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A Computer Arehitecture for Highly Parallel Signal Processing

by

Jack B, Dennis and David P, Misunaggs

Abstract: A computer of unusual architecture ig described that achieves
highly parallel operation through use of a date-flow Program repregentation.
The machine 1ig especially suited for signsl Processing computations such as
waveform generation, modulation, and filtering, in which a group of opera-
tions must be performed once for each sample of rhe signals being processed,
The difficulties of processor switching and memory / procesgsor interconnection
arising in @ttempts to adapt Von Neuman type computers for parallel operastion

throygh tranamission of information packets, and delays in packet trans-
nission de not compromise effective utilization of the hardware. The de-
gign concept is eéspecially suited to implementation using asynchrOn;us “Logic
and large-scale integrated circuits. Application of the concepts to gen-
"eralized data-flow program languages {s under study,

Introduction
.-"'-‘——h

Highly parallel computers such as the Illiae TV and the CDC Star achieve
their Processing speed by imposing constraints on the structure of the data
being processed. Both of these machines are organized to perform very well
for data represented ag vectors. To realize its potential, computation

of atreaming operations Oon very long vectors. 1In both machines the Programmer
is forced to use unusual and intricatre data representations if highly parallel
execution is to be achieved. Thus thesge machines are developmentsg contrary to



what is generally seen as one of the most Important issues in contemporary
computer practice -- the difficulty of developing correct programa. Even
gsuch an important notion as the use of subroutines is inadequately sup-
ported in these machines.

Other approaches to parallel processing in practical computer systems
have not proved to be succesaful for highly parallel program execution:

The classical multiprocessor computer system ie limited in ezpability by the
growth in complexity of the memory-proceassor switch as system size increases.
Also, the problem of compiling user programs inte concurrently executable
parts of sufficient size that processor awitching coat is acceptable is very
difficult in the absence of unnatural constrainis.on the user language.

Large processors like the CDC 6600 and the IBM 360/91 achieve parallel in-
struction execution by discovering absence of data dependency in fnstructions
of a sequential program. The degree of parallelism achievable in this way has
proved to be small.

We have been studying concepts of computer organization that can yield
highly parallel program execution but with no sacrifice in the generzlity and
ease of programming in the language supported, The ultimate goal of thla work
1is a computer architecture able to achieve highly parallel execution aof pro-
grams expressed in a user language such as CLU [Lll] which embodiea linguistic
featuras désigned to support the development of well structured programa. An
outline of the concepts expected to be employed in such a computer has been
given in [3). A central idén is the use of a machine language that permits
a gimple mechanism for identifying all instructions available for execution.

We have found rhat a program representation based on the concept of data
flow is well suited for highly parallel program executfon. In a data-flow
repregentation, an instruction is enabled (that is, made avallable for exe-~
cution) just when each required operand has been supplied by execution of
predecessgor Inatructions. Completion of instruction execution produces a
result which is forwarded to each specified auccesaor instruetion f£or use
as an operand. Data-flow representatfons for programs have been described by
Karp and Miller [8], Rodriguez [16], Adams [1], Dennis and Fosseen [7],

Bahrs [2], Kosinski [9, 10], and Dennis [6].
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In the present paper, we describe a machine capable of achieving
highly parallel program execution for a special class of data-flow pro-
grams that correspond to the model of Karp and Miller [8]., These data-
flow programs are well suited to representing signal Processing computsg-
tions such as waveform generation, modulation, and filrering, in which a
group of operations ie to be performed once for each sample (in time) of
the signalg being processed.

OQur machine avoids the problems of processor switching and processor/
mewory interconnection present in attempts to adapt convention Von Neuman
type machines for parallel computation. Tn our design, processors in the
usual gense do not exist. Sections of the machine communicate by the trang-
miggion of fixed size information packets, and the machine Ls organized so
that the sections cnn'tolerate delays in packet tranamissgion without com-
promising effective utilization of thae hardware. In future work we expect
to further develop these ideas and investigate the feagibility of their ap-
plication to the design of highly parallel computerg using a generalized data-
flow language such ag described by Dennis [6], Rosingki [9, 10] and Bhrs [2].

Genaral Deacription *

To illustrate the bagic <¢oncepts of operation of the proposed processor,
consider the data-flow program shown in Figure 1, This program repregents
the computation required for a second-order recurgive digital filtrer

y(t) = A x(t) + B y(t-1) + C y(t~2)

where x(t) and ¥(t) denocte input and output: samples for time t. In this
diagram, operators 2, 3 and 4 are unary opergtors that maltiply by the fixed
parameters A, B and C; operators 5 and 6 are binary operators that perform
addition; and operator 7 ig an identity operator that transmits itg input
values unchenged. Each small solid dot is a 1ink that receives results from
an cperator and distributes them ko other operators for usae ag operands.
Input operator } represents a port through which an external stream of values
that represent the Input signal x(t) is presented to the program. Similarly,
Output operator 8 représents an output port at which ﬁhe sequence of values
representing y(t) ia deliverad during program execution,



I. A Data Flow Program.



The large solid dots {tokens) show the presence of values at certain
input arcs of operators and define the initial configuration for Program
e&xecution, An operator with tokens on each of irg input arcs and no token
on its output arec is enabled, and may fire by removing the tokens from its
input arcs, computing a reguls using the values associated with the tokens,
and assoclating the reault with a token placed on the output arc of the op-
erator, A link is enabled when a token 18 present on its input are and no

token is present on any of its output arca. Tt fires by placing tokens on
each of 1ts output arcs and removing the token from its input arc., The new
tokens distribute copies of the value associated with the input token over
each output arc of the link,

The processor has seven major sections, organized as ahown in Figure 2:

Memory Section
Arbitration Network
Functional Unics
Distribution Network
Controller

Command Network
Control Network

In addition, the block labeled- "Hoat" represents a source of operating com-
mands to the machine and could be either a manual conscle or a separate com-
puter.

The design is conceived ag uging asynchronous communication of informa-
tion packets between sections of the machine. Each connection between sec-

packet flow,

The information units transmitted through the Arbitration Network from
the Memory Section to the Functional Units are instruction packets: each
instruction packet specifies one unit of wark for the Functional Unit to
which it is directed, The information units sent through the Digtribution
Network from Functiopal Units to the Memory Section are result packets; each

Memory Section.
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The Memory Section of the Processar holds a representation of the
pragran o be executed and holds computed valyes awvalting uge. The Memory
is a collection of Cells; one Cell must be eassociated with each operator
of the pragram. Each Cell (Figure 3) contains three Registers -- one
Register to hold an instruction which encodes the type of operator and its
connections to other operators of the program, and two Registers that re-
ceive operand values for use in the next execution of the instruetion, Each
Register may be ser to behave as a constant Or as a variable. 1Ifset to aet

43 a variable, a register exXpects Lo receive a result packet containing an

a Register retains the value delivered to it when the program was loaded into
the Memory. The instruction Register of a Cell is normally set to act as a
constant. When all three Regizters of a Cell are full, the Cell 1s gaid to

required and & field that indicates which speclalized capabllicy of the
Functional Unit is to be used. Each destination fleld contains the address
of a Memory Register which ig to receive one copy of each result generated by
execution of the instruction, The initial contents of Memory Cells for the
digital filter example is showm in Figure 5. Empty parentheses indicate an
operand register waiting to receive a value,

In Figure S cell 2 ig enabled and presents the instruction packet

mult, 13, —_
x ()
A

to the Arbitration Network. Some Functional Unit will compute

Z = Ay x(0)

(]

and send the regult packet



Memory Cell
Register
Instruction __..‘

Register
Result Ingtruction
Packet > Operand | o f .Pocket

Register
Sesult — = operana 2 =

Figure 3, Operotion of a Memory Cell.

[ e

QOperation Code

Destination  Destingtion

I 2
L T A ﬁf—_-__\

) S—
E Specialized Function

Functional Unit

Figure 4. Instruction Format.



Ot

02

03
04
05

06
07

o8

——

Channel |

Cell 2

muit 13

x (0)

Cali 3

mult 16

Cell §

12 | odd

I3

()

14

()

Call 6

18 | add

16

()

17

€}

Cell 7

I8 |ident

10 [ 07

19 y

(-1}

20

Cell 8

21 [output

22 Chan

nel 2

23

()

Figure 5. Initialization of Memory Cells for
the Digital Filter Computation,




-10-

through the Distribution Network, and operand Register 13 in cell § will
receive the valus 2.

As illustrated in Figure 6, each Functional Unit receives from the
Arbitration Network all instruction packets directed to it by their opera-
tion codes, and in general, delivers two result packets to the Distribution
Network. To realize maximum throughput, each Functional Unit is constructed
as three pipelines; one pipeline performs the computation of the result
value 2z =::c>y where x and ¥y are the operands from the instruction packet.
The second and third pipelines carry the destination addresses dl and 42 so
these may be associated with the regult z when it emerges from the computa-
tional pipeline.

Since the data-flow form of & program exposea many possibilities for
concurrent executfon of instructions, we can expect that many Cells in the
Memory Section of the processor will be enabled at once. As the Functional
Units have high potential throughput, we must show how the Arbitratfon and
Distribution Networks can be organized £o handle many packets concurrently so
all sectiona of the processor are effectively utilized. The Arbitr%tion Net-
work is designed so many instruction packets may flow into it concurranhly

from Cells of the Memory Section and merge into four streams of packets --
one for each Functional Unit. The network is built of the four types of units
ghown in Figure 7.

The Arbitration Imit passes packets arriving at input ports A and B,
one-at-a-time to output port C using a round-robin discipline to reaolve any
ambiguity about which packet should be sent next. The Switch Unit assigne
packets arriving at port A to ports B or C according to gome property of the
packet. In the Arbitration Network, Switch Units separate inatruction packecs
into four categorieg, one for each Functional Unit, by teating the operation
codes of the instructions they contain.

Figure 8 shows how Arbitration Units and Switch Unlta might be arranged
into an Arbitration Network. This network contains a unique path for in-
struction packets from each Memory Cell to each Functional Unit.

S§ince the Arbitration Network has many input ports and only four output
ports, the rate of packet flow will be much greater at the output ports.

Thus a serial representation of packets is appropriate at the input ports to
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minimire the number of connections Lo the Memory Section, but a more
parallel representation ig required at the output ports so a high
throughput may be achieved, Evidently, serial-to-parallel conversion is
required within the Arbitration Network, and Conversion Unita (Figure 7¢)
must be included. 1In addition, a packet emerging from a Conversion Unit
mst be prevented from engaging a subsequent Arbitration Unit until the
serial packet has been completaly absorbed by the Conversion Unit. Thus
Buffer Units are needed at the output of each converter. Figure 9 shows
an improved Arbitration Ne twork including Conversion Inits and Buffer Umitg.
The Distribution Network is similarly organiszed. As shown in Figure 10,
many Switch Units route result packets to the Memory Registers specified by
their destination addressas, A feyw Arbitration Units are required so result
Packets from each Functional Unit can have access through the Distribution
Network to each Reglater of the Memory Section.

Deteiled Specification of Machine Units

asynchronous module types. Space does not permit presenting detailed de-
signs for all units of the machine, so0 we will 1imit discussion to the most
interesting part, the Cells of the Memory Section,

A system ig speed independent if the correctness of its operation ig
unaffected by the pregence of delay. Two kinds of delay are considered:
delay in interconnecting wites! and interpal delays in the components that
are interconnected, An interconnection of components is called a type 1
speed independent 8ystem if arbitrary delays on the interconnecting wires
do not affect correctnees of system operation, A system is type 2 apeed
independent if itg correct operation iz not affected by arbitrary delays
inserted at the Output terminals of system components,

From an'engineering viewpoint, it fa attractive to construct systems
a4s type 1 interconnections af components, for timing considerations may be
ignored in designing the physical placement of the components. Henca we
have chosen a small set of basic module types sufficient to describe the
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In the use of bagic modules to form unitg and gsections of the Procesgor,
2 specific commmnication discipline known as Ieset signalling [14] is uged.

A 0-to-1 transition on a wire represents & meaningful event; we 8ay that che
wire has sent a signal from the module that drives the wire to the module to
which the wire ig connected. Before the wire can transmit g subsequent Big-
nal, a l-to-0 transition must occur; this transition ig called a reset of
the wira. During the interval between 8 signal event and the following re-
set event, the_wire is zaid to be gctive,

Each section of the processor is a collection of interconnected unics,
which in turn are collections of interconnected basic modulea. Each set of
wires that connect ome unit to another is called a ligk, and consists of one
Or more groups of wires. Within each group of wires a strice signalling digei-
pline is obgerved: The wires of a group are divided into ensble wires and
acknowledge wires. In the quiescent condition of the Processor, all wires are
reset. During Operation, the signal and reset events that occur on the wires

-
L]

of a group follow a Tepeated cycle of four ateps:

1. Signalg are sent over at least one enable wire.

2. Signals are raturned over at least ope acknowledge wire,
3. The enable wires used in step (1) are Treset.

4. Tha acknowledge wires used in step (2) are reset,

For the description of the Memory Cell, five basic module types are
uged; these are 1llustrated in Figures 11 through 14. The OR module and the
NOT module (Figure 11) are the conventional OR gate and inverter. It is con-
venient to draw the OR module as a line on which any lipes representing fnpur
wires terminate in arrowheads. Only one input wire of an OR module may be
active at a time. The OR module permits signals from several sources to go
to a common destination, The NOT moduleg change reset events into signal
events, and viege versa, and are the starting points for a1l action in the

The C-module in Figure 12 is an important gwitching element in speed
independent aydtems, The output of 8 C-module becomes 1 when both inpues
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(e} OR module (b} NOT module
A

+ C A () 8
B

Figure [l. The OR and NOT modules.
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(a) Module
. T

Figure 12. The C- madule,
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become 1, and the output will return to 0 only when both inpute have
become Q. The realization of the C-module shown in Figure 12 ig not &
speed independent conmection of switching elements. Yet _itik. behsvior wil]
be correct if delays within the circuit gre properly controlled,

The uae of the C-module as 3 synchronizetion element gnd a8 a buffer

(Figure 13a). Thig module waits Fopr signals to arrive on enable wire E

and one of input wires Al and B1, It then sands a aignal on the output wire
(A2 or B2) corresponding to the active input wire. The output wire resgatsg
only when both the enable wire and the active input wire have reset. For
Speed independent operation, it ig necessary to use the data switch module
only where signals cannot arrive on both input wires Al and Bl without an
intervening reset,

The circuit for the data switch given in Pigure 9 g a type 2 {ntercon-
nection of awitching elements because of the connection from the enable input
to the two C-modules, Delay in the ensble connection to the unused C-module
may keep the C-module enable input from resetting in time ro prevent a falge
output when an input signal arrives ar that C-module, Nevertheleas® 1§
there is negligible delay in the wires, the circuit will exhibit the corract
behavior.

A basic kind of Memory element for speed independent systems ig the bit
Pipeline module showm in Figure 14, Signale on wires El or EO cause & 1 or
0 to be entered into the pipeline, after which an acknowledge signal 1s re-
turned on wire 4. Up to n bits may be entered into a pipeline module
BP{2n] having 2n Seciioms. When the pipeline is not expty, and an enable
signal is senr on wire E, the pipeline emits its longest haldcbit by a signal
on Rl or RO.

The pipeline module is constructed of 3 cascade of data switch modules
with feedback connections using OR and NOT modules arranged so that bita ad-
vance through the dats switcheg until all alternate 8tages hold information.
As in cthe case of a dats switch module, inputs E1 and EQ must not be simul-

tanecusly active,
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Figure |13. The Dato Switch Module,
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{a) Module

(b) Circuit

Figure 14. The Bijt Pipeline Module.
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Description of a Memory Cell

The Memory Section of the processor consisgts of a mumber of Memory
Regiaters organized into Cells, each Cell having the structure shown in
Figure 15, Each Cell contains thres Register Units haviéngocensecitive
addresses, and each Register Unit consists of a Regismter that holds an m-
bit inatruction or operand and a Control. In Figure 15, the seta of wires
making up links between sections of the processor are indicated by curly
brackets, and the division of each link into groups is indicated by square
brackets, .

Result packets are transferred from the Digtribution Network to each
Register Unit through input ports TA, IB, and IC. An instruction or operand
is transferred into a Register by m data transactiona on the wires of group
l. The Dietribution Network informs the Contrel that all data transactions
required to deliver the packet are complete by means of a transaction on
wires 5 and AS of group 2.

Execution of a program is controlled from the Control Network through
input port ID. One cycle of instruction execution is completed for .each
trangsaction on wires R and AR. A signal on wire R requesta each Contrel to

-gend an enable signal on wire E when 1ita associated Reglster is filled with

an instruction or operand. The conjunction of an enable signal from each
Control is detected by C-modules, and a signal {s sent over the enable wire
E of output port OA to inform the Arbitration Network that this Cell has an
instruction packet ready for transmission. When it is able, the Arbitration
Network receives the packet by m transactions on the enshle and acknowledge
wires of group 1. When packeb transmission is complete, an acknowledge sig-
nal is returned to each Control over wire AE of group 2. When each Register
Unit completes its action for one cycle of inatruction execution, an acknow-
ledge sipgnal is sent on wire AR of the Control, The conjunction of all three
acknowledge signals producea an 'acknowledge signal to the Control Network on
wire AR indicating that thia Memory Cell has completed the requeated lnstruc-
tion exscution cycle,

Before execution of a program, each Register Unit iz set to one of
four modes. The Register Unit may be set to idle, in which case it ias not
utilized in the computation, or it may be set to hold a constant (con) or a
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variable {(var). 1In the case of a conatant, the Register {s loaded with

an initial value before program éxenution and will retain thia value

while transmitting it as part of an instruction packet, If the Register
containa a variable, it may be either empty or full. A full Register holds
an operand value in the initial configuration of the Memory, and must re-
ceive a new value rhrough rhe IHstribution Network after each packet trens-
mission to complete ane cycle of instruction execution. An empty register
must recelve a value in each cycle of instruction execution before packet
transmigsion may begin,

In the diagram of the Register Unit (Figure 16), the mechanism for
setting the mode of the register has been omitted for simpliecity; the sig-
nal paths required for each mode are indicated by labelled gaps in the
drawings, In the complete design, the mode of each Register is set by
transactions through the Command Network initiated by the Controller in re-
sponse to comuands from the Host.

The Register portion of a Reglster Unit is specified in terms of the
basle apead independent modules in Figure léa, Data pregented at the imput
port enters the bit pipeline module through the data switch module If the
first stage of the bit pipeline is empty and the Register is in variable

‘mode, Each bit of data is acknowledged by a signal from the data switch.

Data la requested from the pipeline by a signal from the Arbitration
Hetwork on the S wire. If the Register contains z variable, the ocutput of
the bit pipeline passes through the lower of the pair of data switch modules
and exits on the PL or PO output wires. If the register holds a constant,
the upper output dats switch passes the data to the output and also returns
it to the pipeline input. The PO and Pl output wires are reset when wire S
regets indicating that the Arbitration Network has absorbed the data, and,
if the Regigster is in constant mode, that the data has been reentered in the
bit pipeline.

The Control part of a Register Unit is detailed in Figure 1l6bk. The re-
sponse of the unit to the arrival of a signal on the R wire is determined hy
the mode of the unit. If the Register is idle, an acknowledge sigpal is im-
mediately returned to the Control Network. If the Register contains a con-
stant, an enable signal is immediately sent to the Arbitration Network on
wire E. When an acknowledge signal returns on wire AE indicating that an
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instruction packet has been completely transmitted to the Arbitration
Network, an acknowledge signal is genc to the Control Network.

If the Register is in variable mode, the action depends on whether
the Register ias empty or full, If it 1s full, the Control behaves initially
28 in congtant mode -- it sends an enable signal on wire E, However, the
acknowledge gignal on wire AE causes the lower data switch to send a signal
to the upper data awitch module, which waits until a apace signal arrives
from the Distribution Network indicating that the Register has been re-
loaded. Then acknowledge signals ere gent ro the Distribution Network on
wire AS and to the Control Network on wire AR.

If the Register holds a variable, but ig initielly empty, an enable
slgnal waits at the upper data switch for the Register to be filled from the
Distribution Network. Action then completes as 1f the Register were in
congcant mode,

The reader should keep in mind that in describing the Memory Cell as
2 speed Independent interconnection of basic modules we have aimply given
A precise specification of the intended behavior of the uni{t. In the physi-
cal realigzation of Memory Cells, the detailed design will daepend heayily on
the device technology employed in their fabrication, and may be quite dif-
ferent from the circuits implicit in our drawvings. The requirement is that
the physical Memory Cell have behavicr equivalent to the spacified behavior
when used as a component in & type 1 speed independent system,

Conclusionsg

The idea of organizing a computer so execution of Instructions ig trig-
gered by the presence of their operands has been discussed by Seeber and
Lindquist [17], Patil [14], Demnis [3], Shaptro, Saint and Presberg [18],
and Miller and Cocke [12]. However, none of these authors hag suggested
& detailed and efficient acheme for commumicating ensbled instructions and
operands to functional units for processing. We are hopeful that the archi-
tecture propogsed here offers an &ttractive solution to this problem -- & solu-
tion that can be extended to the design of processors that support Programming
languages suitable for general purpose computation.
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