get;
assign _d5 = y$get == 327dO;

assign d3 = x$get ™ 32"h80000000) <= (y$get ™ 32"h80000000);
assign C__ 2 = d3 && ! d5;

assign x$set

= E start_ || P 1;
assign x$set 1 = P 1 ? y$get : start_ 1;
assign P 2 = d3 && ! d5;

assign y$set 1 =

{32{P__ 2}} & y$get - x$get | {32{ dtl}} & x$get |

{32{ dt2}} & start_2;
RegUN #(32) i_x(.CLK(CLK), -RST_N(RST_N), .val(x$set_ 1), ...)
RegN #(32) i_y(.CLK(CLK), .RST_N(RST _N), .init(32°d0), ...)

endmodule
13

N

Examples

#Processor and FIFOs
s MIPS on FPGA

#Multicast Arbiter

= how to pipeline on the fly

14

Processor Pipelines and

FIFOs

pe Il

¢ \4
e o e

CPU

dMem

Synthesis: Dan Rosenband @ MIT

15

FIFO (glue between stages)

N

L

interface FIFO #(parameter type t, tr);

method Action enq(t);
method Action deq();
method t first();

method Action clear();

method Bool find(tr);

// engqueue an item

// remove oldest entry
// inspect oldest i1tem
// make FIFO empty

// search FIFO

endinterface
n
P>
enab | o
rdy 1o
not full <
enab — L
rdy ol Q3
not empty < B = 5
Ni - L
< N g) E
not empty «rdy =
enab | @
| D
bool =
) oom =
16

Rules for Add

A
Y

iImplicit
checks:
bu notfull

bu
notempty

rule (match(iMem[pc],Add{rd,ra,rb})) begin
bu.enq (EAdd{rd, rf[ra], rf[rb]l});
pc <= pc + 1;

end

rule (match(bu.first(),EAdd{rd,va,vb})) begin
rf[rd] <= va + vb;
bu.deq();

end

17

Fetch & Decode Rule: reexamined
& . I

CPU rf

fetch &
\\\ decode - : 1//

rule (match(iMem[pc],Add{rd,ra,rb})) begin

bu.enq (EAdd{rd,:EEEEE}?<ETIE§i});

pc <= pc + 1;
end

Wrong! Because instructions in bu may be
modifying ra or rb

stall ! 1s

Fetch & Decode Rule: corrected

A
Y

-

CPU rf

fetch & _
\\\ decode - : 1//

rule (match(iMem[pc],Add{rd,rb,ra}) &&
Tbu.find(ra) && !'bu.find(rb)) begin
bu.enq (EAdd{rd,rf[ra],rf[rb]});
pc <= pc + 1;
end

19

Rules for Branch

S rule-atomicity
ensures that
pc update, and
discard of pre-
fetched instrs
INn bu, are done

consistently

rule (match(iMem[pc], Bz{rc,addr})) &&
"bu.find(rc) && !'bu.find(addr))
begin bu.enqg (EBz{rf[rc],rf[addr]});
pc <= pc + 1;

end

rule (match(bu.first(),EBz{vc,va}) && (vc == 0))
begin pc <= va; bu.clear(); end

rule (match(it, EBz) && (vc 1= 0))
bu.deq; 20

Modular organization

N
\J

iMem RFile rf FIFO bu dMem
4 W Y \l : T T T
fetch & decode execute
oc set pC

Method calls embody both data and control (i.e., protocol)

Current focus@MIT:

sessmanna » Read method call Modular compilation of
_ large designs (e.qg.,
—) Action method call Reorder buffer)

|A64 Modeling in Bluespec

CMU-Intel collaboration

f
(N

#® Develop an Itanium parch model that is
s concise and malleable
= executable and synthesizable

@ FPGA Prototyping
m XC2V6000 FPGA interfaced to P6 memory bus

m EXecutes binaries natively against a real PC
environment (i.e., memory & 1/0 devices)

An evaluation vehicle for:

s Functionality and performance: a fast parchitecture

emulator to run real software

= Implementation: a synthesizable description to
assess feasibility, design complexity and
Implementation cost

Roland Wunderlich & James Hoe @ CMU
Steve Hynal(SCL) & Shih-Lien Liu(MRL)

22

The “Arbiter” Project @ Sandburst

N

L
#® Apples-to-apples comparison
s Re-code product chip (“arbiter”) in Bluespec

s 2 Bluespec engineers, 2 ASIC designers; 9/1/02 to
12/31/02 (all of them on a learning curve)

» Completed synthesis, test insertion, physical layout,
timing analysis on each sub block (hard macro)

Comparison with Verilog for Multicast Arbiter

Speed Both met goal: 200MHz
Area Both — 1.55M gates
Multicast arbiter: 19% smaller, 228K gates
Lines of code 4.7K (versus 65.5K)
Verification 66% fewer bugs
Architectural Exploration | 3 major alternatives explored without
affecting verification 33

Mieszko Lis, Joe Stoy, Scott Winterble, Brad Sheldon

10 Gbs/line Multicast Arbiter

N

L

=

ingress
nodes

egress
nodes

egress set
priorites:

1. find highest-priority valid egress set for each ingress
2. remove all but highest-priority of conflicting grants 24

N

Design Problem
64 Items: Index of Item with Max Value

%
O O OO OO O oo oo

ymaxs
DDDDDDDDDDDDDDDEEEDDDDDDDDDDDDDD
axs

IINRRANE NN NANNN

ymaxs

NN NN

ymaxs

L]

ymaxs

L0
ymaxs

Memory
Lookup

IS

Push<VectorN<64,Pri>>>
iIndexOfMax =

pass (maxs) >>

pass (maxs) >=>

pass (maxs) >>

pass (maxs) >>

pass (maxs) >>

pass (maxs) >=>

pass (get_index) >>
tramToPush (emapMem);
outputMemValue;

maxs: takes a list & compares
priority of adjacent pairs, return
list of half the size

25

Pipeline to meet throughput

constraints

OO O OO O OO O oo oo
ynaxs
NNNNRNRRR NN NNNNNEERRNNEN
ynaxs
ENRRENRNENRRENEN

ynaxs

NN RN

ymnaxs

L]

ynaxs

L]
ymnaxs

Memory
Lookup

Push<VectorN<64,Pri>>>
indexOfMax =
pass (maxs) >>
pass (maxs) >>
gbuffer >=>
pass (maxs) =>=>
pass (maxs) =>=>
gbuffer >=>
pass (maxs) ==
pass (maxs) >=>
gbuffer >=>
pass (get _index) >=>

... pass(f) >> gbuffer >> pass(g) -

~
Enabled by higher-
order programming

Some advanced features

N

Connectables
= A class with “get” and “put” operations
s Useful for modeling a variety of interfaces
+ direct, registered, FIFO-based, credit-based ...
#® Multiple clock domains
s A class of types that are permitted to cross
clock domains (e.g., some Connectables)
Collecting and implicitly connecting
some objects spread over various
modules

= e.g., PCl addressable registers

27

N

Related (non-MIT) work

Use of atomic actions

= to describe concurrent and distributed
systems
+ Dijkstra, Hoare, Milner
¢+ Chandy & Misra (Unity), Lamport, Lynch,,; (1/0

Automata)
= INn hardware verification and modeling
+ Dill (Murphi), .. Whom have
= IN hardware synthesis | forgotten?

+ Straunstrup (Synchronous Transactions)
+ Black & Sere (Action Systems)

@ Static elaboration, embedded languages
+ Functional languages (Lisp, Scheme, Haskell, ML)
¢+ Modern HDLs (Verilog 2001’s “generate”) 28

MIT work, 1997-2000

N

L . . .
#® TRAC compiler (TRS notation to Verilog)
s pipelined MIPS core, superscalar, RC6 encryption, ...
m —35K gates, ~50MHz

» Area & speed comparable to hand-coded Verilog
[VLSI 99, ICCAD 00]

#® Modeling and stepwise refinement
m Speculative & superscalar microarchitectures [IEEE Micro99]
= memory models [ISCA99]
m cache coherence protocols [ICSs99]

Verification of an implementation TRS against a
reference TRS [IEEE Micro99, FMEO1]

Source-to-source transformation on TRS’s

m Superscalar versions of TRS’s can be derived
mechanically from pipelined TRS’s. [Lis MS MIT 00]

29

Summary

N

i #® High-level synthesis is ready for exploitation

#® Key enablers (the magic)
s Hardware model: Atomic actions on state elements

= A two level language where all the programming _
sophistication is used to “generate” the hardware model via

static elaboration

Benefits
= Dramatically reduce design time to verified netlist

= More architectural exploration and more robust designs
(in the same schedule)

s Rapid evaluation of micro-architectures using FPGAs

» Enabling IP creation, maintenance and deployment

30

Contributors

N

L

® MIT

= Arvind

= Dan Rosenband
= Alfred Man Ng
= Byungsub Kim
= Nirav Dave

James Hoe, CMU

Xiaowei Shen, IBM

@ Bluespec Inc
= R.S. Nikhil*
= Mieszko Lis*
= Jacob Schwartz*
» Joe Stoy™

Lennart Augustsson, Sandburst

* Previously at Sandburst
31

Bluespec, Inc.

N

Research@MIT on high-level synthesis & verification

Technology §§
VC funding A

Technology

Bluespec, Inc.
High-level synth. tool

VC funding

~1996 2000 2003
32

Extras

33

N

Bluespec code
(= 1K lines)

A 4

Bluespec Compiler

A 4

[Verilog code]

A 4

Xilinx tools

A 4

[bitile |

A 4

XSA download tool

Pong In Bluespec

XSA board (w. Xilinx XC25100 FPGA)

e VGA socket pins connect directly to FPGA
pins (no video hardware, video signal
generated by Bluespec code)

* P52 keyboard pins ... ditto ...

Parattel Pevt
Voltage Regulalors -
100 MHr Prog. Oscillahor _""'-.
IR Switch '
XCOsT XL CPLD
256 KByte Flash., g e
XCZ5100 FRGAa
16 MByte SDRAM PLM" 00 ek
v il y 4

Fushineffon 4 Mo

Niklas Rojemo @ Sandburst

34

\V

Synthesis from Bluespec

35

N

TRS Execution Semantics

Given a set of rules and an initial term s

-

While (some rules are applicable to s)
choose an applicable rule

(non-deterministic)
apply the rule atomically to s

_

Synthesis problem: Generate a hardware
scheduler that allows execution of as many
enabled rules as possible at each clock without
violating the semantics and generate all the
associated control logic.

/

36

Scheduling

A
Y

(@

“Modules
urrent state)

i

and control logic

Modules

Scheduler

b, (Next state)

o /
; R

([Jdy signals *
‘read methods

]

enable signals/
action parameters\

Rules -

] >

T .
1 nn »

S e

0,
——

T .

O, :

Control logic

Complllng a Rule

f‘\

current
State

pC

rf

bu

(‘B

z Taken”:

when (Bz rc ra) <- bu.first, rf.sub rc ==

N\

—==> action pc

= rf.sub ra
bu.clear

‘rdy signals

I
»

read method

:/

- N
enable signals

action
parameters

= enabling condition
o0 = action signals & values

—— enable

/

next
State
values

38

Combining State Updates:

strawman
S T,
7's from the rules
that update R OR
T, y
latch
enable
61,R ~ \\
o's from the rules OR -
that update R next state
5 ~ value
nR—

What if more than one rule is enabled?
39

Combining State Updates

A
Y

7’s from all
the rules

o0's from the rules
that update R

J Tcl—>

Ty ’

0y
Scheduler:
Priority OR
Encoder
On’
latch
enable
OR [extstate
5 > value
n,R >

Scheduler ensures that at most one ¢ Is true

40

Miscellaneous slides

41

Verification Solutions

N

#®Assertions (Specman/Vera etc.)
Improve the productivity of the
verification engineer but don’t
address the root cause RN

= Design complexities increas{— \—

= Verilog/VHDL has seen no
fundamental enhancements in
synthesis capability in almost 15
years

Bluespec can change this.

42

Technology validation

N

@ Sandburst

#® Modeling of Hibeam chip set

12K lines of Bluespec code, accurate chip and block boundaries,
accurate inter-chip & inter-block messaging

Used for QoS algorithm analysis and validation

This is the model of Sandburst's Hibeam chip set (there is no
other C++ or SystemC model)

Learning: capable of supporting large programs and models

#® Synthesis — Mesa Project 2001

IP Packet lookup. Subset of a Sandburst Hibeam product chip;
same tools, libraries

~ 8K lines Bluespec,
~ 400K gates, 3mm sq die, 185 MHz

Included Verilog cores: on-chip memory, BIST, off-chip memory,
jtag, scan, high-speed serial 1/0, PCI bus, etc.

Learning: fits comfortably in ecosystem of other tools

#® Synthesis - Re-code product chip (“arbiter”) in Bluespec 2002

43

N

Key concept: “Push”
Interface, and transformers

interface Push<a>
Action push (a x);
endinterface

pass(f) pass input through f
>> connect two Push blocks
pass(f) >> pass(g)

-9~ -0

44

Key concept: “Push”
Interface, and transformers

N

interface Push<a>
Action push (a x);
endinterface

pass(f) pass input through f

>> connect two Push blocks

qbuffer buffer input in a FIFO (>> with a register)
pass(f) >> gbuffer >> pass(Qg)

45

