
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2004 1277

Operation-Centric Hardware
Description and Synthesis
James C. Hoe, Member, IEEE, and Arvind, Fellow, IEEE

Abstract—The operation-centric hardware abstraction is useful
for describing systems whose behavior exhibits a high degree
of concurrency. In the operation-centric style, the behavior of
a system is described as a collection of operations on a set of
state elements. Each operation is specified as a predicate and a
set of simultaneous state-element updates, which may only take
effect in case the predicate is true on the current state values.
The effect of an operation’s state updates is atomic, that is, the
legal behaviors of the system constitute some sequential inter-
leaving of the operations. This atomic and sequential execution
semantics permits each operation to be formulated as if the rest
of the system were frozen and thus simplifies the description of
concurrent systems. This paper presents an approach to syn-
thesize an efficient synchronous digital implementation from an
operation-centric hardware-design description. The resulting
implementation carries out multiple operations per clock cycle
and yet maintains the semantics that is consistent with the atomic
and sequential execution of operations. The paper defines, and
then gives algorithms to identify, conflict-free and sequentially
composable operations that can be performed in the same clock
cycle. The paper further gives an algorithm to generate the hard-
wired arbitration logic to coordinate the concurrent execution of
conflict-free and sequentially composable operations. Lastly, the
paper evaluates synthesis results based on the TRAC compiler for
the TRSPEC operation-centric hardware-description language.
The results from a pipelined processor example show that an
operation-centric framework offers a significant reduction in
design time, while achieving comparable implementation quality
as traditional register-transfer-level design flows.

Index Terms—Conflict-free, high-level synthesis, operation-cen-
tric, sequentially composable, term-rewriting systems (TRS).

I. INTRODUCTION

MOST hardware-description frameworks, whether
schematic or textual, make use of concurrent state ma-

chines (or processes) as their underlying computation model.
For example, in a register-transfer-level (RTL) language,
the design entities are the individual registers (or other state
primitives) and their corresponding next-state equations. We
refer to this style of descriptions as state-centric because the
description of behavior is organized by the individual state

Manuscript received March 11, 2003; revised December 19, 2003. This work
was supported in part by the Defense Advanced Research Projects Agency, De-
partment of Defense, under Ft. Huachuca Contract DABT63-95-C-0150 and in
part by the Intel Corporation. J. C. Hoe was supported in part by an Intel Foun-
dation Graduate Fellowship during this research. This paper was recommended
by Associate Editor R. Gupta.

J. C. Hoe is with the Department of Electrical and Computer Engi-
neering, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
jhoe@ece.cmu.edu).

Arvind is with Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139-4307 USA
(e-mail: arvind@csail.mit.edu).

Digital Object Identifier 10.1109/TCAD.2004.833614

element’s next-state logic. Alternatively, the behavior of a
hardware system can be described as a collection of opera-
tions, where each operation can atomically update all or some
of the state elements. In this paper, we refer to this style of
descriptions as operation-centric because the description of
behavior is organized into individual operations. Our notion
of operation-centric models for hardware description is in-
spired by the term rewriting systems (TRS) formalism [1].
The operation-centric hardware model of computation is also
analogous to Dijkstra’s guarded commands [7]. Similar models
of computation can be found in some parallel programming
languages (e.g., UNITY [5]), hardware-description languages
for synchronous and asynchronous design synthesis (e.g.,
synchronized transitions (ST) [13], [16], [17]), and languages
for hardware-design verification (e.g., st2fl [12], SINC [14]).
In Section VII, we compare our description and synthesis
approach to synchronized transitions.

The operation-centric model of computation consists of a set
of state variables and a set of state transition rules. Each atomic
transition rule represents one operation. An execution is inter-
preted as a sequence of atomic applications of the state transi-
tion rules. A rule can be optionally guarded by a predicate con-
dition such that a rule is applicable only if the system’s state
satisfies the predicate condition. If several rules are enabled by
the same state, any one of the enabled rules can be nondeter-
ministically selected to update the state in one step, and after-
wards, a new step begins on the updated new state. With pred-
icated/guarded transition rules, an execution is interpreted as a
sequence of atomic rule applications such that each rule applica-
tion produces a state that satisfies the predicate condition of the
next rule to be applied. The atomicity of operation-centric state
transition rules simplifies the task of hardware description by
permitting the designer to formulate each rule/operation under
the assumption that the system is not simultaneously affected
by other potentially conflicting operations—the designer does
not have to worry about race conditions between different op-
erations. This permits an apparently sequential description of
potentially concurrent hardware behaviors.

It is important to note that the simplifying atomic and se-
quential semantics of operations does not prevent a legal im-
plementation from executing several operations concurrently.
Implicit parallelism between operations can be exploited by an
optimizing compiler that produces a synchronous implemen-
tation that executes several operations concurrently in a clock
cycle. However, the resulting concurrent implementation must
not introduce new behaviors, that is, behaviors which are not
producible under the atomic and sequential execution seman-
tics. This paper presents an approach to synthesize such a syn-

0278-0070/04$20.00 © 2004 IEEE

1278 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2004

chronous hardware implementation from an operation-centric
description. The paper provides algorithms for detecting oppor-
tunities for the concurrent execution of operations and for gener-
ating a hardwired arbitration logic to coordinate the concurrent
execution in an implementation.

This paper is organized as follows. Section II first presents
the abstract transition systems (ATS), an simple operation-cen-
tric hardware formalism used to develop and explain the syn-
thesis procedures. Section III next describes the basic synthesis
procedure to create a reference implementation that is function-
ally correct but inefficient. The inefficiencies of the reference
implementation are addressed in Sections IV and V using two
optimizations based on the concurrent execution of conflict-free
and sequentially composable operations, respectively. The re-
sulting optimized implementation incorporates a hardwired ar-
bitration logic that enables the concurrent execution of con-
flict-free and sequentially composable operations. Section VI
presents a comparison of designs synthesized from an opera-
tion-centric description versus an state-centric RTL description.
Section VII discusses related work, and Section VIII concludes
with a summary.

II. OPERATION-CENTRIC TRANSITION SYSTEMS

We have developed an source-level language called TRSPEC
to support operation-centric hardware design specification
[9]. TRSPEC’s syntax and semantics are adaptations of a
well-known formalism, TRS [1]. To avoid the complications
of a source language, instead, we present a low-level opera-
tion-centric hardware formalism called ATS. ATS is developed
as the intermediate representation in our TRSPEC compiler.
In this paper, we use ATS to explain how to synthesize an
efficient implementation from an operation-centric hardware
specification.

A. ATS Overview

The structure of ATS is summarized in Fig. 1. At the top level,
an ATS is defined as a triple . is a list of explicitly
declared state elements, including registers , arrays and
first-in-first-out (FIFO) queues . is a list of initial values
for the elements in . is a set of operation-centric transi-
tions, where each transition is a pair . In a transition, is a
boolean predicate expression, and is a list of simultaneous ac-
tions, exactly one action for each state element in . (An accept-
able action for all state-element types is the null action “ .”)
In an ATS, if of is enabled in a state [abbreviated as

, or simply], then the simultaneous ac-
tions prescribed by are applied atomically to update to

. We use the notation to mean the resulting state . In
other words, is the functional equivalent of .

B. ATS State Elements and Actions

In this paper, we concentrate on the synthesis of ATS with
three types of state elements: , , and . The three types of
state elements are depicted in Fig. 2 with signals of their sup-
ported interfaces. Below, we describe the three types of state
elements and their usage.

Fig. 1. ATS summary.

Fig. 2. Synchronous state primitives.

A register can store an integer value up to a specified max-
imum word size. The value stored in a register can be refer-
enced using the side-effect-free query and set to using
the action (written as and , respectively).
An entry of an array can be referenced using the side-effect-free

query and set to using the action. For
brevity, we abbreviate as in our examples.
The oldest value in a FIFO can be referenced using the side-ef-
fect-free query, and can be removed by the action.
A new value can be added to a FIFO using the action.
The action is a compound action that conceptually first
dequeues the oldest entry before enqueuing a new entry. In ad-
dition, the contents of a FIFO can be cleared using the
action. The status of a FIFO can be queried using the side-ef-
fect-free and queries. Conceptually, an
ATS FIFO has a bounded but unspecified size. The exact size
is only set at implementation time, and hence a specification
must be valid for all possible sizes. Applying an to a full
FIFO or applying to an empty FIFO is illegal. (Applying

action to a full FIFO is legal however.) Any transi-
tion that queries or acts on a FIFO must include the appropriate

or queries in its predicate condition.

HOE AND ARVIND: OPERATION-CENTRIC HARDWARE DESCRIPTION AND SYNTHESIS 1279

Fig. 3. Simple two-stage pipelined processor example with S =

h ; ; ; ; i.

Besides registers, arrays, and FIFOs, the complete ATS in-
cludes register-like state elements for input and output. An input
state element is like a register but without the action. A

query on an input element returns the value presented on a
corresponding external input port. An output state element
supports both and , and its content is visible to the
outside of the ATS on a corresponding output port. For brevity,
we omitted the discussion of and in this paper; for the most
part, and are treated as during synthesis.

C. Pipelined Processor Example

In this example, we describe a two-stage pipelined processor,
where a pipeline buffer is inserted between the fetch and exe-
cute stages. In an ATS, we use a FIFO, instead of a register, as
the pipeline buffer. The buffering property of a FIFO provides
the isolation needed to permit the operations in the two stages to
be described independently. Although the resulting description
reflects an elastic pipeline, our synthesis can infer a legal imple-
mentation that operates synchronously and has stages separated
by registers (explained further in Section VI-A).

The key state elements and datapath of the two-stage
pipelined processor example is shown in Fig. 3. The processor
consists of state elements .
The five state elements are: the program counter, the
register file (an array of integer values), the instruction
memory (an array of instructions), the data memory (an
array of integer values), and the pipeline buffer (a FIFO of
instructions). In an actual synthesis, the data width of the state
elements would be inferred from the type declaration given in
the source-level description.

Next, we examine ATS transitions that describe the behavior
of this two-stage pipelined processor. Instruction fetching in
the fetch stage can be described by the transition

. This transition should fetch an instruction from
the current program location in and enqueuing the instruc-
tion into . This transition should be enabled whenever is
not full. In ATS notation

Notice the specification of the transition is unconcerned
with what happens elsewhere in the pipeline (e.g., if an earlier

branch in the pipeline is about to be taken or if the pipeline is
about to encounter an exception).

The execution of the different instruction types in the second
pipeline stage can be similarly described as separate atomic
transitions. First, consider for executing
an instruction, where

is enabled only when the next pending instruction in
is an instruction. When applied, its actions carry out the
semantics of the instruction. Next, consider two separate
transitions and

that specify the two possible
executions of a branch-if-zero instruction

tests for conditions when the next pending instruc-
tion is a instruction and the branch condition is not met. The
resulting action of is to leave the pipeline state un-
modified other than to remove the executed instruction from

. On the other hand, when is satisfied, besides set-
ting to the new branch target, must also simulta-
neous clear the content of because the transition given
earlier actually follows a simple branch speculation by always
incrementing . Thus, if a branch is taken later, could hold
zero or more speculatively fetched wrong-path instructions.

In this two-stage pipeline description, in the first stage
and a transition in the second stage could become applicable at
the same time. Even though conceptually only one transition is
to take place in each step, an implementation of this processor
description must carry out both fetch and execute transitions in
the same clock cycle; otherwise, the implementation does not
behave like a pipeline. Nevertheless, the implementation must
also ensure that a concurrent execution of multiple transitions
produces the same result as a sequentialized execution of the
same transitions in some order. In particular, consider the con-
current execution of and . Both transitions up-
date and . In this case, the implementation has to guar-
antee that these transitions are applied in some sequential order.
However, it is interesting to note that the choice of ordering de-
termines how many bubbles are inserted after a taken branch,
but it does not affect the processor’s ability to correctly execute
a program.

1280 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2004

III. SYNTHESIZING A REFERENCE IMPLEMENTATION

This section introduces a basic synthesis procedure that maps
an operation-centric ATS into an state-centric RTL-level rep-
resentation. It is assumed that commercial RTL-synthesis tools
would complete the synthesis path to a final physical implemen-
tation. The synthesis procedure described in this section pro-
duces a straightforward implementation that executes only one
transition per clock cycle. In this synthesis, the elements of
are instantiated from a design library to constitute the state ele-
ments in the implementation. The transitions in are combined
to form the next-state logic for the state elements in a three step
procedure. The resulting reference implementation is function-
ally correct but contain many inefficiencies, most particularly
its lack of concurrency due to the single-transition-per-cycle re-
striction. This inefficiency is addressed in Sections IV and V by
two increasingly sophisticated optimizations that enables con-
current execution of conflict-free and sequentially composable
transitions.

A. Extraction of and

In this first step, all value expressions in the ATS are mapped
to combinational signals evaluated on the current values of the
state elements. In particular, this step creates a set of signals,

, that are the signals of transitions in
an -transition ATS. The logic mapping in this step assumes all
required combinational resources are available. Standard RTL
optimizations can be applied later to simplify the combinational
logic and to share redundant logic.

B. Arbitration Logic

In this step, we create an arbitrator to sequence the execution
of enabled transitions. The arbitrator circuit generates the set of
arbitrated enable signals based on .
The block diagram of a generic arbitrator is shown in Fig. 4.
Any valid arbitrator must, at least, ensure for any :

1) ;
2) .

For a single-transition-per-cycle reference implementation, the
arbitrator is further constrained to assert at most one signal in
each clock cycle, reflecting the selection of one applicable tran-
sition. A priority encoder is a valid arbitrator for the reference
implementation.

C. Next-State Logic Composition

Lastly, one conceptually begins by creating independent
versions of the next-state logic, each corresponding to one of the

transitions in the ATS. Next, the versions of next-state
logic are merged, state-element by state-element, using the
signals for arbitration at each state element. For example, a par-
ticular register may have transitions that affect it over time.

because some transitions may not affect the register.
The register takes on a new value if any of the relevant tran-
sitions is applicable in a clock cycle. Thus, the register’s latch
enable is the logical-OR of the signals from the relevant
transitions. The new value of the register is selected from the

Fig. 4. Monolithic arbitrator for anM -transition ATS.

Fig. 5. Circuits for combining two transitions’ actions on the same state
element.

next-state values via a multiplexer controlled by the signals.
Fig. 5 illustrates the merging circuit for a register that can be
acted on by two transitions.

This merging scheme assumes at most one transition’s action
is applied to a particular state element in a clock cycle. Further-
more, all the actions of a selected transition must be selected in
the same clock cycle at all affected state elements to ensure the
appearance of an atomic transition. The two assumptions above
are trivially met in a single-transitions-per-cycle implementa-
tion. The details of the merging circuit for all three ATS state
element types are given next as RTL equations.

For each , the set of transitions that update is
where is the action on

by . ’s data and latch enable inputs are

For each , the set of transitions that write is
. ’s write address , data , and

enable inputs are

The set of transitions that enqueue a new value into is

HOE AND ARVIND: OPERATION-CENTRIC HARDWARE DESCRIPTION AND SYNTHESIS 1281

The set of transitions that dequeue from is

Similarly, the set of transitions that clear the contents of is

This conceptual construction based on merging separate
versions of next-state logic would result in a large amount of du-
plicated logic and resources. In reality, our compiler performs
extensive common-subexpression elimination and constant
propagation transformations to simplify the synthesized RTL
netlist. Furthermore, in the multiple-transition-per-cycle imple-
mentations discussed later, our compiler also analyze whether
two transitions are mutually-exclusive to enable time-multi-
plexed reuse of resources such as arithmetic units and interface
ports to the state elements. The two primary inefficiencies of
this reference implementation are that: 1) only one transitions
is permitted per cycle and 2) all transitions must be arbitrated
through a centralized arbitration circuit. These two inefficien-
cies are addressed together by the optimizations in the next two
sections.

D. Correctness of the Reference Implementation

The reference implementation given above is not strictly
equivalent to the ATS. In the reference implementation, unless
the arbitrator employs true randomization, the implementation
is always deterministic. In other words, the implementation
can only embody one of the behaviors allowed by the ATS. An
implementation is said to implement an ATS correctly if: 1)
the implementation’s sequence of state transitions corresponds
to some execution of the ATS and 2) the implementation
maintains liveness. Thus, the implementation could enter a
livelock if the ATS depends on nondeterminism for forward
progress. The reference implementation can use a round-robin
priority encoder to ensure weak-fairness, that is, a transition is
guaranteed to be selected at least once if it remains applicable
for a bounded number of consecutive cycles.

IV. CONCURRENT EXECUTION OF CONFLICT-FREE

TRANSITIONS

Although the semantics of ATS defines an execution in
sequential and atomic steps, a hardware implementation can
execute multiple transitions concurrently in one clock cycle.
However, in a multiple-transitions-per-cycle implementation,
the composite state transition taken in each clock cycle must
correspond to some sequentialized execution of the constituent
ATS transitions. For example, a necessary condition for an im-
plementation in state to concurrently execute two applicable
transitions and is that . In
other words, after applying the actions of to , the resulting

intermediate state must still satisfy , or vice versa.
Otherwise, concurrent execution of and is not possible
since there is not a legal sequential execution of and in
two consecutive atomic steps.

There are two approaches to carrying out the effects of
and in the same clock cycle. The first approach adds to the
reference implementation in Section III the cascaded combi-
national logic of the two transitions, in essence introducing a
brand new transition that is the composition of and . How-
ever, arbitrary cascading is not always desirable since it leads
to an explosion in circuit size and a longer cycle time. In our
approach, and are executed in the same clock cycle only
if the correct final state can be reconstructed from an indepen-
dent and parallel evaluation of their combinational logic on the
same starting state. In other words, the resulting multitransition
implementation should only require minimal new hardware and
have similar (or even shorter) cycle time as compared to the ref-
erence implementation. This section first develops an optimiza-
tion based on the conflict-free relationship . Section V
next presents another optimization based on the sequential-com-
posability relationship that can expose additional hard-
ware concurrency.

A. Conflict-Free Transitions

is a symmetric relationship that imposes a stronger
than necessary requirement for executing two transitions con-
currently. However, the symmetry of permits a more
straightforward implementation than . Given and are
both applicable in state , implies that applying

first does not revoke the applicability of , and vice versa
(i.e., . further im-
plies that the two transitions can be applied in either order in
two successive steps to produce the same final state,

. In order to permit a straightfor-
ward implementation, further requires that an im-
plementation could produce ’ by applying the parallel com-
position of and to the same initial state . The par-
allel composition function takes two action lists and

and returns a new action list that is their pair-wise union;
is undefined if and performs conflicting

actions on any state element. The conflict-free relationship and
the parallel composition function are defined below formally.

Definition 1—Conflict-Free Relationship: Two transitions
and are said to be conflict-free if and

only if

where is the functional equivalent of .
Definition 2—Parallel Composition:

1282 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2004

where

case of

undefined

case of

undefined

case of

undefined

Below, Theorem 1 extends the composition of two
transitions to multiple pairwise transitions. Theorem 1
states that it is safe to execute in the same cycle, by parallel
composition, any number of applicable transitions that are all
pairwise . Each pair from the transitions selected for con-
current execution must be , because is not a tran-
sitive. The resulting composite state transition corresponds to
the sequential execution of the selected applicable transitions in
any order.

Theorem 1—Composition of Transitions: Given a
collection of transitions applicable in state , if all tran-
sitions are pairwise , then the following holds for any
ordering :

where is the functional equivalent of the parallel composi-
tions of , in any order. (A proof for Theorem 1
is given in [9].)

B. Static Determination of

The arbitrator-synthesis algorithm given later in this section
is compatible with a conservative test for , that is, if the
test fails to identify a pair of transitions as , the algorithm
generates a less optimal but still correct implementation. A con-
servative static determination of can be made by com-
paring the read-set and write-set of the transitions. The read-set
of a transition is the set of state elements in read by the ex-
pressions in either or . The write-set of a transition is the set
of state elements in that are acted on by . For this analysis,
the head and the tail of a FIFO are considered to be separate el-
ements. Using and that extracts the read-set

and write-set of a transition, a sufficient condition that ensures
is

In other words, conservatively, two transitions are if they
do not have data (read-after-write) or output (write-after-write)
dependence between them.

If two transitions and never become applicable in the
same state (i.e., , then they are said to
be mutually exclusive, . Two transitions that are

also satisfy the definition of . An exact test for
requires determining the satisfiability of the expression

. Fortunately, the expression is usually a
conjunction of relational constraints on the current values of the
state elements. A conservative test that scans two expressions
for contradicting constraints on any one state element works
well in practice.

C. Arbitration of Conflict-Free Transitions

By applying Theorem 1, instead of selecting a single transi-
tion per clock cycle, an arbitrator (like the one shown in Fig. 4)
can select a number of applicable transitions that are all pair-
wise . In other words, in each clock cycle, the signals
should satisfy the condition

where is the arbitrated enable signal for transition . Given
a set of applicable transitions in a clock cycle, many different
subsets of pairwise transitions could exist. Selecting the
optimum subset would require weighing the relative importance
of the transitions, which is impossible for the arbitrator synthesis
algorithm to discern without user feedback or annotation. An
objective selection metric is to simply maximize the number of
transitions executed in each clock cycle.

Below, we describe the construction of an efficient arbitrator
that selects multiple pairwise transitions per clock cycle.
In a partitioned arbitrator, transitions in are first partitioned
into as many disjoint arbitration groups, , as possible
such that

This partitioning ensures that a transition is with any
transition not in the same group and, hence, each arbitration
group can be arbitrated independently of other groups. Below,
we first describe the formation of groups and then the
arbitration within individual groups.

Step 1) -Group Partitioning: can be par-
titioned into -arbitration groups by finding the
connected components of an undirected conflict graph
whose nodes are transitions and whose edges
are . Each connected compo-
nent in the conflict graph is a -arbitration group.
For a given conflict graph, the partitioning into -ar-
bitration groups is unique. For example, the undirected
graph (a) in Fig. 6 depicts the relationships in
an ATS with six transitions. Graph (b) in Fig. 6 gives
the corresponding conflict graph. The conflict graph has

HOE AND ARVIND: OPERATION-CENTRIC HARDWARE DESCRIPTION AND SYNTHESIS 1283

Fig. 6. Analysis of conflict-free transitions: (a) Conflict-free graph and
(b) Corresponding conflict graph and its connected components.

three connected components, corresponding to the three
-arbitration groups.

Step 2) -Group Arbitrator: For a given
-arbitration group containing ,

can be generated locally within the
group from using a priority
encoder. However, additional concurrency within a

-arbitration group is possible.

D. Enumerated Group Arbitrator

For example, Arbitration Group 1 in Fig. 6 contains three
transitions , such that , but neither
nor is with . Although the three transitions cannot
be arbitrated independently of each other, and can be se-
lected together as long as is not selected in the same clock
cycle. In general, for a given state , each group arbitrator can in-
dependently select multiple pairwise- transitions within
its arbitration group.

For a -arbitration group with transitions
and can be computed locally by a combinational
function that is equivalent to a lookup table indexed by

. The binary data value at the
table entry with binary index can be determined by
finding a maximal clique in an undirected graph whose nodes

and edges are defined as follows:

is asserted

This is the conflict-free graph of the subset that corresponds
to the asserted positions in the binary index . For each

that is in the selected clique, assert . For example, Arbitra-
tion Group 1 from Fig. 6 can be arbitrated using the enumerated
lookup table in Fig. 7. The lookup table selects and when
they are applicable together. This lookup table also reflects an
arbitrary decision that should be selected instead of if
and are both applicable in the same cycle. A similar decision
is imposed between and . This freedom in -group
arbitrator generation highlights the fact that, whereas the par-
titioning of independent arbitration groups is unique,
the maximal asserted subset of ’s for a given combination of

Fig. 7. Enumerated arbitration lookup table for Arbitration Group 1 in Fig. 6.

is not unique. In general, the generation
of -group arbitrator can benefit from user input in se-
lecting the most “productive” subset (which may not be the max-
imal subset).

E. Performance Gain

When can be partitioned into arbitration groups, the in-
dividual partitioned arbitrators are smaller and faster than the
single monolithic encoder in the reference implementation from
Section III. The partitioned arbitrators also reduce wiring cost
and delay since and signals of unrelated transitions are not
brought together for arbitration.

The property of the parallel composition function ensures that
transitions are only if their actions do not conflict at
any state element. Hence, the state update logic from the ref-
erence implementation can be used unchanged in -arbi-
trated implementations. Consequently, combinational delay of
the next-state logic is not increased by the optimization.
All in all, a -arbitrated implementation should achieve
better performance than its corresponding reference implemen-
tation by allowing more transitions to execute in a clock cycle
without increasing the cycle time.

V. CONCURRENT EXECUTION OF SEQUENTIALLY

COMPOSABLE TRANSITIONS

As noted in Section IV-A, the relationship is a suf-
ficient but not necessary condition for concurrent execution
of multiple transitions in the same clock cycle. This section
presents a more exact requirement to extract additional concur-
rency from within a -arbitration group.

A. Sequentially Composable Transitions

Consider the following ATS example:

In this ATS, all transitions are always applicable. Furthermore,
and its functional equivalent are well-de-

fined for any choice of two transitions and . Nevertheless,
the arbitrator proposed in the previous section would not
permit and to execute in the same clock cycle because

1284 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2004

in general. A more careful re-ex-
amination should reveal that, for all , is always con-
sistent with at least one ordering of sequentially executing
and . Hence, the concurrent execution of any two transitions
above can be supported efficiently in an implementation. On the
other hand, the concurrent execution of all three transitions in a
parallel composition is not possible due to circular data depen-
dencies among the three transitions. These considerations are
captured by the sequential composability relationship .

is a relaxation of . In particular, is not sym-
metric. The intuition behind is that concurrent execution
of a set of transitions does not need to produce the same result
as all possible sequential execution of those transitions, just one
such sequence. Hence, given and that are applicable in
state , only requires the concurrent execution of
and on to correspond to , but not necessarily to

. Similarly, only implies
and does not require .

Concurrent execution of sequentially composable transitions
requires an asymmetric composition function to combine
the action lists from two transitions. Like , returns
a new action list by composing actions on the same element
from two action lists. The state-specific composition functions

, and are the same as , and
except in two cases where allows conflicting actions to
be sequentialized. First, is
since the effect of the first action is overwritten by the second in
a sequential application. Second, returns
since regardless of , applying leaves the FIFO emptied.

Below, the sequential composability relationship and the se-
quential composition function are defined formally.

Definition 3—Sequential Composability: Two transitions
and are said to be sequentially composable if
and only if

where is the functional equivalent of .
Definition 4—Sequential Composition:

where

case of

case of

undefined

case of

undefined

Based on the above definitions, a sufficient condition for
is

is defined

where and extract the read-set and write-set of
a transition as explained in Section IV-B. Notice, unlike in the
conservative condition for , permits

to be nonempty as long as is defined.
Like in the discussion of , the relationship for two

transitions can be extended to enable multiple transitions to be
composed. More specifically, Theorem 2 below extends sequen-
tial composition to multiple transitions that are all pair-wise

and whose transitive closure on is ordered. The or-
dering requirement is necessary to ensure the selected transi-
tions are not circularly dependent as described in the opening
paragraphs of this section.

Theorem 2—Composition of Transitions: Given a se-
quence of transitions, , that are all applicable in
state , if for all , then

where is the functional equivalent of the nested sequential
composition . (A proof
for Theorem 2 is given in [9].)

B. Arbitration of Transitions

By applying Theorem 2, the arbitrator of a -arbitration
group (from Step 2, Section IV-C) can select in each state the
set of applicable transitions such that there exists an ordering of
those transitions , where if .

Similar to the formation of the -arbitration group in
Section IV-C, the construction of a partitioned arbitrator
involves finding arbitration subgroups as the connected
components in the further relaxed (with fewer edges) conflict
graph of a -arbitration group. In the conflict graph for

analysis, the nodes are , and the edges are

HOE AND ARVIND: OPERATION-CENTRIC HARDWARE DESCRIPTION AND SYNTHESIS 1285

Fig. 8. Analysis of sequentially composable transitions. (a) Directed <
graph. (b) Corresponding acyclic directed < graph. (c) corresponding
conflict graph and its connected components.

where is

Two nodes are connected if their corresponding transitions are
related by neither nor . As an added complication,

considered in this analysis must be acyclic to satisfy the
SC-ordering requirement in Theorem 2 (to avoid the concur-
rent execution of circularly dependent transitions). Therefore,
the conflict graph must be based on a version of that has
been made acyclic by removing cycle-inducing edges. Given an
acyclic , the ordering assumed in Theorem 2 agrees with
any topological sort of the corresponding acyclic graph.
(We refer to this ordering as the SC-ordering below.)

Fig. 8 provides an example of analysis. The directed
graph (a) in Fig. 8 depicts the original sequential compos-
ability relationships in an -arbitration group with five
transitions. A directed edge from to implies .
Edges between , , and form a cycle., Graph (b) in
Fig. 8 shows the acyclic graph when the edge from
to is removed. Graph (b) yields the SC-ordering of , ,

, , and . (The order of and can be reversed also.)
For a given cyclic graph, multiple acyclic derivations are
possible depending which edge is removed from a cycle. Other
possibilities in this example would be to remove the edge from

to or from to .
Graph (c) in Fig. 8 gives the corresponding conflict graph.

The connected components in the conflict graph form the
-arbitration subgroups. Transitions in different -arbi-

tration subgroups are either conflict-free or sequentially-com-
posable, and each subgroup can be arbitrated independently.

’s for the transitions in a -arbitration subgroup can be
generated locally within the subgroup using a priority encoder.
For example, conflict graph (c) in Fig. 8 has two connected
components, corresponding to two -arbitration subgroups.
In the unary Arbitration Subgroup 2, without any ar-
bitration. The signals for transitions in Arbitration Subgroup
1 can be generated using a priority encoding of their corre-
sponding ’s. More transitions in Arbitration Subgroup 1 can
be selected concurrently using an enumerated combinational
lookup table logic similar to the one described in Section IV-D.

Notice, if the cycle in the original SC graph (a) had not been
broken, would be a third separate component in the conflict
graph; this could lead to a incorrect condition where , ,
and are enabled together.

C. Complications to the State-Update Logic

When transitions are allowed in the same clock cycle,
the register-update logic cannot assume that at most one transi-
tion acts on a register in each clock cycle. When multiple actions
are enabled for a register, the register update logic should ignore
all except for the latest action with respect to the SC-ordering
of a -arbitration group. (It can be shown that all transi-
tions that could update the same register in the same cycle are
in the same -arbitration group.) For each in , the set
of transitions that update is . The
register’s latch enable signal remains

However, a new data-input signal must be used with an
arbitrator to observe SC-ordering. The new signal is

where . The expression con-
tains ’s from the set of transitions

comes before

in the ordering

In essence, the register’s data input is selected through a
prioritized multiplexer that gives higher priority to transitions
later in the -ordering. Under the current definition of ,
the update logic for arrays and FIFOs can remain unchanged
from Section III.

VI. EVALUATION AND RESULTS

The synthesis procedures outlined in the previous sections
have been implemented in the term architectural complier
(TRAC). TRAC accepts TRSPEC descriptions and outputs
synthesizable RTL descriptions in the Verilog hardware de-
scription language. This section discusses the results from
applying TRSPEC and TRAC to the design and synthesis of a
five-stage pipelined implementation of the MIPS R2000 ISA
[10].

A. Synchronous Pipeline Synthesis

As in the processor from Section II-C, the MIPS processor
is described as a pipeline whose five stages are separated by
FIFOs. The exact depth of the FIFOs is not specified in the
description and, hence, TRAC is allowed to instantiate one-
deep FIFOs (basically registers) as pipeline buffers. Flow-con-
trol logic is added to ensure the single-register FIFOs are not
overflowed or underflowed by enqueue and dequeue actions. In

1286 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2004

Fig. 9. Synchronous pipeline with combinational multistage feedback flow
control.

a naive construction, the single-register FIFO is full if its register
holds valid data; the FIFO is empty if its register holds a bubble.
With only local flow control between neighboring stages, the
overall pipeline would contain a bubble in every other stage in
the steady state. For example, if pipeline buffer and
are occupied and buffer is empty, the operation in stage

would be enabled to advance at the clock edge, but the
operation in stage is held back because buffer appears
full during the same clock cycle. The operation in stage is not
enabled until the next clock cycle when buffer is empty.

In TRAC-synthesized implementations, to allow simulta-
neous enqueue and dequeue actions, a single-register FIFO is
considered empty both when it is actually empty or when it is
enabled for dequeuing at the next clock edge. Simultaneous
enqueue and dequeue actions are permitted as a sequential
composition where the dequeue action is considered to have
taken place before the enqueue action. In hardware terms, this
creates a combinational multistage feedback path for FIFO
flow control that propagates from the last stallable pipeline
stage to the first pipeline stage. The cascaded feedback scheme
shown in Fig. 9 allows stage to advance both when pipeline
buffer is actually empty and when buffer is
going to be dequeued at the coming clock edge. This scheme
allows the entire pipeline to advance synchronously on each
clock edge. A stall in an intermediate pipeline stage causes all
up-stream stages to stall at once. A caveat to this scheme is that
the multistage feedback path could become the critical path,
especially in a deeply pipelined design. In this case, one may
want to break the feedback path at select stages by inserting
two-deep FIFOs with local flow control. A cyclic feedback path
can also be broken by inserting a two-deep FIFO with local
flow control.

B. Synthesis Results

The synthesis results are presented for a TRSPEC de-
scription that implements the MIPS R2000 integer ISA with
the exception of multiple/divide, partial-word or nonaligned
load/stores, coprocessor interfaces, privileged instructions and
exception modes. Memory load instructions and branch/jump
instructions also deviate from the ISA by not obeying the
required delayed-execution semantics. (The complete TRSPEC
description of the five-stage pipelined processor model is given
in [9].)

The processor description is compiled by TRAC into a
synthesizable Verilog RTL description, which is subsequently

TABLE I
SUMMARY OF MIPS CORE SYNTHESIS RESULTS

compiled by the {Synopsys Design Compiler} to target both
Synopsys CBA and LSI Logic 10K Series technology libraries.
Table I summarizes the prelayout area and speed estimates
reported by Synopsys. The row labeled “TRSPEC” charac-
terizes the implementation synthesized from the TRSPEC
description. The row labeled “Hand-coded RTL” characterizes
the implementation synthesized from a hand-coded Verilog
description of the same five-stage pipelined microarchitecture.
The results indicate that the TRSPEC description produces
an implementation that is competitive in size and speed to
the implementation resulting from the hand-coded Verilog
description. This similarity should not be surprising because,
after all, both descriptions are describing the same microarchi-
tecture, albeit following very different design abstractions and
methodologies. The same conclusion has also been reached on
comparisons of other designs and when we targeted the designs
for implementation on FPGAs.

The TRSPEC and the hand-coded Verilog descriptions are
similar in length (790 versus 930 lines of source code), but the
TRSPEC description was developed in less than one day (eight
hours), whereas the hand-coded Verilog description required
nearly five days to complete. The TRSPEC description can be
translated in a literal fashion from an ISA manual. Whereas, the
hand-coded Verilog description faces a greater representation
gap between the ISA specification and RTL. The RTL designer
also needs to manually inject implementation-level information
that is not part of the ISA-level specification. In a TRSPEC de-
sign flow, the designer can rely on TRAC to correctly complete
the design with suitable implementation decisions.

C. Current Synthesis Limitations

The synchronous hardware synthesis procedure presented in
this paper has two important limitations. First, the procedure al-
ways maps the entire effect of an operation into a single clock
cycle. Second, the procedure always maximizes hardware con-
currency. In many hardware applications, there are restrictions
on the amount and the type of resources available. Under those
assumptions, it may not be optimal or even realistic to execute
an operation in one clock cycle. In future work, we are devel-
oping another synthesis approach, where the effect of an op-
eration can be executed over multiple clock cycles, while also
being overlapped with the execution of other multiple-cycle op-
erations. The key issue in this future work also hinges on how
to ensure the resulting implementation correctly maintains the
atomic and sequential execution semantics of the operation-cen-
tric hardware abstraction.

VII. RELATED WORK

In comparison to operation-centric abstractions, traditional
state-centric abstractions more closely reflect the true nature

HOE AND ARVIND: OPERATION-CENTRIC HARDWARE DESCRIPTION AND SYNTHESIS 1287

(e.g., explicit concurrency and synchronization) of the under-
lying hardware implementation. Hence, they are relatively sim-
pler to synthesize into hardware implementations, and they af-
ford designers greater control over the details of the synthe-
sized outcome. On the other hand, the additional details exposed
by state-centric abstractions also place a greater design burden
on the designers. In a synchronous state-centric framework, a
designer must explicitly manage the exact cycle-by-cycle in-
teractions between multiple concurrent state machines. Design
mistakes are common in coordinating interactions between two
state machines because one cannot directly couple related tran-
sitions in different state machines. It is also difficult to design
or modify one state machine in a system without considering
its, often implicit, interactions with the rest of the system. The
atomic and sequential execution semantics of the operation-cen-
tric abstraction removes these low-level design issues from the
designer; instead the abstraction allows these low-level deci-
sions to be offloaded to an optimizing compiler.

The operation-centric ATS formalism in this paper is similar
in semantics to guarded commands [7], synchronized transitions
with asynchronous combinators [13] and the UNITY language
[5]. ATS extends these earlier models with support for hardware
state primitives, such as arrays and FIFOs. In particular, the use
of FIFOs simplifies the description of pipelined designs (as ex-
plained in Section VI-A). ATS serves as an intermediate rep-
resentation for the compilation of source-level descriptions in
the TRSPEC language [9]. TRSPEC is an adaptation of TRS
[1] for describing a finite-state transition system. In addition to
TRSPEC, other language syntax can also be layered on top of
the basic ATS abstraction. For example, the Bluespec language
is an operation-centric hardware description language that has a
Haskell-like syntax [15]. In addition to a functional language
syntax, Bluespec also leverages sophisticated functional lan-
guage features in the declaration of state, operations and module
interfaces.

Staunstrup and Greenstreet describe in [17] the synthesis of
both synchronous and asynchronous (delay insensitive) circuits
from a synchronized-transitions program. In their synchronous
synthesis, the entire effect of a transition is mapped into a single
clock cycle, and all enabled transitions are allowed to execute
in the same clock cycle. To guarantee the atomic semantics of
synchronized transitions is not violated, they enforce the CREW
(concurrent-read-exclusive-write) requirement on a synthesiz-
able set of synchronized transitions. Under the CREW require-
ment, a pair of transitions must be mutually exclusive in their
predicate condition if they have data (read-after-write) or output
(write-after-write) dependence between them. If initially two
transitions violate CREW, one of their predicate conditions must
be augmented by the negation of the other so the two transitions
become mutually exclusive. In this way, the final synthesized
system exhibits a deterministic behavior that is acceptable ac-
cording to the original nondeterministic system. Dhaussy et al.
describe a similar approach in their synthesis of UCA, a lan-
guage derived from UNITY, where a program with conflicts is
transformed into a program without conflicts prior to synthesis
[6].

The Staunstrup and Greenstreet’s CREW relationship is sim-
ilar to our conflict-free relationship, but it is more restrictive

than both the conflict-free and the sequential composability re-
quirements given in Theorems 1 and 2. In particular, the se-
quential composability optimization enables significantly more
parallelism to be exploited in an implementation than CREW.
However, in the case when only the conflict-free optimization is
enabled in the TRAC compiler, TRAC’s conservative static test
for conflict-free relationships (discussed in Section IV-B) yields
essentially the same scheduled behavior as CREW. Neverthe-
less, our approach further differs from Staunstrup and Green-
street in how the statically determined conflict resolutions are
realized in hardware. Resolving conflicting transitions by stati-
cally transforming the predicate conditions is less efficient than
the partitioned arbitrator approach in this paper because aug-
menting predicate conditions can lead to a lengthy final pred-
icate expression if a transition conflicts with many transitions.
The complexity of the predicate expressions can directly impact
an implementation’s size and critical path delay.

There is also some tangential relationship between the ATS
formalism and synchronous languages [2], [3], exemplified by
Esterel [4], Lustre [8], and Signal [11]. In both models, state
is updated atomically at a discrete times step but the abstract
concept of time is different in the two formalisms. Synchronous
languages are based on a calculus of time and require explicit
expression of concurrency with deterministic behavior. On the
other hand, an operation-centric abstraction employs a sequen-
tial execution semantics with nondeterminism. Operation-cen-
tric hardware synthesis must automatically discover and exploit
the implicit parallelism that exist in a sequentially conceived
and interpreted description. Hence, as presented in Sections IV
and V, the key to synthesizing an efficient implementation from
an operation-centric description lies precisely in how to take ad-
vantage of the nondeterminism to select an appropriate subset of
enabled transitions for concurrent execution in each cycle. Fur-
thermore, synchronous languages have been used primarily for
describing the control part of a design and thus, it is difficult to
compare the two models using a processor-like example which
employs rich datapaths.

VIII. CONCLUSION

Ultimately, the goal of a high-level description is to provide a
design representation that is easy for a designer to comprehend
and reason about. Although a concise notation is helpful, the
utility of a high-level description framework has to come from
the elimination of some lower-level details. It is in this sense
that an operation-centric design framework can offer an advan-
tage over traditional RTL design frameworks. In RTL languages,
hardware concurrency must be expressed and managed explic-
itly. Whereas in an operation-centric language, parallelism and
concurrency are implicit at the source-level, where they are later
discovered and managed by an optimizing compiler.

This paper develops the theories and algorithms necessary
to synthesize an efficient synchronous hardware implementa-
tion from an operation-centric description. To facilitate analysis
and synthesis, this paper defines the ATS formalism, which is
an operation-centric intermediate representation when mapping
TRSPEC and other operation-centric source-level languages to

1288 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2004

hardware implementations. This paper explains how to imple-
ment an ATS as a synchronous finite-state machine. The crux
of the synthesis problem lies in finding a valid composition of
the ATS transitions in a coherent finite-state machine that car-
ries out as many ATS transitions concurrently as possible. This
paper first presents a straightforward reference implementation
and then offers two optimizations based on the parallelization of
conflict-free and sequentially-composable transitions. The syn-
thesis results from a pipelined processor design example show
that an operation-centric framework allows a significant reduc-
tion in design time and effort while achieving comparable im-
plementation quality as traditional register-transfer level design
flows.

REFERENCES

[1] F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge,
U.K.: Cambridge Univ. Press, 1998.

[2] A. Benveniste and G. Berry, “The synchronous approach to reactive and
real-time systems,” Proc. IEEE, vol. 79, pp. 1270–1282, Sept. 1991.

[3] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and
R. de Simone, “The synchronous languages twelve years later,” Proc.
IEEE, vol. 91, pp. 64–83, Jan. 2003.

[4] G. Berry, “The Foundations of Estevel,” in Proof, Language and Interac-
tion: Essays in Honor of Robin Milner. Cambridge, MA: MIT Press,
2000, pp. 425–454.

[5] K. M. Chandy and J. Misra, Parallel Program Design. Reading, MA:
Addison-Wesley, 1988.

[6] P. Dhaussy, J.-M. Filloque, and B. Pottier, “Global control synthesis for
an MIMD/FPGA machine,” in Proc. IEEE Workshop FPGAs Custom
Comput. Mach., 1994, pp. 72–81.

[7] E. W. Dijkstra, “Guarded commands, nondeterminacy, and formal
derivation of programs,” Commun. ACM, vol. 18, no. 8, pp. 453–487,
1975.

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” in Proc. IEEE, vol. 79,
Sept. 1991, pp. 1305–1320.

[9] J. C. Hoe, “Operation-Centric Hardware Description and Synthesis,”
Ph.D. thesis, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst.
Technol., Cambridge, June 2000.

[10] G. Kane, MIPS R2000 RISC Architecture. Englewood Cliffs, NJ: Pren-
tice-Hall, 1987.

[11] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire, “Program-
ming real-time applications with SIGNAL,” Proc. IEEE, vol. 79, pp.
1321–1336, Sept. 1991.

[12] T. W. S. Lee, C. J. Seger, and M. R. Greenstreet, “Automatic verifica-
tion of asynchronous circuits,” IEEE Design Test Comput., vol. 12, pp.
24–31, Spring 1995.

[13] A. P. Ravn and J. Staunstrup, “Synchronized Transitions,” Dept.
Comput. Sci., Univ. Aarhus, Aarhus, Denmark, Tech. Rep. AAR-219,
1987.

[14] V. M. Rodrigues and F. R. Wagner, “Synchronous transitions and their
temporal logic,” in Proc. Workshop Métodos Formais, 1998, pp. 84–89.

[15] A brief description of Bluespec, Sandburst Corporation. Available:
http://www.bluespec.org/description.html [Online]

[16] J. Staunstrup and M. R. Greenstreet, “From high-level descriptions to
VLSI circuits,” BIT, vol. 28, no. 3, pp. 620–638, 1988.

[17] , “Synchronized Transitions,” in Formal Methods for VLSI De-
sign. Amsterdam, The Netherlands: Elsevier, 1990, pp. 71–128.

James C. Hoe (S’91–M’00) received the B.S. degree
in electrical engineering and computer science from
the University of California, Berkeley, in 1992 and
the M.S. and Ph.D. degrees in electrical engineering
and computer science from the Massachusetts Insti-
tute of Technology, Cambridge, in 1994 and 2000,
respectively.

Since 2000, he has been an Assistant Professor
of Electrical and Computer Engineering at Carnegie
Mellon University, Pittsburgh, PA. His research
interest includes many aspects of computer architec-

ture and digital hardware design. His present focus is on developing high-level
hardware description and synthesis technologies to simplify hardware develop-
ment. He is also working on innovative processor microarchitectures to address
issues in security and reliability.

Arvind (SM’85–F’95) received the B.Tech. degree
in electrical engineering from the Indian Institute of
Technology, Kanpur, in 1969 and the M.S. and Ph.D.
degrees from the University of Minnesota, Twin
Cities, in 1972 and 1973, respectively.

He is the Johnson Professor of Computer Science
and Engineering at the Massachusetts Institute
of Technology, Cambridge, where he has taught
since 1979. He has contributed to the development
of dynamic dataflow architectures, and together
with Dr. R. S. Nikhil published the book Implicit

Parallel Programming in pH (San Francisco, CA: Morgan Kaufmann, 2001).
His current research interest is in high-level specification, modeling, and the
synthesis and verification of architectures and protocols.

	toc
	Operation-Centric Hardware Description and Synthesis
	James C. Hoe, Member, IEEE, and Arvind, Fellow, IEEE
	I. I NTRODUCTION
	II. O PERATION -C ENTRIC T RANSITION S YSTEMS
	A. ATS Overview
	B. ATS State Elements and Actions

	Fig.€1. ATS summary.
	Fig.€2. Synchronous state primitives.
	Fig. 3. Simple two-stage pipelined processor example with ${\cal
	C. Pipelined Processor Example
	III. S YNTHESIZING A R EFERENCE I MPLEMENTATION
	A. Extraction of π and δ
	B. Arbitration Logic
	C. Next-State Logic Composition

	Fig.€4. Monolithic arbitrator for an M -transition ATS.
	Fig.€5. Circuits for combining two transitions' actions on the s
	D. Correctness of the Reference Implementation
	IV. C ONCURRENT E XECUTION OF C ONFLICT -F REE T RANSITIONS
	A. Conflict-Free Transitions
	Definition 1 Conflict-Free Relationship: Two transitions T_{a}
	Definition 2 Parallel Composition: $$\displaylines{PC(\alpha_{a}
	Theorem 1 Composition of $<>_{\rm CF}$ Transitions: Given a coll

	B. Static Determination of $<>_{\rm CF}$
	C. Arbitration of Conflict-Free Transitions

	Fig.€6. Analysis of conflict-free transitions: (a) Conflict-free
	D. Enumerated Group Arbitrator

	Fig.€7. Enumerated arbitration lookup table for Arbitration Grou
	E. Performance Gain
	V. C ONCURRENT E XECUTION OF S EQUENTIALLY C OMPOSABLE T RANSITI
	A. Sequentially Composable Transitions
	Definition 3 Sequential Composability: Two transitions T_{a} a
	Definition 4 Sequential Composition: $$\displaylines{{\rm SC}(\a
	Theorem 2 Composition of $<_{\rm SC}$ Transitions: Given a seque

	B. Arbitration of $<_{\rm SC}$ Transitions

	Fig.€8. Analysis of sequentially composable transitions. (a) Dir
	C. Complications to the State-Update Logic
	VI. E VALUATION AND R ESULTS
	A. Synchronous Pipeline Synthesis

	Fig.€9. Synchronous pipeline with combinational multistage feedb
	B. Synthesis Results

	TABLE€I S UMMARY OF MIPS C ORE S YNTHESIS R ESULTS
	C. Current Synthesis Limitations
	VII. R ELATED W ORK
	VIII. C ONCLUSION
	F. Baader and T. Nipkow, Term Rewriting and All That . Cambridge
	A. Benveniste and G. Berry, The synchronous approach to reactive
	A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic
	G. Berry, The Foundations of Estevel, in Proof, Language and Int
	K. M. Chandy and J. Misra, Parallel Program Design . Reading, MA
	P. Dhaussy, J.-M. Filloque, and B. Pottier, Global control synth
	E. W. Dijkstra, Guarded commands, nondeterminacy, and formal der
	N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, The synchrono
	J. C. Hoe, Operation-Centric Hardware Description and Synthesis,
	G. Kane, MIPS R2000 RISC Architecture . Englewood Cliffs, NJ: Pr
	P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire, Progra
	T. W. S. Lee, C. J. Seger, and M. R. Greenstreet, Automatic veri
	A. P. Ravn and J. Staunstrup, Synchronized Transitions, Dept. Co
	V. M. Rodrigues and F. R. Wagner, Synchronous transitions and th
	A brief description of Bluespec, Sandburst Corporation . Availab
	J. Staunstrup and M. R. Greenstreet, From high-level description

