MASSACHUSETTS INSTITUTE OF TECHNOLOCY

Precject MAC

Machine Structures Group Memo No. 11 April, 1965

Preliminary Degcription of Multi-Process Automata of Type A

Earl C. Yan Horn

A m!ti-—g;ocenn' Automaton of type & {MPAA) is an abstract device consisting
of a aingle progesgor, and a muiti-process automiton structure of type & (MPASA,
or structura), A structure ig on ordered triple (P, M, Wi, where ? is a set
of operands, M ig & aet of microsteps, and W {e a set whose content tells
vhich microsteps are ewalting execution by the processor.

While esch alewent of the get F ia called an operand, the get P actually

has the form of 2 mapping from a finite set of opersnd mames into o sst of

cperand properties.

P: n->(§0}X sy U ({1, 22X wx s
Here n is the finite number of operand names, and g is the finite number of
allowable operand states.

An operand 1s called & yagister, an. inway, or an outway according to whether
the first- component of its property ie 0, 1, or 2, raspectively. Each ragister
has two components in ite preparty, the second of which is calied a word. Inways
and outways each have three components in their properties, the second being

called a pointer, and the third being called a tape.



While each elemant of the set M is called a microstep, the set M actually
has the form of a mapping from a finite set of microstep encodings into a

set of microstep directors.

Maeﬁaiiﬂg!:nxe’)ﬂ {(J17XnxsXe)
U{522X e X ) v{3g
Here e is the finite number of microstep encodings. A microstep la called
a get, t, fork, or terminste according to whether the first component of
its director 15 0, 1, 2, or 3 respactively.

The set W has the form of 2 mappiag from the set of encodings into & set
of counts.

| Hee>aow
The count assoclated with an encoding gives the number of execurions of the
corraspending microetep which the processor must actually perform.

The processor of an MPAA opaerates by arbitrarily selecting an encoding
having & non-zero count, subtrecting one from its couat, and axecuting the
corresponding microstep. This eXecution will, in general, result in further
changes in the structure of the MPAA., After complaeting the microstep execution,
the processor selects ancther encoding with non-zerc count, and carries out
the sama operation with respeect to this new encoding. In this way, the
processor steps the MPAA from one structure to anather, by suecesaive execution
of individual microsteps.

In executing a get, the proceasor refsrs to the operand whoge name ie the
second component of the get’s director, and determinas the gtate of this eparand.
1f the operand is a register, its state is its word. If the operand ia an inway,

ite state is the i-th component of its tape, where i is the value of its pointer,



After determining the state of an inway, the processor adds one to the inwayis
poicter. If the operamd is an outway, its state is 0. Regardlesa of the
type of the operand , the functian which is the third component of the get's
director 15 evsluyated using as an argument the gtate that wag determined from
the operand. The value of this funceion is a new-micrastap encoding, to the
count of which the processor then zdds one,

Iet us digress just briefly to define the functinn,'zp, which, vhen given
an operand property, gives out a value which ig the state of the corresponding

operand, as determined by the algorithm given in the preceeding paragraph.,

2 0, Rxuxs Y,
Rote that fpis a function of the ordinary, pasaive sort; it does not add one to
any pointer.

In executing a pat, the Processor refers to the operand whose nanelis Ehe
second component of the put's director. If the operand ig a register, the
Processor replaces itp word with the third tomponent of the put's director. If
the operand is an inway, it is not changed. 1f the operand is an autway, the
processor replaces rhe i-th component of ita tape with the third component of
the director, and them adds one to the outway's pointer. Finally, regavdless of

tha type of the operand, one iz added to the count of the encoding which ia
the fourth component of the put’g director.

In executing a fork, the processor does not refer to any aperand, but addas
one to the counts of the twe encodings which are the sacond and third components
of the fork’s director.

In executing a terminate, the processor neither refers to an operand nor

addz to any count,



Pigure 1 depicts the nature of four basic typas of microsteps.

The selection of an encoding with non-zero count is made in a completely
arbitrary way. We assume that we do not even have any statistical knowiedge
about the selection operation.

An MPAA begins its operation with some initial structure. Ite proceseor
then executer microsteps wntil a structure is produced in which there are
a0 non-gero counts, at which point che MPAA ftops. Of course, it is posaible
for an MPAA to compute forever without stopping.

An Initial structure can, of course, be any MPASA. However, in order to
better understand the relationship between MPAA's and real-world computing
systems, it iz useful to exsmine a typleal initfal gtructure, and to define
certain informal subdivisions of MPASA’s in general.

In a typical initial structure, we can imagine that the get M comstitutas
the order coede of the MPAA, and that this set together with the numbers u, s,
and e coustitute the machine design of the MPAA. The initial words make up
a fxeshly loaded program. The set W represents the initial machine conditions

of the MPAA, and a typical initial structure might have only one non=zeéro count.
Lat all pointers, as wall as all components of every output taps, be initially
_equal to 0. The initial components of the input tapes are the input data of the
MPAA, and 1if sny input tape is ta hold only & finite amount of data, we can
let its unused components be equal to 0.

Notice that the words, the pointers, the components of the output tapes, and
the counte are the only parts of the structure of an MPAA which are sltered in
the course of the MPAA's operation. The set M, the input tapes, end the types

and number of the operands are never changed from theilr initial conditioms.



___"‘>“{ put —_——

—_—— = = terminate

Figure 1. The four basic typas of microsteps.
-2 3 data flow — =~ ==3 : control flow

fork

put

Flgure 2. A sometines-stopping MPASA.
The circle indicates a register. 1Its initial

word {18 0. n =1, 8 =2, e =4,

0{010
0
- put N
— N
s - \\
— i
fork - - .; terminate
~ -~ e —— T
A put -

Figure 3. An ambiguous MPASA. The triangle denotes
an oubpul tape with the fir=t three
compenents fnitially equal to 0. m =1, 8 =2, e = 4.



b~

Let us denote the set of all possible MPASA's by the symbol S .
< = (%0 x8) U (L, 23xwg "
X{{({0iZaxe® u (113X n X s Xe) U({z}xexe)uia}ge

X me -

We can now define the function

R 38X e -
which wmaps an input atructure and an input encoding into the autput atructure

which reauits from the processor’s operation on the loput structure after it

has selected the input encoding. Thatis, x models both the processor’s sction

of subtracting one from the count of the input emcoding and the processor's action

of executing the microstap corresponding to the input encoding. f£f the count

of the input encoding is equal to 0 in the input structure, ne subtraction is

perforwed and the output structure is equal to the input structure.

In order to model the encoding seiection operation of the processor, we muat

postulate a random selection functien

AU 3T —poe
which chooses arbitrarily an enceding which has a non-zero count in the input
structure. If all of the encodings in the input siructure habe gzero counts, then

the output encoding is equal to C. The vmusual letter, L , is from the Russian

aiphabet and is pronounced “shuh". 1t 1s used here instead of a Oreek letter
in order to call attention to the fact that the random selection function is
not really a function ig the set-theoretic sense.

For a given initial structure, I, we can exhibit at least one encoding

s2quence, E, which ia an element of ew, and a corresponding structure 5Cquence ,

S, whichk is an element of 2&“2 by means of the following equations.



8, =1 {2}
Ei. = I [51] (e )
Si+1 = H [Si’ Ei] {# ¢ %)

Because of the occurrance of [{{in (& ), 2n initial structure can give rise to
meny encoding sequences, and hence many structure sequences. BRowever, given
an initial structure and an encoding sequence, we can determine a single
structure seguence by making use of equations (#) and (% % %) only, im which
equations //{does not appear. This relationship can be formalized by means of
a function.

= :EKEW‘*—)E_N
Let us call an ordered pair of the form (I, E) a run. Thenomape a run into
lte corresponding structure sequence.

We consider the sequences E and § to be infimite even when the procassor
generating them stops after a finite number of microstep exacutions. 1In this
case, the remaining components of X are gero, and the remaining components of
S are equal to the final structure. Notice that such a pair of sequences oay
also be generated by an MPAA that does not stop. This might occur, for example,
in an MPAA having a put vhose own encoding 18 equal to O and whose director has
a fourth component of 0.

Congider the MPAA whose structure is given below and depicted schematically

in Figure 2.



{{0, <0, o33}

"
L]

(0, €2, 1, 2)3

@, 0,0, {0, 13, (1, HY
(2, {t, 0, 1, 3)}

(3. (33)

-

{0, L}

(0, 0j

(0, 0)

(0, »
Rotice that 1f the put is ever executed, the MPAA will stop, whereag if tha put
1s never executed, then the MPAA will never 8top. Since whether or not the put
is executed depends on the caprice of the function li] , we cannot say whether
or not an MPAA with this imitial structure will astop.

In general, it is clear thot some initiel structures will elways lead to
4 gtop, that other initial structures wili never lead to a stop, and that
others will sometimes lead to a stop and scmetimes not. We need to examine
the encoding sequence that results from the actual operation of the MPAA, aleng
with the initial structure, to determine whether or not the MPAA stopa. 1t is
titen a trivial matter to determipe whether or not a stop occurs. In other
words; ve must associate the property of stoping with a yun, rather than with
an initial etructure.
tiow consider the problem of determining whether or not an MPAA with a given

initial structure will eventually write some specific number x in the i-th
component of its j-th cutpur tape. It is not hard to see that the }j} function
will introduce the same sort of uncertainties into this problem as it did in

the case of the stopping problem. For example, in the MPAA of Figure 3, the first



-9-

square of the output tape will receive & 0 or a ] depending upon which

put is executed first. It 1s clear that we must conslder the output behavior
of an MPAA as being a function of a run, not just an initial structura.
The examples given shova ;nutivat:e the following definitions.
Definition Two rvuns aze L] equivaleat if and only £f their initial
structures are equal, and each puts the same number into the i-th
component of its j-th output tape.

Definition Two runs are behaviorily equivalent if and only 1f they

are i-j equivalent for all components of all of their cutput tapes.



