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The following are a few notes about a class of Petri Nets that are very
similar to Free Cheoice NWets and strictly include all Well-Formed Free Choice

Nets (WFFC Wets). Refer to MAC-TR-94 for terminclogy and notation details.

A. Recapitulation

In a Free Choice net, no arc goes from a shared place to a shared

transition:

(:) does not ocecur in a Free Choice Net.

Figure 1

In Formal netation : p.t= (p'={t} or 't ={ph).

This guarantees that when a token arrives in p, all transitions in p’
are equally enabled and in conflict, thus a free choice can be made as
to which t € p’ to fire next. It should be noted that a sufficient

condition for this is:
EFG ¥p,q places: p' Nq' £ @ =p = g°

We call this the [Extended Free Choice condition. Fred Commoner calls

this simply Free Choice .



Example:

ig Extended Free Choice (EFC)

\; is not EFC

I is not EFC

Figure 2

All theovrems and statements about FC nets in MAC-TR-94 apply to EFC, except
that Allocations have to be redefined; see the remark on p. 3.
One reagon is chat the property of FC nets used in proofs is actually

the EFC-property, Another reason is the simple equivalence!

o q op

Figure 3



The distinction is usually not important, except maybe in the context of

Fred Furtek's thesisz.

(::) An FC pnet is said to be Well-Formed (WF) iff it has a live-and-safe
(L5) marking.

=
From the Live-and-Safeness Theorem of MAC-TR-9%4 follows :

An FC net bas anLS marking iff it is covered by Strongly Connected

State Machines (S5C3M's) and every minimal deadlock is an SCSM.

Sk

TgM- >\ A State-Machine Allocation over an FC net (I,X) is a function
bl
B:v -+ in such that:

allocation

(Ft € ) B(r) € "¢

Remark: If we use the EFC definition, the allocakion must sakisfy the fal-

lowing consistency requirement:
SEpi BNt £ D = B(ry) = BlL,)

This is always possible since 'tl = 't2, which follows from the reverse-dual

of the EFC-condition:

tlﬁ'tzgéga = "B, o= TE

*
It can easily be shown that this reverse-dual condition is equivalent to

Pr n pé O = Py = Py-

SM- Given an SM-allocation B: ¢ 4 [I, we can reduce an FC net as follows” :
reduction —

"MAC Technical Report TR %94, p. 63
s
ibid., p. 71
Tivid., p. 67

Yibid., p. 71
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Step 1: Delete all unallgcated places. (I - B{x)).

Step 2: Delete all transitions that have all cukput places

already deleted.

Step 3: Delete all places that have at least one output

transition already deleted.

Repeat Steps 2 and 3 until neither is applicable anymore.

What is left over is an SM-reduced met. A piven net usually has several
distinct SM-reduced nets. In general, a reduced net may be empty (the algorithm
has deleted all places and all transitions), it may he a collection of one or
more SCSM's, or it may be something else.*

oa
e

The Well-Formedness Theorem  says, among cther things:

An PC net fs WF iff every SM-reduction is a collection of one or

more SCSM's,

For the sake of completeness, it may be mentioned that we also define
Marked-Graph allocations and reductions, in a reverse-dual way. See MAC TR-94

for details.

ta
Ei

ibid. p. 73
ok
ibid. p. 81



B. State-Machine-Allocatable Nets

In this section we consider what happens if we apply the SM-reduction
algorithm to an arbitrary Petri Net. We define an SM~allocation over a Petri Net

{ll, ©) as before as a function:

B: ¥ =+ 1]
such thac:

(e €T) B(t) € "t

We do not add the condition of page 3 to make it compatible with EFC, because

if a net is not EFC, vet contalns two transitions t1 and €, such that 'tl = 't2,
there would be no allocation whose range includes any place in 't2 - 'tl. Thus,

@ certain portion of the net would be missing in every reduced net, and we shall
see later that this is undesirable; see Section I on p. lé.

Now we define:

Def: 1 A Petri Net ias SMA iff every SM-reduction is a collection of

| ong or more SCSM's.,

Thus, an FC net has an LS marking iff it is SMA.

We shall now show that this theorem is not restricted to FC nets, but that
every SMA Petri Net has an 1.8 marking., We shall also see that most results about
Net decompositions in Chapter 5 of MAC TR-9% apply to Petri Nets in gereral, and
all apply (some vacuously) to SMA neté.

First, we define the released form of a Petri Net {11, ©) where

H=[P) ---,P}and2={t,---.t]-
1 m 1 n

By a shared place we mean a place with several onkput transitions.

By a shared transition we mean a transition with several input places.



Def: An are from a shared place Py to a shared transitien tj bacomes

released if we modify the met in the following way:

becomes

Figure &4

We add a place, labeled 71,., and a transition, labeled 8,.,, between p, and
ij ! ij? i

tj and adjust the » relation:

before: Py &y
after: Py ¢+ 8,., B,. «1,,, T.. s L,
_— i 1] 1] Lj 1] ]
new [1 = old 77 IJ {nij}
new ¥ = old ¥ 11 {8..]

We say released because there is no longer any constraint as to which way a2 token
in p, will go.

We could of course '"release' an arc from an unshared place or to an unshared
transition, but no constraint is removed, and it is easy to see that the firing
sequences would not be changed, except for the occasional appearance of a 8 label
in the seguence. (If we erased the 8's the set of firing sequences would be the

same; more aboukt this later, p.11.)

Def: A Petri Net 1is sald te be in released form 1ff every arc from a shared place

to & shared transitiocn has been released, and the marking is unchanged in

the uriginal places and zero in the new places.



Exemple 1 o i : : . .

/

Original

- Figure 5

Released Form

Figure 6



It is clear that:

The released form of a Petri Net is Free Choice, by construction,

It may be remarked that in hoth examples, the original net is a live, safe,
non-FC net, But in example ! the released form is also live and-safe, whereas in

example 2, the released form is not live, and actually has no live marking.

Theorem 1: a) If B is an SM-allocation over a Petri Net Q = (I, ¥ yielding an
SM-reduced net QB’ there exists a unique SM-allocation B' over the released
net Q' ={0 UN', BUT'S such that the SM-reduced net Qé, contains the sami%p—
labeled places and the same t-labeled transitions as QB’ and {s homeomorphic to
b) Moreover, every SM-alleocation of Q' corresponds in khis way to a

unique SM-allocarion of @,

Notation: [ = {p, ...}, T = {tj oo

]

{eij -

1 [}
T {nij <.} and

Proof: a) Define B' as follows:
- ' = ' = ; . :
B(tj) =P, & B (tj) vij & B (Sij) Py (if Py tj is released)

B'{t.)=B{(t. if p, ' t, not released)
CJ) (J) ( Py 4

Now, B' is clearly an SM-allocation, since Uy £ 'tj and {pi} = .gij
by construction. Let us follow the reduction algorithm,

B deletes: = B' deletes Condition:
p; in step 1 p, in step 1 Py o tj
1 # B(tj)
{unreleased)

P, in step 1 nij in step 1 Py 'eij 'ﬁij -tj

i in step 2 P, # B(tj)

Py in step 3 (released)
tj in step 2 tj in step 2 (tj same in § and in Q')

it

Hhomenmorphic = same graph up to vertices of order 2: The nij and eij'



B deletes: = B' deletes Condition:

.1 tep 3 i .
p; in step p; in step 3 Py tj’ where tj deleted

{unreleased)

p; in step 3 rij in step 3 Pi . eij - rij . tj
Bij in step 2 where tj deleted
P. in step 3 (released)

Thus we see that B deletes P, iff B' deletes Py (together with any
rij and gij in fact); therefore the reduced nets agree on all Pis and
if the reduced released net containg Py 1t alsc containg the associated

ﬂij's and Gii's. Also, the reduced nets agree onm all tj.

b) Q and Q* have the same number of SM-allocatioms: The produect of
the in-degree of all tramsitions, The only difference in terms of transi-

tiong are ome-input O-transitions which de not eontribute to the product.

QED

Corollary l: The relased form of an SMA-net is & WEFC net.

In fact, the quasi-identity of the SM-reductions of a Petri Net and its
released form permit us to extend several vesults of MAC TR-94, which we list
without further proef: (in'parentheses, Page reference to MAC TR-94)

- The reverse-dual of an SMA net is SMA..

= Every SM-reduced net is a closed subnet defined by a non-decreasing trap.

(73)
- Every MG-reduced net ig a conflict-free open Subnet.* (77)
- The SM-reductions and MG-reductions of an SMA-net cover the net (80);

every MG-reduetion is a collection of Strongly Connected Marked Graphs.

“These two theorems do not even depend on the concept of released arcs. Also for
reasons of conflicting terminology with later literature, we do not use '"consistent!
in the way it was defined on page 56 of MAC TR-94. Thus, we now say "closed subnet"

‘instead of "closed consistent subnet.,™
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C. Behavior of Petri Nets, firing sequence agreement

- Notation: Civen a Petri Net (T, T}, initial marking MD' A firing sequence

¢ can be viewed as a string of transition labels, which we write as:

b
¢ € % . Of course, in general, mot every string is a firing sequence,

If T < I, we may consider the string ¢' obtained from a given string ¢ by

deleting all labels not from T in the string as: ¢g' =g N T.

Example:: abcbdac N {a, b) = abba

Te say that transition t is fired by firing sequence ¢, i.e. that label &

appears in string o, we write: t € g. We have:

t€e » o {t] #n (A is the empty string)

Def: Twa firing sequences g and g' aszrce over a subset of transitions T <« T iff
Ler g q agree

ol T=ag'"NT. We write this as:

g=g' mod T 4 oM T=g'NT
We extend the notion of agreement to sets of sequences S, §':

A
S=58"md T & Foc €8)(do' €8"Yo=¢g' med T

& (o' €8 (ic € Y o =¢' mod T

= More notation abour released forms:

Let Q = (I, £} be a Petri Net and let Q' = ([ U T', © U £') be its released
form. Let the elements of I be denoted P, ,1= 1 hi

' " ﬂij,for scme pairs i, j
" " gLl x|
" o " Gij,for some pairs. i, j

where the Ty and eij are defined as on page 6.

Let tj = {pil, piz’ - pik} in the original net Q. Then we denote the set of
the pre-transitions of tj in the released net Q' by:
6, =(8. ., 9 .., 8,
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_* —
By 8., we denote 3 string which contains each element of Sj exactly once, for

example :

The order does not matter; and ﬁj can of course be the empty string, if in Q no
input place to tj is shared, or if tj is single-input.
imi o= veo L. in Q. Then we define:
Similarly, let P, [tjl, Jk] in 0

o= 1 . - i ',
7 _nijz, - nljk] in Q

Figure 7

Theorem 2: Let Q be a Petri Net and Q' its released form (see notation above).
Let ¢ De a firing sequence of Q and g’ be a firing sequence of Q' such that
o and g' agree on the transitions of Q. Then the markings of Q and Q'

reached by ¢ and ¢' correspond to each other in the fcllowing way :
c=o' Nz (i) (MD[U))(Pi) = (M6[6'>)({P11 U ﬁI)

The number of tokens in a place of the original net is equal to the number

of tokens on that place in the released net plus its associated m-places.

At the initial marking, we have:
7i - ™ = T _
YVi: Lb(Pi) MD([pi} §] ﬁi)
- Let M and M' be markings of Q and Q' respectively such that:

iz M(py = M'({p;} U T

Let ¢" € '" be a sequence of B-firings only.
Clearly:

iz Q' o™ (p, ) URD = M (p,) UF,)
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- Ceonsider a t-firing: Then we have:
: b = ' -
Vi M[E ) () Me ) Upg 3 U
Thus, by induction we can say that:

g=ag'Ng= Hi(MD[o>)(Pi) = (M6[0'>)({Pi} U, )

QED

Theorem 3: TLet Q = {1, ¥ be a Petri Net and Q' ={NMUTN', SUT') be its released
form. Then the firing sequences of the original net agree over v with those
of the released form:

§ = {o|firing sequence of '

8§ =8'" mod T
§'={c'|firing sequence of Q')

Proof: a. If g is a firing sequence of Q, let ¢' be the firing sequence obtained
+
by replacing each occurrence of t1 by the string thj. Then o' can

easily be seen, by induction, to be a firing sequence of Q':

Basis: At the original markings HO for Q and the corresponding Md for Q°',

we have: (by definition)

Ma/TE = M, {My restricted to original places)

Ha(ﬂ') =0

Inductive Step: Now assume a marking M for ( aud a corresponding M' in Q'

which agrees with M on I and is blank on ™'
MYT =M & M@GI')=0
If tj is firable at M in Q, then the set 65 is firahle at M' in Q', i.e.

éj is firable at M'. Then, at M'[aj}, tj is firable in Q', which leads to
4o
M'[8.t. 5

(6,5
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Figure 8

+ -
Also, M'[B T = ' Ty =
80 [ jtj)/I M[tj} and (M [ejtj>)(1 y=20

Thus, every firing sequence 5 of Q agrees with some firing sequence ¢' of Q'.

b. HNow, assume there e¢xists a firing sequence g' of Q' such that no firing
sequence of Q agrees with it on 7, and let ' be the shortest such
sequence ;

g' € 8' such that: o' = gitj
and Ui agrees with some oy £ 5, but tj iz not firable in Q at marking

Mo[gl}. We shall prove that this cannct be so.

From Theorem 2, we.can now assert that, since gy =oy N

(vi) (MO[UI>)(Pi) = (Héici))({Pi} U ﬁi)
Now, since tj is not firable at Hb{gl) in Q:

Ak op € 'tj &  (MylzydiGp ) =0

Therefore:

Myloy»)Up } Um) =0
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But this contradicts the assumption that tj is firable in Q' at Mﬁ[ci), since
N = 1 t —_
this implies (Mo[gl))énkj) > 0, and ﬂkj £ T
This completes the proof of Theorem 3.

QED

Lemma 1: TIf the released form Q' of a Petri Net Q is live, then the original net

is also live.

Proof: Suppose the original net is not live: There exists a firing sequence g
and a transitiom t, such that, after ¢, t) cannot be fired again. Let 5'
be g@e firing sequence of Q' that is obtained from o by replacing each 1:j
by ejtj (see p. 12 ). ‘Then the marking MéE;') of Q' 18 such that it can be the
initial marking of the released form of the net Q with new initial marking
Mogg}. Thus the set of firing sequences following ¢ and ¢' in respectively
Q" still agree over ¥. Since Q' is live, t, can be fired by some firing
sequence, and there is a corresponding firing sequence in ¢ which must also
fire tk’ contrary Lo our assumption.

QED

Actually, the Ilemma can be made more specific: If a given t-transition

is live in Q', then it is live in Q.

Theorem 4: If the released form Q' of a Petri Net @ has a live marking {not
necessarily corresponding to an initial markivg of Q according to the

definition), then the original net hazs a live marking.

Proof: In view of Lemma 1, it 15 enough to show that there must exist a live
marking M' of Q' which is a suitable initial marking, i.e. such that
M'(1') = 0. MNow, since Q' is Free Choice, the existence of a live narking
implies that every deadleock contains a trap, and every marking which marks
a trap in each deadlock is live. Now, if P is in some trap T, then we must
have m; & T. If this were not so, i.e. if we had P; ¢ T and Uy £ T, then
we would have eij ET - 'T (Gij is a single-output transition)., But this

contradicts our assumption that T is a trap: T = "T. Therefore, to mark
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all traps it is sufficient to mark P-places: There exigts a live marking

M' which marks Q', the released form of Q under the initial marking M'/1].

QED

Theorem 5: A Petri Net is safe (bounded) if and only if its released form is
safe (bounded).

Proof: This is a direet consequence of Theorems 2 and 3.

Theorem f: LEvery SMA net has a live and safe marking:

3MA = LS

I

Proof: The released form of an SMA net is a WFFC net (Corellary 1, p, 9) and thus
has an L$ marking. For the same reason as in the proof of Thecorem 4 (p, 14),
there is such an LS marking that only marks p-places., Then it follows from

Theorems 4 and 5 that the original net has an LS marlcing.

QED

Theorem 7: A live bounded Petri Net Q has a live released form Q' if and only if
it is SMA.

e

Proof: a. If the released form is live but not WF it must be unbounded, But
then, by Theorem 5, the original net could not be bounded.
b. Assume the net is SMA but the released form Q' is not live. Then there
exists a deadleck that contains z blank trap. Since Q' is WFFC that blank
Lrap is in fact a State Machine and therefore cver blank. WNow, because of
Theorems 1 and 2 there is a corresponding blank SM in the original net Q,
which contradicts the assumption that Q is live (any Petri Net is killed

by a blanlk 5M, assuming no isolated places).
QED

i)

“Lemma 5 in MAC TR-94, p. 59.
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D. Clique Reduction and EFC-Nets; Extended SMA Nets.

A direct consequence of our decision to use the umnmodified definition of

SM-allocation (see p. 5) is that the following EFC net is not SMA, and its

released form is not live:

EFC net, not FC

Corresponding released Form

Figure 9

On the other hand, if we use the modified definition of an §M-allacation 3:

Ly 0TEy F B = BUE) = B(ry) € Ty N Ty

we would have to call the following net "'SMA":
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Only possible "SM-reducticn';

"SMA"—‘K‘IEt, yEt unbounded it iz a SCSM.
Figure 10
There are 2 SM-allocations, according to the unmodified definition: Bl(tz) =P
Ba(Ey) = by
(Bl and B2 are equal at the other tramsitions.) But 'tl [l 't2 = {pl}, and thus

B2 is not compatible. Yet it is B2 which reveals the bad SM-reduction. Thus, the
modified SM-allecation and the resulting definition of "SMA" are not satisfactory,
On page 2 we suggested a "simple equivalence" which would transform the

EFC net of Fig. 9 into the following FC net, whicihi is SMA:

————

I

f

AN
S . 2 S— 1t
L
N

Figure 11
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We have replaced the arcs of the complete subgraph from P = {pl, pz} to
T = [tz, t3} by an additiocnal A-transition 81 and an additional blank place‘_‘rr1
and the arcsp - el for each p € P, the ares T, -t for each t € T, and the arc
By * Ty 1t Ls easy to see that, at least in the case of EFC nets, this trans-
formation preserves liveness in addition to the equivalence properties of a trans-
formation such as going to the released form. We shall see that this is also true
if the result is SMA, but this in general it is not true (see Fig, 15). We there-
fore introduce the concept of [Extended $MA to cover cases like Fig. 9 and still
‘exclude cases like Fig. 10. :

The net situation that leads to trouble is the existence of a complete bipartite
subgraph from a subset of places, such as P, to a subset of transitions, such as T.
4 complete subgraph is also cailed a cligue; therefore we shall call the transforma-

tion that yields the net in Fig. 12 a clique-reduction, and the net in Fig. 12 is

the clique-reduced form of the net in Fig. 11.

Def: A clique in a Petri Net (], %) is a submet (P, T) which is complete from D

te T. This can be expressed as follows:

P, Teo @ (WpeERNEETI p vt

Def: A clique ¢P, T) is said to be maximal if it is not properly contained in

any other clique.
Def: A clique (?, T) is trivial if |P| < 1 or |r| < 1.
A clique can be reduced in a way suggested by the cxample on page 2, Figure 3.
Def: Given & Petri Net Q = (L, ¥) and a clique (P, T}, we obtain a clique-reduced

form Q' (with respect to (P, T)) of Q in the following way: Q' =/7', ™'Y

- add a A-transition 5 : ' =% U {g)

- add a blank place ¢ : Q' =31 U [rm)

- add the arec ¢-n

- bundle all arcs from P to T into 8 and out of m, L.e:
There are two bijections £: T = f' - ()

g: T a T - {8) such that:
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FLET, ¥Yp €0 £+ p = g(t) « £(p) 7

TPel, e €T - T pot = E(p) . g(t) i )
Ypem-p, Yegvs Pet = £(p) o g(r) [ arcs in the reduced Net
VP € P, Ye e T: f(p) + 8 & 1 s g(t)

E
G e 7 J

Thus, after a clique /P, T) has been reduced, no arc goes directly from

any place in P to any transition in T:

before: P &S °'T & T cp
after: PR 'T=¢ & TNEP =¢

Example: The following Petri Net containg several nom-trivial cligques, some
of which contain each other (i.e. not maximal), and some of which overlap
(L.e. have at least one arc in common, and therefore both a place and 4 transi-

ticn in commonj Tt is helpful to list all non-trivial cliques:

¢riginal net, Q0

Gy = ({pl.rsz], e, 1

02 = {[PEQPB}, {t1,t2J>

€y = ({Pl,pz,P3], {tl,tzj} (maximal clique)
I <£P3:P¢], {t2’t3}> (maximal clique)

Figure 12

Now, there are four possible clique-reductions cf QO' where reduction with

respect to Ci vields Qi:
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Figure 13a Figure 13hn

Figure 13¢ Figure 13d

Nctiece that Q3 is clique-free: It may happen that the reduction of
one clique destroys other, previously overlapping, eliques, Qy, which is

not fyurther redueible, is called a completely clique-reduced form of Q

Q2 and Q[ 2ach 2till contain one non- tr1v1al clique. Further reductlon of

Q2 and Q4 vields Q2.1 and Q&.l’ respectively (Figures l4a and 14b),
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Figure 14b

Figure 14¢
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Ql still contains two cligues, but reduction of either one will eliminate the
other as well. Notice that one of them 15 actually C4, which has not beep af-
fected by the first reduction. If we reduce 04 now, we notice that we getr the
game net as Q,

4N
clique in Qs viz. {{wl,pB], {tl,tz}}, has been introduced by the reduction

1 (up to the labeling of the additional vertices), The other

of Cl’ because Cl was not maximal. 1Its reduction yields Ql.l’

We conclude that a given Petri Net usually has many clique-reduced forms,
and often also has distinct completely clique-reduced forms. Even if there
are no overlapping maximal cliques, the reduction of non-maximal cliques eoften
regsults in distinct completely clique-reduced forms.

TZ we only reduce maximal cliques, any completely clique-reduced form so

obtained will be called a maximally ¢ligue-reduced form (MCRF)}. It is then

clear that if there are no overlapping maximal cliques in the origiral net, then
there will be a unique maximally clique-reduced Fform.

Now, we shall ghow that clique reduction has many properties in common
with releasing a Petri Net. Indeed, it is easy to see that releasing an arc is

the same as reducing 2 non-maximal trivial clique, namely the arc in question:

fj f\ph

"elique™: ({p}, [t}
Figure 15

Thus, if we permit "reduction" of trivial cliques, among the infinity
of clique-reduced forms {complete clique-reduction does not make sense anymore,
since there will always be trivial cliques to reduce) we will find the released
form of the net and of itsg clique-reduced forms. We will, therefore, restrict
ourselves to the reduction of non-trivial cliques,

We can take advantage of this similarity: when proving facts about
cliqua-reduced nets, we just mention the corresponding proofs about releaged

forms. These proofs apply with very little modification to the reduction of a



~23.

single clique. But then, a transitivity argument is used to extend the

proof to all clique-reduced forms of a given net. ‘That is because firing
agreement is an equivalence relation over = given set of trangiticons, in this
case the transitions of the original net, which are repeated in every reduced

form,

Lemma 2: Let Q be a Petri Net, and erthe result of reducing the clique
(P, T}, with additional vertices ¢ and 11, as mentioned in the definition
on p. 18,
(a) Let g be a firing sequence in Q and o' a Firing sequence in Q1
such that - and g' agree on the transitions of Q. Then the fol-
lowing property holds for the markings M and M' reached by o and

' in O and Ql’ respectively:

YpEP: M(p) = M'(p) + M'(n)
¥p £D2: M(p) = M (p)

(b} The firing sequences of @ and Ql agree over the transitions of (),

(c} TIf Ql ig live then § is live
(d) TIf Ql has a Iive marking then Q has a live marking.
(e) Q1 is safe (bounded) iff ( is safe (bounded).

Proof: (a) The only difference between o and o' can be a firing of 8. Then
notice, as in the proof of Theorem 2, that a firing of § does not
change M'(p) + M'(r), where p ¢ T, that firings into P affect M(p)
and M'(p) identically, and that firings out of P (in Q) affect
M(p) exactly as the correspending firing in Q' affects M' (1), without
altering M'(p). AIl other places are clearly affected the same way
by g and o',

(b,c,e):  The proofs of Theorem 3 (page 12), Lemma 1 {page 14), and
Theorem 5 {(page 15) apply, where instances of ej are replaced by
a firing of &, and where part {a) of this Lerma is vsed in lien of
Theorem 2.

(dy Lf Ql has a live marking, all we must prove that it has a live
marking which could correspond to a marking in the original net,
i.e. a marking which leaves the additional place 1 blank. Then

(¢) applies. But that is clearly the case, since - cannot be in a
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selfloop, by consrruction. If a given live marking class never
empties place 7, it means n contains a trapped Loken, and if we
temove it, we get maybe a different marking class, but still a
live one. (In a sense, if a token not in a self-loop is never
removed by the firing sequences of a net, its removal by an
cutsider will not bhe "noticed" by the net. Only tokens in a

self-loop can he "used" for firing without being '"removed'.)

Theorem 8: (a) The firing sequences of a Petri Yet Q and any of its clique-
reduced forms Q' agree aver the transitions of Q.
(&) If any clique-reduced form is live then the original net is
live.
(e) If any clique-reduced form has a live marking, then the original
net has a live marking.
{d} The safeness (houndedness} of any clique-redoced form implies

the safeness (boundedness) of the original net, and conversely,

Proof: It follows from Lemma 2 by the transitivity argument, In particular,
though some cligue-reduced Forms may have firing sequences that agree
over g larger set of transitions, all agree over the original set of

trangitions.

The converse uf Theorem 8h and ¢ is nmot true in general. A counterexamnle

1s shown in Figure 16.

original - cligue-reduced
LS, not ESMA Figure 14

not live, ot SMA
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Before we introduce ESMA nets, we should familiarize us a little more with
the various features the completely clique-reduced forms of a Petri Net can
have,

The example in Figure 17 is EFC. We see that come complete reductions
are FG and others are not. Only the maximally clique-reduced Form of an EFC
net is guaranteed to be FC. Actually, close inspection of Fig. 17(f) shows

that it could nat even be SMA,

Now, we may define Extended State-Machine Allocatable nets (ESMA).

Def: A Petri Net is said to he ESMA iff at least one of its clique-reduced

forms Is SMA,

(We could have concentrated on completely clique-reduced forms, since if
& net contains a clique, it cannot be SMA, which should be clear From Fig. 9,
page 16.)

We shall now show that, in some sense, clique-reduction does not affect
the decomposition of a Petri Net into its SM-components or its MG-components.

We only have to consider one clique-reduction, of say the clique (P, T,
adding a transition & and a place 7. Transitivity will prove the rest. Now,
any SM-component in the original net which intersects the clique will centain
exactly one place in P and every transition in T. 1In the reduced net, there
is a corresponding SM-component which differs from the previocus one only by the
additional transition-place pair @, r. The appearance of the difference is

shown below, for the appropriate portion of an SM-component.

£ 3
becomes '/ .

LS — -
T
original clique-reduced

Figure 18
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In the case of MG-components, the correspondence is as shown below:

Q O
4 .),\_;"
! kY s
j ‘\ .

becomes

original clique-reduced

Figure 19

In both cases, it is clear that the original compoment is regenerated if we
cantract the arc containing the extra tramsition (in the case of SM-
components) or place (in the case of MG-components)., It is important ko nore
that, whether we merge two transirtions (in the MG) or two places (in the sM),
the eliminated place = had = single input (from 8) and the eliminated transition
8 had a single output (to v). This Buarantees that the contraction does not
change the connectivity of the component, and that ic does not alter its pos-
sible firing sequences (up to transition g8, of course), It is in this sense
that clique reduction does not affect the decomposition into SCSM's or SCMG's.
We may also observe that, for both MG-components and SM-components, the firing
sequences of the original component agree over the original transitions with the
firing sequences of the corresponding component of the reduced net. Also nore
that the same is true in the case of components of the released form of a net;
refer to the remark on page 22.

The preceding argument can be expressed more clearly by defining the ap-

eration of arc comtraction, which is the inverse of clique-reduction and releasing.

Def: (a) An arc to-p0 is said to be contractable iff

t, = (p,) and p, = {t_ ] and {(p,} 7 e, =8

(this also implies P M CE D" = §)

(b) The contraction of a contractable arc £ *P, Lo a Petri Wet @ = ¢I,I)
yilelds a Petri Net Q' = ¢(T',T') which corresponds to @ in the fol-
loewing way: There are bijections f: (I - [po}) + I

g: (T - {to}) + T such that

.

pc 't & ce¢ P, = £(p) * 3(E)) & p.ct = £f(p) . g{t)
Eep=g(t) « f(p)
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In other words, the pair t,»P, is replaced by the clique {'to,pé}.‘

Figure 20

1t follows directly from the definitions of clique reductions and

contractions that:

Corollary: Q' is obtained from Q by reducing a clique (P,T} iff Q is obtained

from Q' by contracting the arc €1 Introduced while reducing the clique,

Now we can express the relationship between SM-components in the clique-

reduced net and the corresponding componen ts in the original net as follows:

Theorem 9: Let § be a Petri Net, and let Q' be obtained from § by clique-
reduction and/or releasing.
(a} The reduction of any given clique or the releasing of any given are
Introduces a contractable arc e, LT
(b} Q can be cbtained from Q' by contracting all ares 8 ey
{c) The SCSM (MG)-components of Q are exactly obtained by contracting

all ares ei +m; in the corresponding SCSM (MG)~components of ',

Procf: (a) and (b} follow directly from the definitions.

(e} expresses what was discussed more informally on pages 26 and 27.

Since arc-coutraction is the reverse of clique-reduction or releasing, we

may also mention the {ollowing theorem as a consequence of Theorems 3, 4, 5 and 8:
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Theorem LlO: Arc contraction preserves liveness, safeness, boundedness,

and firing sequences agreement over the remaining transitions.

This now permits us to state our main Theorem:

Theorem 11: (a) A Petri Net § is LSMA iff it can be obtained from a WFFC

Net Q' by repeated-contractions,

(b) The firing sequences of Q and its SCSM(MC)-components agree

(over Q) with these of ' and its corresponding SCSM(MG)-
s

components, respectively.

(¢} Every ESMA Net has an LS marking, at which it is covered by

one-~token SCSM's,

Proof: It follows from Theorems 9 and 10 and the Tive-and-Safeness Theorem
for FC Nets.

Remarks about elique-reduction:

(a) Thecrem lla offers a very simple alternate definition for KSMA Nets:
Those nets that can be obtained from a WEFFD Net by arc contractions.
But this dJoes not offer a test to decide whether a given Net is ESMA.

On the other hand, the definition given on page 25 carries with it such

a test: Find all clique-reduced Forms. But a much wmore convenient defi-

nition would be one which indicates which clique-reductions should be

performed te get an 5MA Net. A naturzl possibility would be to consider

only Maximally Clique-Reduced bForms. Unfortunately, a given Petri Nek may

have several distinct Maximally Clique-Reduced Forms (MCRF) if there are

overlapping maximal cliques? However, we conjecture the following:

Conjecture: (a) Every MCRF of an ESMA Net is SMA.
{(b) Every ESMA Net has a unique MCRF.

If rhis conjecture is true, it is sufficient to generate any MCRF of a Net

and check whether it is SMA to decide whether the Net is ESMA.

(b) Figure 16 on page 24 shows that the "simple equivalence" mentioned on
page 2 can be quite misleading, since it may not preserve liveness.
However, if, for every clique {P,T} we reduce, we introduce a 'return"

A-transiftion @ in addition to 8 and m, such that é' = P and s é, we

* The reader may verify that the Net in Figure 20b has two distinct MCRF's,
one of which is the one in Figure 20a.-



=-30-

get what we call a A-strengly connected MG-component which preserves

liveness. This kind of reduction we call strong ¢lique-reduction, -

Everything that holds for ordinary clique reduction alse holds for

strong clique-reduction, except for the following modifications:

As an example,

Strong Clique-Reduction preserves liveness, i.e. if Q' is a

SCRF (Strongly-Clique-Reduced Form) of Q, then Q live = Q' live.
There are additional SCSM-components, namely the A-strongly com-
nected MG's of the form (P, (g,8}).

Arc contraction may introduce multiple self-loops of
é-transitions, of the form {P,é} where 8' = '§ = P; these can,
of course, be eliminated without any change in marking class or
firing sequences {(disregarding B).

Strong Clique-Reduction introduces nun-promptoess, i.e.

unboundedly long A-firing sequences may oceur between firings

of original transitions,

Figure Z1 shows an MSMA net, and Figure 22 shows its Maximally

Strongly Cligque-Reduced Form,

Figure 21
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3
@ tj
7 A
B ={p=p:p] P =EP,P}
! 1 2 3 2 & ? {The two non-trivial
T = [tA’ ts} T, = (t,, tss tg) maximal cliques)

Figure 22



32—

E. Conclusion: Why ESMA Nets?

The prime motivation was to study Free-Choice like behavior in nets. If one

interprets "Free Choice behavior' as meaning that at every place output, a token can
choose which way to go without any consideration of the marking of other places, then
non-FQ SMA nets certainly gqualify. The difference between an FC net and an SMA net
is that, in the former, the token can fire a transition immediately aftrer having made
a choice, whereas in the latter, the token can fire such a tramsition eventually.
In either case, every choice is always consistent with an LS marking. This is not
so in non-SMA nets: it is possible ko hang up if some token stubbornly insists on
golug 1eft, though going right would be possible and indeed correspond to & firing
sequence in an LS marking class.

In EFC nets, the tokens cannot alwavs decide independently (EFC & —FC = -—SMA),
but they '"decide umanimously' in groups corresponding to maximal cliques. The group
decisions are independent, however. Then, LSMA nets correspond to EFC nets as SMA

nets correspond to FC nets. The clique reduction is just the Petri Wet way to

express the unanimous decision of a clique.

This clese resemblance of ESMA mets to FC nets permits the extension of most

of the results already established for FC nets.
As an example, we shall prove that the firing sequences of an LS ESMA net

agree with those of every component one-token 3CSM.

Lemma 4: In an LS FC net Q@ = (I, £), let Q' = (', ©') be a component one-token
scaM. (' =1; p' £¥). Then the firing sequences of Q and Q' apree over 3,

"Live-and-Safeness Theorem of TFC nets; see MAC TR-94, p. 52,
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Proof: {a) Let g be a firing sequence cf Q and g’ =g 1 5' a matching sequence of Q'.
Then the effects of ¢ and ¢' on the marking of Q' are the same, i.e.
MOB:)/H' = Hé[g'}, where Ma = beﬂ'. This is because Q' is a closed subnet
of Q: If g fires t and t ¢ ©', then the firing of t does not change the
marking of Q7 (in Q) because ("t U t') N T' = @. On the other hand, 1f
t € T, then it is firable in Q only if it is firable in Q', and the effect

orn Q' alone is the same as on Q' within Q.

(b) Suppose there exists a2 firing sequence of Q which does not agree with
some firing sequence of Q'., Then there is a shortest such sequence Ult,
where: ot firing sequence of Q

tex’

c'l =o0; NT' is a firing sequence of Q'. Since t is firable at Mo[cl} in
Q, we have: (Mo[cl})('t) =1
But then,{since Mofgl}fn' = Mﬁ[g{}, we have:

i

! MloD Cenah = 1.
Thus, t would be firable in G, and cit would agree with clt, contrary to our
assumptiozn,

{c) Suppuse there exists = tiring sequence of Q' which does not dgree
with any firing sequence of Q. 'There must be a shortest such sequence,

Git, where:

git is a firing sequence of Q'

Yo firing sequence of Q: 5 = ci mod T = t not firable at Mo[g}.

Let oy be such a sequence: ci = mn o' & t not firable at MD[GI>'
But, by assumption, t is firable in Q' (removed from Q) at Mé[gi}. Therefore,

Mé[ci} CeNT") > 1 (actually, it is equal to 1 since Q' is a one-token

SCSM). XNow, because of part (a) of this proof, we must alsc have:
}fg[cl}('t Taty =1

Since t ig not firable at that marking, there must he another, blank place
in "t. But now, since Q 1s FC, the marked place 't A7 ~' has no other ocutput
than t, and the unique token of Q' is trapped: no transition in v'! can fire
without t firing first., Thus every firing sequence of Q with initial
marking Mb[gl} agrees wich Q', but cannot fire t. This contradicts our

assumption of liveness. See Figure 23.
QED
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i oune-token SCSM i ;
Figure 23

Nete that the condition that Q' be 2 one-tcken SCSM is eritical. The FC net
(actually an MG) in Fig. 24 containg a 2-token SCSM (simple c¢ircuit) whose possible

firing sequences include acbbza... but the firing sequences of the full MG are

atrictly abeabe ...

s
T N

P 5
/" A 'as -
P s "
\ -
i
o

(E\ " \ i';[
S

Figure 24

Also note that the situation is very different for SCMG-components. Firstk,
it is clear that, in an LSFC net, every firing sequence of a component 5CMG is
a firing sequence of the FC net. On the other hand, the following example
(Figure 25} shows an LSFC net (actually an SCSM) and a firing sequence which
agrees with neither component SCMG (simple circuit). But it is true that one can
view 'g firing sequence of an LSFC net as containing successive cycles of differ-
ent SCMG's, some of them concurrencly ("shuffled" sequence), and possibly several
cycles of one for ome cycle of another. The example treated in detail in Chapter &
of MAC TR-94 provides a good example; the reader may wish to analyze in these terms
the firing sequence "ad jmick Ilmhiaclhbf ek £mgh " starting at a

marking that puts one token on A and onme token on H. '

*
Refer to the net on page 93 in MAC TR-%.
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—
- ——-—-—i\ & .
L] ! . .
P PR Component SCMG's: Ty = {a,b]
.- f’ _. . -
7 / . Ly = {a,c}
e ---Ll-—‘o - C
Firing sequence agreeing with neither:
o =hacaba ... o N Ei = baaba;
e no good, for example
Figure 25
Theorem 12: TIn an LS ESMA net Q = (I, =), let Q' = (II', =) be a component ome-

token SCSM. (' <1, ©' = ). Then the firing sequences of Q and Q'

agree over T'.

Proef: From Theorem 11 it foliows that the WFFC Net Ql from which Q is aob-
tained by contraction has the same firing sequences up ro A-transitions
as Q, and has the same S5CSM components, up to additional contractable places
and A-transitions. And since, in the companent SCSM's, the A-transitions
always come with ane of their associated original transiticns (see
Fig. 26}, Lemma 4 applies and carries over to the original net g.
QED

What has been said about SCMG components in LSFC nets carries over similarly,

(from clique-reduction) associated with £, or t,, depending
on the firings

A (from releasing) associated with t,

Figure 26
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At ome point, it was thought that ESMA nets would be precisely thase nets for which

the LS firing sequences agree with those of their compeonent SCSM's. That this is

not so is shown by the net in Fig, 27.

.fjr
S N
C S
. e -Sﬁ—r--- [
; o L S ot .
\ .\
L ﬁk/”“m;
, N
'
‘\\Mv/
Figure 27

Thie net is not ESMA, not SMA, but ik is LS
and is the union of two 1-token 8csM's

Il

Qi (fA: Cr D]s {ar b: C, d}>

1

Q) = (3, 0}, fa, c, d}

Every firing sequence agrees with Qi and Qé.

A similar situation arises in the nen-maximally
clique-reduced form of an EFC Net in Fig, 17f.

This suggests that a larger class of Nets satis-
fying Theorem 12 is all live Petri Kets which ean

be contracted to KSMA Nets. But all symmetric

Petri Nets also satisfy Theorem 12. (A Net is called
symmetric if For every transition t there is a re-

verse transition t such that &° ="t and °t =t"),

Another class of nets for which many of the WFFC results applyh are Simple Netg

where each minimal deadlock is a SC5M. But an SMA net is not necessarily Simple,

and Figure 28 shows a Simple Net covered by SCSM's (and each minimal deadlock is a

SC5M) which is not SMa.

It is LS, but the firing sequences of the SC0SM component

are constrained by the other component to a strict alternation,

*F. G. Commoner, Deadlocks in Petri Nets. Report CA-/7206-2311, Applied Data Research,

Inc., Wakefield, Mass.

June 1972,
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Figure 28

This concludes our study of State Machine Allocation and of the concepts of

released form and cligue reduction for bounded nets. Some questions:

= Are the results about agreeing firing sequences (Theorems 2, 3, 8) useful in

general?

= Can anything of this be applied to unbounded nets? (See the limitation due
to Theorem 7.)

Figure 29 shows a drastic example for Theorem 7, where the released form of a

non-SMA net is Iive.

Original

I o 1

"g ) ‘@) . Released Form
SR R \'Mﬂ:* e
; LY h

el

i?_l' N

Both are live and unbounded, and their firing sequences agree.

Figure 29
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