~ MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 110

Proofs of Correctness of Dataflow Programs

by

Jos®HE. Stoy
Programming Research Group

Oxford University Computing Laboratory
Oxford, England

This work was supported in part by the National Seience
Foundation under grant GI-34671.

September 1974

In his elassic paper [1], R. W. Floyd described hig "method of
inductive agsertions" for proving the correctness of computer programs
described by flowcharts. The method involved attaching an assertion to each
lirk in the chare, describing the state of the tachine whenever control
reached that point in the Program, Formal rules were given for each kind of
node in the flowchart, relating the assertions appearing on their input links’
te those on their outputs,

The approach has been considerably extended in the "axiomatic wmethod" of
C. A. R. Hoare [2]. Though Hoare's work isg usually presented as applying to
conventional programming languages rather than to flowcharts, in effect he
has considered the usual well-structured ways of grouping together flowchart
components (concatenation, conditional branching, iteration, etc), and pro-~
vided rules (axioms) glving the relationships betwean input and output agser-
tione for the aggregate in terms of the relationships holding for the components.

In this paper we apply aimilar techniques to eatablishing the correctness
of dataflow programe. The reader is referred to Dennis {3] for an introductory
description of the language we ghall be considering. We too shall confine
our attention to well-structured flowchart conatructions: that is, we ghall
be concerned only with "well-behaved"” dataflow programes, We explain later
aur reasong for making this aimplifieation.

In the more usual contrél-flow kind of flowchart, it would be possible ko
describe the effect of each node by giving the function mapping an input state
td the ¢corresponding output state. But the state af a machine is a complicated
sort of value, so it is often preferable to focus attention on some aspect
relevant to the particular problem by making an appropriate assertion about
the state; so we describe 4 node, not in terms of the trangformation it ef-
fects om States, but instead in terms of the transformation on the agsociated
asdertiona. In other words, instead of working with the set of states them-
selves, we perform manipulations in a calculus of assertions.

This technique could also be used in dataflow: programs: after all, a
sequential controi-flow program can be regarded as a data-flow program being
traversed at any one time by a single token, carrying as its value the state
of the whole machine. But the values handled by normal dataflow, Programs
are usually much simpler ones, and it is therefore -more natural in most
cases to return to the functional method of describing the effect of the vari-

ous nodes,

a b ‘80, for example, the action of the addition nede
/r 18 described simply by writing
e' = a + b

We adopt tha comvention of decorating with primes the
names of output links, and we shall ignore for .the present
all matters connected with ensuring that values are of

0 P—— +

appropriate types. In some cases, to be sure, we have to

supplement the defining equation by giving an axiom or two
to relate the input values and the output values, but in mogt cases {as hera)
we can take for granted the axiomatic definition of the particular Ffunction
(addition over the integers). '

During the execurion of a program, & succession of tokens appears on each
link. Our use of formulae like ¢' = a + b, and the more camplicﬁced examples
which we use to describe the affect of larger Pleces of program, assumes that
each cutput token can be associated with one particular token on each of the
input arcs, go that the functiomal relationship between inputs and output may
be described one token at 4 time, FortunateiE, this is the essential Property
of well-behaved dataflow programs {4]. It is exhibited by all the programs
- we shall be c¢onsidering, and by any which satisfy the following constraints:

1. Each operator actor must be well-behaved, in the sense that it pro-
duces no more than one output value on each of 1itg output arecs
whenever it absorbs one value from-each of {ta input ares, and the out-
put values depend on nothing other than the corresponding set of input
values; and it must be strict, in the sense that it produces no output
value until all the corresponding input values have been absorbed,

2. The only composition rules employad are those to be described below.

3. The program and each procedure in it must be well<formed, in the
sense that each input arc of actors within them, except for thase
arcs which form the input of the entire progrzm or procedure, is
connected to the output arec of some actor, and similarly thae each
dutput arc, except for those forming the output of the entire pro-
8ram or procedure, is connected ko the input arc of ar least one.

actor.

-3-

Notice that we do not ingist that each operator actor produce exactly

Oné output on each output arc for each set of input values. An operator actor
or piece of program which fails te deliver a value on some or all of ita
cutput arcs for some get of values received on its lnput arce ig said to be
hon-terminating. A complete degcription of such an actor or pProgram should
include a specification of the circumstances in which non-termination may
occur.

If we wished to extend our approach to cover dataflow programs which are
not well-behaved, we would have to regard operator actors apnd programs as
relating Bequences of input values to sequences of output values, rather than
relating individual values. Thus the addition actor would relate iapit ge-

. quences A and B to the cutput sequence C', where

A B
zf A= (a,, 8ys veep 8}
" B=(b), by, ..., b)
] 0'1{01, czs reey ck)
and
Cl
k = min(m, n) Yo
c; = 3, + bi l=1g k).

Such a formalization would obviously be vary much more complicated than our
present exercise, and correctnesgs proofa correspondingly more difficult,

That is why we are regtricting our attention to well-behaved programs;

see Kahn [5] for a discussion of the more general case, and of the axioms

{of monotonicity and continuicy) which components of dataflow programs must
satisfy. These axioms are automatically satisfied by well-behaved components,
which will henceforth be our sole cancern.

Ruleg for the Dataflow Language

We now give all the rules we shall require for the subsequent axamples.
We deviate slightly from the language of Dennis in that we omit all mention
of the val and ref actors: we prefer to treat such issues as pointers and
sharing as matters of implementation, as the prohibition on the modiffcation
of structures removes any need to consider them explicitly. We also blur
a4 lictle the digtinction between operators, boolean actors and deciders.

Linkg
x x =x'
This rule simply allows us to attach several names to the
x! same link, This is gometimes useful, particularly when con-

aidering sections of dataflow programs connecting several
inputs and outputs in which some of the inputs are passed on unchanged. In
such sections we also sometimes encounter input links which terminate "in
thin air"., This 15 merely a diagrammatic convenience and has no semantic
significance provided, of course, that the overall program 1ig well-formed,
in the sense defined in the previous section above,)

Actors

a b These next rules cover the binary actors, which produce
*\‘ }/’ an cutput value ¢' from two Input values a and b, Note that
for the non-commutative actors (- and >, for example) the
£ labelling of the input links mugt be explicitly specified.

l ‘

0
-

+ c'= (a+Db)
- e' = (a -~ b)
> e'' = (a>b)
= c’ = (a=5b)
A c' = {a A D)

Thiz ies an example of a unary actor, with just .one
input.

a'=a+1

These are the constant actord, with no inputs,
' 0 is’an integer, and
a

a' =n,

Notice that the constant actors are the only ones which may emit an output
value without having first received any input.

Aetors for Structure Values .

The following actors deal with structure values. If v is such a value,
we use V.i to denote the component of v with selector i, if such a component
exiastg. If 1t does not exist, we say v.i = UNDEFINED.

v b' = Elem(v)
Elem Elem(v) is true unleas v ig a structure, in which cage it
is false.
bl
" i
b = v hag 1

(v bas 1) is true if v is a structure which has a component

B with selector 1, falge if v ia a structure without such g
component:, and UNDEFINEB if v is not a structure, or i not
a gelector,

n' = pil

This iz another example of a constant actor.

v i

a' = v.{
al
}nl

nil is the structure with no components.

v x v'=aggendi:x_t_9_v
(append { :x tov) s a structure which has a com-
ponent with selector { whase value is x, whether or
not the structure v has g cpmponent with selector 4.
v All its other components are the game as those of v,

These actors have been described somewhat informally.

be specified more precisely by means of the following axioms:

Elem axiom: Elem(v) = vi :v.{ = UNDEFINED
Exists axiom: v hag i) = v.i = NDEFINED
nil axiom: ~Elem(nil) A (#i :nil hag i)

append axiom: v' = (append i Xtov) =

(v' _I&s:_ihv'.i-x;\(‘rj:j#i::.(v' has j = vl_i_a;gj)A(v'.j=v.j)),

Note chat if v',] = UNDEFINED and v,§ = UNDEFINED we say that v'

Their behavior may

-j = wv. 1.

Note algo that, as we warned earlier, we are omitting various extra conditiong

which may be included in the axioms to insist that the input values are of the

appropriate types: thar is, except for Elem, v must be & structure and { a

selector, or else tha regult is gdutomatically UNDEFINED.

Termingtion of Actors

The actors we have described above alwaya terminate; the apply actor,
to be desceribed below, is the only operator actor we shall be using which
might sometimes fail to terminate. Notice that we are distinguishing the
case of non-termination from the cage where the output value is UNDEFINED,
even though some implementations might conceivably merge the two. We are
also leaving open the question of whether the occurrence of an UNDEFINED
value anywhere in a program implies that the output of the program as a
whole is also UNDEFINED: thia is also a matter where implementations might
differ,

Componition Ruleg

We now consider the various ways of combining pleces of dataflow program
into larger ones. Frequently these pieces will connect several input with
several output links. Formally, these should perhaps be described by functions
Telating the cartesion product spaces of the varfous Lnput and output domains,
However, in the sequel we shall treat the individual links separately, ne-
glecting to invoke the necessary projection functiong explicicly.

Well-formed acyciie neevenks

A sat of aetors (excluding the gate and merge actors) or groups of actors
formed according to these Tules may be formed into an acyclic net which is
well-formed according to the definition given previously, Such a network will
have the following Property: if any link in the network be cut the overall
result will be unchanged, provided a value ¥ be supplied at the new input,
where v is the value that will (in due course) emerge at the new output, A
gimple example 1s shown in the diagram. If f(x) is the output from group f

for input x, and g(y) the output from g for input y,

x
we have

(E&) =¥) A () =2) wx' = 2

The overall program terminates if all the com-

ponents terminate,

N

Conditional

As above, areas £, 8 and b are pieces of data-
flow programa. Area b is assumed to have a single
output link, delivering boolean values. The ef-
fect is given by:

LEb(x) = f£(x) =u
and ~b(x) = g(x) a v
then x' = if b(x) then u else v

The overall structure terminates if b(x) ter-
minates for all X, and f(x) terminates whenever
b(x) holds, and g(x) terminates whenever b {(x)
does not hold.

For purposes of gimplification we introduce the following abbreviation for

!

the diagram above,

CONDITIONAL

‘.

Iteration

P8 may be Introduced into our diagrams.

The convenrional diagram of sych a schema 12 as follows:

ITERATION

-10-

The overall effect of this gschema may be described, using A-notatiom,
as followa:

x' = (YPg.MAy. if b(y) then g(f)) alse v))x

where Y fa the usual fixed-point operator. A full analysis of the implications
of this definition would take us deep into the realm of what has come to be
known as Scottery; instead of attempting this, we state two alternative defi-
nitions which may be derived from it,

(1) x' = flg)

where
fix) means ECECE ... £Cx) ...))

t tiseg

and { is the least non-negative integer such that b(fi(x)) is false; that 1is:

0 1) A GBI @) A (¥1: 02 j < 1: (e x))

If no such i exists, the program does not terminate and x' is undefined.
.~ This alternative definition 1s useful only in those cases where we can

find a gimpler expression for fi(x), and where the particular value of i satis-
fying the conditions can be found by inspection,

(2) The second alternative geparates the question of the existence of an out-
put (i.e. termination of the program) from the analysis of what properties such
an output would have if it did exist. To discusa the properties of the output,
we return to the technique of assertions used in the analysis of control-flow
pPrograma.

I1f we can find some predicate P, on the set of input and output values,
which is preserved by f, the body of the iteration, then this predicate is alsc
preserved by the iteration as a whole, provided that some final output igs pro-
duced. P is called the invariant of the iteration. In fact, P need be pre-
served by f only for those inputs for which b gives the resulc true; wmoreaver,
b will give false when applied to the final ocutput. More formally, writing
x and x' as usual for the input and output of the entire iteration, we have:

1f Vy: PG) A bGy) = P(£(y))

then P{x) =» P{x'") A~b(x").

We take this condition to be trivially satisfied if the ifteration produces
no final output; that is, if x' ig undefined for some or all values of x.

To attack the problem of termination, we use the concept of a well-
foundad set, which i{s a partielly ordered set in which there are no infinite

descending chains. Then conditions for termination of an iteration are
b{x} terminates for g1l x;
£(x) terminates whenever b(x) holds;

{(P{x) Ab(x)A b{E(x))) = f£(x) <x, where < is some ordering under which
{x|P(x) A b(x)) is well founded.

Thia style of definition corresponde closest to Hoare's axiom for the
while-loop [2]; it 18 the form we shall use in the subsequent examples,

Procedure Agglgga:ioﬁ . -

-

Our final set of rules concerns the production and uge of proceduf; values.

_These values are created ag the output of a proced actor, represented as shown

proced
P

l

Here P is the name of some particular datafloy program, and we ahall gay that

p' refers to P

Notice that the proced actors are a subset of the constant actors.
The agent of procedure application ig tha apply actor. These actors taka
two inputs, p and x, say. P must refer to some dataflow program, say P. Let

us suppose that P given input 4 produces output v'. Then the rule for the
2pply actor is as followa:

-12-

if p refers to P

and (a = x) = (r' =y')

then x' = y'

The apply actor terminates for inputs p and
' % 1f and only 1if the corresponding program P
terminates for input x.

Recursive Procedures

In a recursive procedure we encounter an application of a procedure
value within the dataflow program to which it refers. The overall effect of
such a procedure musc be proved by induction. More precisely, we must first
show that the possibla input values for the procedure form a set which is
well-founded under some ordering <, aince inductive proofs are applicable only
to sets with this property;" Tt is then naceszary to show that the Rrocedure
computes the correct trangformation for some input x, uging the inductive
‘hypothesia that the correct transformation is computed for gll ¥ such that
¥ < x.

Sometimes, however, it {s eagier to do a&s we did for iteration, and sep=
arate the proof of "correctness™ from the proof of "termination.” In the -
present case, for the proof of correctness we assume simply that the internsl
calls of the procedure return the correct results, and we do not impose any
conditions on their arguments. Then for termination we prove that when the
procedure is applied to some argument x-'the internal calls will be applied
Co argument values which are all less than x, according to some ordering under
which the set of values is well founded, More formelly, let the set T index all
Occurrences of the apply actor within the procedure program P, so that tha inpucts
£, for some 1 € I. Let
Qfa, r') be the property we wish to prove relating the input and output of P,
Then the induction rule for the proof of thia property is:

and output of any such actor may be named Pys x; and x

1f [Vi:4 € I p; refers to P = Q(x,, x)] = Qa, ")

then infer Qa, »'),

=13~

The conditions for termination sre:

(@) [vi:d € I: P; Tefers to P = apply actor i terminates] = P terminares

(b) [vi:i € 1;

x, < 2] where < 13 some ordering under which the get of
possible a, X, 13 well-founded.

It is this approach we shall use in the

proof of our second and third
exampleg,

Proofs of Example Programs
Vector Addition
The first example program in Dennis' paper is one for vector additiom,

The program is a straightforward iteration on a quintuple of values, which is

shown in the diagram together with the programs for the test and body of the
iteration.

vector additiég]

-15-

a, and bo are vectorsa, with elements

ao.l, aO.Z, ---s 8.0

Bg+ls bge2, uuyiboang

We must show, in the notation of the diagram, that
1
Bl =gy + Dy
that 1s,

Yy lsjsnuz R.' has § A Rc'.j-aoj?+b0.j

We can immediately 8ay, still in the notation of the diagram:
bf{a, b, ¢, 1, n) = ¢' a (i< n),
and, in the program for £,
P=a.i; g=>b.d; r=p+ 4 =a.i +b.1

(I; is a condition of the problem that these tomponentas of a and b exigt for
81l Fequired £: we omit formally proving théif exfatance in the induction.)
¢' is relared to © T and i by the append axiom, so

(c' has 1) A (c". = a,1 +b.1) A (ry: 3 # 1: (c" has e c hag 1)"A ¢'.§ =
We also have

a'=a; b' =b; n' = n; L' =41 +1,
We choose the following predfcate as the invariant for the iteration:
P(a, b, ¢, 1, n) = l<icn+1)

A (Vj: lej<i:chas j A (c.j = a.j +b.§))
A(a=ao)n('b=b0)»-(n-no)

We must show

(a) P(ao, ba, Cqs io, nU)

where ¢y = nil. and 10 = 1: this 1s trivial, assuming ny 2 0.
(b) P(a, b, ¢, i, n) A b(a, b, e, i, n) = Pla', b', e', i', n")

Asgume P(a, b, ¢, i, n) A b(a, b, ¢, i, n)

1gi
Sa lsi+1
dnd 1 ¢ n

So il4+1ca+1

-16=

S0, since i' = 1 + 1 and n' = n,
lsi'<sn+1 ()

Now vj: let<i:e has § A (c.] = a.j +b. 1) {from P(a,b,e,i,n))
And from above:

(c'Lag_i)A(c'.ia-a.‘i-i-b.i)A j:jfi:tc'_hgj # chag) Ac',] =c.

Sovj:lsjsi: c'lﬁgjh(c'.j-a.j+b.j)

l.e., 8ince i’ =i + 1 and a',b" = a, b:

Vj:lgj<i':c'hﬂjA(c'.j=a.'.j+b'.j) (:}]
Also, gince 4, b,n = a5, bO’ n, {Erom P(a,b,c,i,n)
and a'yb',n' =a,b,n

we have a' b' n!' =ao,b0,n0 (v)

(e) (B) and (y) together glve P(a',b', ¢',1',n"). So by the iteration rule
wa have

P(Ral’ R‘b'l Rcl, Ril, Rnl) A~ b(Ral’ R‘bi-"_gc" Ril' Rn'J
l.e. [l g Ri' < Rn' + 1
ANGgils J<Bi':R'has j AR .= RS 5+ R)
AR =a5) A (®,' = by) A R, = 401
A [~ (Ri' = Rn')]

Sa Ri' = Rn' + 1, and we have

i) . _—— . .)
‘;"j.lsjsno. (Rc LSS_J)A(RC-J—AO-J + by 1) . :

a3 required.

Terminarticn

The test and body of the iteration always terminate.
No = - -
v let v {a,, bj’ cj, 1_1’ nj) and let vy < v, iff (1'11 11) < (n2 i
Then (v|i(y) o b(v)} is well-founded, since from P(v) we have
(n-1) = -1.

2}

Also, for the program f,
" n'=n and ' =4 +1

£0 ' =-1"Y< @m - i)
So v' <€ v, ang termination {s assured.

-17-

REVERSE

A binary tree is either an elementary value or a structure with two
components, called "right" and "Left," each of which is a binary tree.

Tree tl is contained in tree t:2 (tl < cz) if tl is a component of tz or
is contained in a component of t,- The set of finite binary trees is well-
founded under this ordering.

The reverse of a finlte binary tree t is the finite binary tree &y
defined as follows: if t is an elementary value, then tl = t; If £ is a
structure, then

tl.'righ:' = reverse (t.'left')

and tl.'left' = revarse (t.'right'),

We wish to prove that the Program Reverse constructs the reverse of its
finite binary tree argument T.. Reverse is dafined using the auxiliary pro-
cedure Rev_l; the definitions are given in the diagrams on page 13,

We firat prove of Rev_l:

let A be such that

®-- A.'rl' refers to Rev 1 —_—
A.'list' is a fin.bin.tree; '

- then A’ = Reverse (A.'list')
Inductive hypothesis;
let T = [1, 2} index the two apply actors in the Rev_l pregram, Then:

¥i:i € I: [('pi refers to Rev_l
A Ai.'rl’ refers to Rev_1 A Ai.'list' is a fin.bin.tree)

= A£ = Reverse(&i.'list')]

Now x,y = A, A.'l1igr" (identity, and select)

and A' = if b(x,y) ther f(x,y) else g(x,y) (conditional)
where b(x,y) = Elem(y)

and fix,y}) = v

And, in the program for glx,y):
m,n = y.'left', y. 'right’ (gelecr)
S0 (q has 'list’) A (q.'list’ = m) A [Vi: J# "ldst’: (has § » =x has 1)

A (q.j =x.1)] (append)

Reverse

proced
Revl

t t

-18-

1
[zt '

sel 'lige’

g8el 'right'

]

-19~-

But (x has 'rl1') A (x.'rl" refers to Rev_l) -(Agaumption)
S0 q.'list' 18 a fin.bin.Etree (asaumption) and q.'r1l' refers to Rev 1.
But p = x,'rl’ © {gelect)
So p refers to Rev_ 1 : {asgumption)
But p = P1» 9 = Ql and Ai = S
S0, by the inductive hypothesis
8 = Reverae{q,'list')
I.e. 8
Similarly,

Reverse(y.'left') (since q.'ligt' =m = y.'left')

u = Reverse(y.'right')
Now (w has 'right') A (w.'right' = g) fappend)
and (zi has "left') A (zé.'left' = u)
A [Vj: 3 #F '"left': (zé has j = w has j) A (zi.j = w.j)]
Sa zi.'left' = Reverse(y. 'right')
A 2z).'right' = Reverse(y.'left')

2
But A' = 1f Elem(y) then v else zé
Sa A' = Reverse(y) = Revarse(A."lisc')
So by the inductié% rule: A' = Revarse (A, 'ligt’ . i

TERMINATION OF REV_1

Rev_1 certainly terminates if the apply actors inside it terminate., Now let
A< B 1ff A.'List' <" B.'list' where <' is the usual ordering on binary trees.
The trees are finite, so the set 1s well-founded under <', go the set of per-
missible A is well-founded under <. For the tws apply actors in Rev_l:

1. q.'list' = (A.'list’).'left', sa q.'lis:‘ <' A.'list', so A, < A

1

2. Similarly AZ < A

So i € I: Ai < A, and termination is assured.

For the Reverse program itself:

let Tr be a fin.bin.tree.
We have ¢ refers to Rev_l {proced}
and, by two applications of the append rule,

a.'rl' = ¢ A a.'list' = T2
g0 a.'rl' refers to Rev_l A a.'list' i3 a fin. bin.tree
S0, by the rule for apply:
Tr' = Reverse(a.'list')

I = Reverse(Ir)

-20-

THE EIGHT QUEENS' PROBLEM

Our final example concerns a program for the Eight Queens' problem,
discussed by Dijketra [6]. We diascuss a program somewhat modified from the
veraion of Dennis [3]; the Present version creates a data structure containing
all the correct configurationa, instead of printing them all. This allows us
to defer for the present any consideration of 1/0, and also has the effect of
remedying the troublesome absence of output links from some of the procedure
applicationg.

The program is defined in the diagrams on_pages 21-26.

In this program we frequently conatruct new structures by segments of the
form shown in the figure, where the Ni(l < 1 < n) are any set of distinct
names, and the X (1 =1 < n) are any set of
values. The final resule, S', has the following
propercty:

. . at ' =
(vi: 1 <1 < n: S has N, AS -Ny x,)

A(VH:S'I]_&_SM o (Hi:lgign:H=Ni))

That is, the only components of S' and those with

\ gelectors from the set Ni, and for one of these

the value iz the corresponding x The preof, by

.
*n induction on n using the definition of the append
a
=PR Nn actor, is simple. We shall write
1 _ . [.
8' = Structure (Nl. X;, N, Xy, ...,Nn. xn)
s'l'

to indicate that 3' is the result of a program
piece of this form,

We shall now prove that this program i3 correct, The proof 1s more com-
Plicated than might initially be imegined, so in order to emphasize the main
points of the argument we have relegated the detailed procfs to an appendix,

We muat prove four things about the program;

1. that 1t terminates;

2. that only correct solutions decur in the final solution data structure;
3. that all such correct solutions so occuyr;
&

- that no sclution oeccurs more than once.

Eight Queens

-21-

p A %
% m 'nf
proced %' i
Print app 'z’
L ® +
-4pp 'gen' (_,_EEE 'Col!
app 'pr' L L—)—QER lUpt
4"“ Y i
2pp 'Down'
app 'Conf'l, }co
K3
Lp.ap_ar '
D
[Popt |
: app 'v'|
———-——1——— S0
app "Sel!
|
i
\ = avp 'Proc’
S—— N |
840
= apply /

Print

d

sel 'Sol! sel 'z
sel 'v' sel &
TVO K1
+1
N S
P
k2
} append
app 'k' I
o vl
| ;
|
4 |
app 'v'ke J

Generate ’

»23=

—‘-“

gel 'Conf'

tb'

-2

bz eh LC e F a8
D |
sal 'n' sel 'Col'| (sel 'Up' sel 'Dowm'’
"~ \l Cn Ce + Cu l cd
I
t +b3
Y
— - extszs
b4
N 4 . *
—] I
’- l R
(N exisfs
b5
'[;fZ ’ : y
eh &C @F s , ‘TJ
\ ‘_/ ’
s2' '\I

r

h C P t 5
- J)
“
_E__l_ ln! _S__e__ tcoll .3;21-, !UPI _§_E_l lel & lx!
k J\Cn ‘ Ce * Cu L Ccd +Cx
4 3
append
[+ Cx2
N— append
l Cc2 ? ®
M £
b\._ —— o a end
sijunsd
l Cu2 ®
N1 hd i d —QJ
__ _hf - - — = dppend e
| I
1. ® 7 e -
—] | (
~ ¥ ,
! app 'Col! J
1L Cn?2 [
app 'Up oo/ i
_ aso 'Sol'i‘ —J
F
app ‘Down 'fes—— 1
aop 'Proc' /
1 L
app ‘xile y, l sel 'gen'}
E‘D_B 'Cﬂnf' E2
[faz
\“_,_.3_22 nt
el apply

=27

Our solution structure, S, has two components, S.'k' and.S.'w', g.'k'

is a non-negative integer, and $.'v' has components
(8.'w').1, (8.'v').2, vesy (87T (8.7

each of which 18 a correct golution to the problem, To expreds the property
that § is partially valid (i.e. that 1t containg no mistakes but 13 not
necessarlly complete) we define the predicate 8PValid(8) as follows:

Defn. 1. Let k, v =8.'k', §,'v'.
Then SPvalid(S) = k= 0 A (¥3: 1 < j < k: V has § A Correct vV.3))
ALY : Lgd,jskiisdjavd vy

It will be noted that SPValid is defined in terms of Correct, a predicate on
individual solutions, which will be defined below. A proof that SPValid holds
of the final result would satisfy requirements 2 and 4 abave,

We defipe the binary predicate contains to express the fact that a par-

ticular golution occurs in the solution structure.

fn. 2. S containg X = w1: 1 s 1<8.'%": (8.'v").1t =X

——

We car now prove the property we require of the procedure Print. For the
nomenclature we refer the reader ta this procedure's dataflow diagram,

Lemma 1. Let §,X = APr.'sel’, APr.'x'

(1) SPvalid(8) A Correct (X} A ~(8 containg X) |—
SPValid (RPr') AyY: (RPr' contains ¥ # § contains Y v Y = X)

(2) Print terminates.

This states that the result RPy' differs from S only in that the individual
solution X has been added; if § 1s valid then so0 im RPr', provided the addition
of X does not cauge a repetition. The proof appears in full in the appendix.
We turn now to the definition of Correct{(x), which iz to express the fact
that X is a valtd individual solution to the problem. We assume that X ig a
structure with components
X.0, X.1, ..., X.7

each of which ig an integer such that X,i givea the index number of the column
occupied by the queen in row i, The solution is correct if nn.two queens are

on the same column or diagonal (the requirement that no two be on the same row
is of course enforced by our choice of representation -=see Dijkstra op. cit.),

-28-

It is conwvenient to formalize thisg as g property of a partial solution.
PCorreet (X) expresses the fact that the first few rows of X contain queens
witich do oot clash in any of the forbidden ways :

Defn. 3. PCorrect(x)

1}

: {0<n<8A (V1: X has 1 o 0<1{<n)
AWL: 0<ci<n: 0<X.i¢7?)
A(Vi,j:Osi,jcn:i#j=(x.ii‘){.j
AL+ 1 AX3+
Aol = 1 £X3 - D))

Note that for an upward diagonal X.i ~ 4 ig constant, and for a downward
diagonal X.1 + { ig constant. The definition of Correct (X) is then simply
aa follows:

Defn. &4, Correct (X) = PCorrect(X) A (yi: X has 1 & 0 < {1 « 8}

— s

It.is convenient for the program to construct each gsolution as part of a
more complicated configuration, If Config is such a atructure, theo Config, 'x'
is the solution under construction, and Config.'n' is an integer giving the
number of queens so far in the solution. Config also has three more components,

“all of which are themselves structures:
Config.'Gol’, Config.'Up' and Config. "Down’.

The component
(Config.'Col').i (0 < 1 < 7)

exists only if column { ig occupied by one of the queens in the solution so far;
(Config. 'Up').1i (-7 s i 5 +7)

exists ouly if the upward diagonal i is occupied (i.e, if (Config.'x").j-3=1
for some j between 0 and Config.'N' - 1): and

{Config., 'Down').{ 0<1ic< 14)

exists only if downward diagonal i 1g occupied. Thesze extra components allow

an eagier decision as to whether a new queen may be placed on & particular aquare.
The condition for correctness and consistency of all these components is

glven by the predicate PCConf(C) on a partial configuration, defined as follows:

-29-

Defn. 5. Let X, N, COL, UP; DOWN
= Config.'x', Config, 'n', Config.'Col', Config.'Up', Conflg. *Down’

Then PCConf (Config) = PCorreec (X} A (vi: X hag i © 0 <1< N)
A(Mk: 0g kg 71 COL has k¥ o (I1: 05 i< N: X.i = k)
A(vk: -7 ke 7: P has k¥ & (g1: 0 <1 < N: X,i - { = k))
A(Fk: 0 ¢ k « 14: TOWN hag k o (T: 0< i< N: Xoi +1 = k))

The condition that the configuration is complete is Eiven by the predicate
CConf (Config), defined as follows:

Defo. 6. CConf (Config) = PGConf (Config) A (Config.'n' = 8)

Lemma 2. CConf (Config) = Correct (Config.'x")

This result is an immediate corollary of Defns. 6, 5 and 4.

The lemma which justifieas che introduction of the extra componenta of a
configuration (on the grounds that they make it easier to tegt whether the
addition of a new queen would preserve cerrectness) is as follows:

B

3. Let N, X, COL, UP, DOWN .
= Config. 'n', Config.'x!, Config.'Col', Config.'Up', Coufig. 'Down’

——

Then 0 € h < 7 A PCConf (Config) A N < 8 }—
~ (COL hag h) A~ (UP has h-N) A ~ (DOWN has h + N)
® PCorrect (append N:h to X)

The proof of this lemma is given in the appendix.

When adding a new queen it is of courge mot sufficient merely to append
4 new cowponent to the solurion itself: we must also take care to make all
the components of the new configuration consistent. To express this we de-
fine a funetion
Add New Queen (Config, h)

which producea a new configuracion in which a queen hag been added in columm h
of the next available row. It 13 defined as follows:

=30~

Defn. 7. Let W, X, COL, UP, DOWN
= Config.'n', Config,'x', Config.'Col’, Config.'Up', Config.'Down'
Then AddNewQueen (Config, h) = Structure ('n": N+ 1,
'x': append N:h to X,
'Col’: append h: nil to COL,
'Up': append h-N: nil to UP,
'Down’: append niN: nil to DOWN)

The following lemma guarantees the correctness of the result when this function
is appropriately applied.

Lemma 4. Let N, COL, UP, DOWN
= Config.'n', Config.'Col’, Config.'Up', Config.'Down'
Then 0 £ h £ 7 A PCConf {(Config) AN < 8
A ~{COL has h) n ~(UP has h-N) A ~(DOWN hag h+N) }—
PCConf(AddNerueen:(Config,h))

This lemma is also proved in the appendix.

- The partial solution in the new configuration produced by AddNewQueen is
an extension of that in the old one. It is convenient to generalize this notion,

80 we define extends as follows.

Defn. 8. X extends Y =
Vi: Yhas 1 = X has 1 A X.i = Y.i

Obvioualy this Telation s reflexive and transitive. Its connection with
AddN¥ewQueen is given by the following lemma, also pProved in the appendix,

Lemma 5. PCConf(Config) |—
(AddNewQueen (Config, h)).'x' extends Config. 'x'

Defn. 8 states that 1if X extends Y then X and Y have all the alements of Y
in common. By rennwiug one at a time the extra elements in X, we may generate
a whole sequence of partial solutions until we reach Y, Moreover, iIf X is
partially correct and Y ig such that we may reach iﬁ from X by always removing
the element X.n of highest numbered n, then all the intermediate solutions will

be partially correct. So, in pParticular, we have

~3]1-

Lemma 6. X extends Y A Correct ()
A{Bn: 0gsng 8 A (Fi: Y has i & 0< i <))
= PCorrect(Y)

This result gives us gz Strategy. To generate all the complete correct
solutions which are extensions of a given partially correct solution we may
reject, whenever we add a queen, all those redulting solutions which are not
partially correct, since by Lemma 6 no extensions of such solutions can be
correct. This strategy is carried out by the procedure Generate, which ig 1
Tecursive procedure and must therefore be proved by 1nduction. we prove that
Generate has the foliowing property:

Lemma 7. Let S, ¢, P = Ag.'Sol"', Ag.'Conf', Ag.'Proc’
Then (1) SPValid(S) A PCConf(C) A ProcOK(P)
A (VX: Correct(X) A X extends C.’'x' = ~(S5 contains X
= 8FValid(Rg'} A (¥Y: Rg' containg Y & S containg Y

v (Correct(¥) A Y extends C. 'x'))

{2} Generate terminates, at least whenever PCConf (C),

Here the identifiers are ag defined by our labelling of the links in the
dataflow diagrams for Genmerate. All the predicates have already been defined
except for ProcOK: This is to express the fact that the components of Ag. 'Proc!

refer to the appropriate procedures, and is defined as follows :

Defn. 3. ProcOK(P) = P.'pr' rafers Lo Print

A P.'gen' refers to Generate

The inductive proof of Lemma 7 is in the appendix., The Lemma states that a
Particular solution occurs in the final result either if it already occcurred in
Ag.'Sol! or if it i{s a correct extension of (Ag.'Conf').'x"'. Since all correct
solutions are extensions of the empty partial solution (that is, the empty
board}, we can generate the complete get by starting with the empty aolution
structure and the émpty partial configuration. We are, therefore, able to
construct the main program for thig problem.. However, one small difficulty
arises. The Eight Queens' problem is ame which has no parametera: nevertheless,
dataflow programs require the appearance of a token on an input link to trigger
them off. So, gince we do ROt wish our program ta be continually generating
sets of solutions to the problem, we somewhaﬁ artifically choose one of the
links (A in the diagram) to be the inpur.

=32

We may prove the following about this main program:

Theorem (1) A = nil

SPValid(R') A (VY: R' contains ¥ o Correct (¥))

(2) The main programn terminates.

This theorem (proved in the appendix) states the condition of correctnesa

for the program: the result containg all the correct solutions and no others,

there are no duplications, and the program terminates.

We have thus fuifilied
our initfal goal.

-33-

Appendix -- Proofs of the Theorem and Lemmata

(1) SPvalid(8) A Correct(x) A ~(8 contains X) —
SPValid(RPr') A ¥¥: (RPr'

ettt ey, im———

Lat S,X = APr.'Sol’, Apr.'x’

(2) Print terminates.

L
and
So
and
So
So
Now
S0
And

We must prove SPValid (RPr'),

SPro
“xPr =
v0 =
Kkl
k2
vl =
RPr'

RPr'."k" = k2 and RPr'. 'y’ = vl

APr.'30l' = 3 {(Select)
APr.'x' = % (Select)
S8Pro.'"v! = g, 'y! (Select)
SPro.'k' = g, 'k’ (Select)
KL+ 1 =8, 'k'+ 1 (+1}

append k2; 2 to vl
Structure ('v': vl, "k': k2)

vl.k2 = % (Append)

in the definifon of SPValid.

(1)

(2)

So =j:

§.'k!' »
50 kl »
So k2 =»

¥i: 1<

leij

0 (Assumption, since SPVslid(S8))
0 (k1 = 5.'x")

0 (k2 = k1l + 1)

J =z kl: w0 has j A Con_-ect(vo.j)

(SPValid(s), k1l = §. 'k,

containg Y w 5 contaings YV Y = X)

(Struccure)

for which we separately conaider each clause

vO = 5, ")

< k2: vO has i A Correct (v0.3) k2 = k1 + 1)
But vl = aggatid k2: % ko vO
S0 ¥ji 1% j < k2: vl has J A Correct(vl.j3)

(vi.i = v0.i when i # k2 -- Apocend axiom)
But v1 has k2 A v1.k2 = ¥ (Append axiom)
and Correct (X) (Assumption)

So ¥j: L < j £ k2: vl has J A Correct(vl.j)

G ¥i,i: 1

so
But
And

vi,j: 1
vl.k2

$i,J<kl: 1 £ 3 =v0.1 £ v0.j
< 1, <k2: { £ 3§ =vl.1 £ vl
X (Append)

il

~ & containg X (Assumption)

(SPValid(8))
(Append axiom, as above)

i.e. fl: 11 ckl: v0.L =X : (Defn. 2)
1.e. Vit 1 <1 < k2: v1i.i # vl,k2 (Append axicm, as above)

Sovi,i: Lei,3sk2: 14 3ovld# vl.j
So, since RPr'.'k' = k2 and RPr'.'v' = vl, we have shown §PValid(RPr')

We must fingily show that
YY(RPr' contains Y = § containg YV ¥ = X)

Now RPr' contains Y & Ti: 1 ¢ 1 < RPr'.'k": (RPr'.'v').i =Y
(defn. of contains)

i.e. RPr' containg Y o 91: 1 ¢ i < k2: vl.i = ¥
(RPr',.'k' = k2, RPr'.'v' = v1.)

So RPr' contain;: Ye (Fi: 1 ¢ 1 < k2; vi.i = Vv (wlk2 =)
(property of 7)

But vl.k2 = X {append)
And vi.i = v0.i when 1 4 k2 (append)

And k2 = k1 + 1

S0 RPr' contains Y o (qi: 1 < i < kl: vl.i=Y¥) v Xavy

Now k1l = S,'k' and v0 = 8. 'v' (Select) ’
So ¥¥Y (RPr’' contains Y o (S contaias NV X=1Y)

(2) Trivial, since the program for Print is an acyclic composition of

primitive nodes.

Lecxa 2. (As stated in the text, Lemma 2 is an immediata corollary of defns.
6, 5, and 4,)

lerma 3. Let N, X, COL, UP, DOWN
= Config.'n', Config.'x’, Config.'Col', Config.'Up', Config. "Down'
Then 0 5 h < 7 A PCConf(Config) A N « 8 —
~ (COL has h) A ~(UP has h-N) A ~(DOWN has h +N)
= PCorrect (append N:h to X)

(=) Let X' = append N:h ko X
latm =N+ 1

We claim that m satigfies the existential quantifier in the definttion

of PCorrect(X') (Defn. 3). We check each clause of the quantitifed formula
in turn.

-35-

(a) PCConf(Config) (assumption)

80 PCorrect(X) {Defn. 5)
80 ﬁn:{ﬂsnsﬁ.\(vith_a'g_ief)si{u)} {(Defn. 3)
But (vt:x_h_is_iaﬂsi-:l\r) (Defn. 5)

80 It ig N that satisfies the existential quantifier in defn. 3 for PCorrect
S5o 0<Ng 8

but N < 8 (assumprion)

So OgN<«8

S50 Os<mc< 8, as required (m=N+1)

(b) X' = aggehd N:h to X {defn)

S50 Vi: X' has i & (X has i v i = N) (from append axiom)
But ¥i: X has 1 & 0 < i <« N {above)

So Vi: X' has i & 0 < i<W

Soe Vi: X'has i = 0< { « m, a8 reguired (m=N+1)

{c) [As we warned earlier in ¢#% main text we shall normally. omit the
proofs of the existence of all the components we gelect from SI:I'l:-lCtLlrES! :
thay may easily be supplied by the reader if desired.]

X' = append N:h o X (defn)
Soe ¥i: 0<i<WN:X'.1=2X.4 (from append axiom)
But N satisfies the existential quantifier in the definition of
PCorreer{X) {above)
So (¥i:0x i< ¥N: 0<X.ig? (defn 3)

So (¥i: 0 g i < N: 0=X".1 ¢«

Bur X" N =h (zopend axiom)
And 0 < h ¢ 7 (Assumption)
(vi:DsisN:DsX'.isTf)
So (M:0<cicm:0g¥x'.ic< 7) as required m=N+ 1)

Note that so far we have used none of the clauses on the left side of the

= in the statement of rhe lemma .

(d) N satisfies the quantifier in PCorrect) {above)

-36-

So wvi,j: 0« 1,] < N: 1£3=(Xi£X.j
AXd+! £ X5+
AXd -4 AX.§ - §)

But vi: 0 < i< N:X'.{=x.1 {above)

So vi.jzosi,_1<N:i#3=(x'.i#x'.j
ARV L+ 14X+
AX'L -1 A% -)

Now PCConf(Config) (asgumption)

S50 (vk: 0 <k ¢ 7: COL hag k o (7i: 0 < £ < N: X.i = k)) (defn 5)
But O0O<hg?7 (assumption) .

S0 COL has b & (Ii: 0 <1 < N: X.1 = h)

But ~ (COL has h) (assumption for this half of proof)

So #:0<1i<N: x.i
So #i:0< 1 <N:X'.{
Similarly,

21: 0 s i < N: X' i+1=h+N - (since ~(DOWN has -h + N))
and

Bi: 01 < N:X'.1 -1

h
h (since ¥i: 0 ¢ i <« N: X.i = X'.1)

it

h-H (zince ~(UP has h -).

But X''N=h (above)

So Vi: 05 i < N: (X'.1 # X'.N
AX'.i+4£#X' N+N
AX'd -1 fgX.N- N)

And Vi,j: 0 < i,j< Wi i £ j= (X".1 #X'.j
AXTL + 1 AKX) 4+
AX' A -1 £X'.5 - §)
So, combining these last twa formulae:
Vi,i: 01, e N1 14 jo (X'.i 4 X'. 1
AX'.L+1i4X".5+ 3
AX'.L -1 £X".5- 1)
So, sincem =N + 1
Vi, 0 i, jemr 1 £ §= (X'.1 £X'.j
AX'.i 4+ 1 £+
AX L -1 £X'.5 - §)
as required.

-37=

Thig completes the verification that m satisfies the existential
quantifier in the definition of PCorrect(X'), so PCorrect X') is

proved.

(¢=) We assume that the formula on the left side of the & im the
statement of the lemma is false, and prove that the formula on the
right is then alac falge.

S0 ~{~(COL has h) A ~(UP has h-n)} A ~(DOWN has h+N))

S0 (COL hag h) v (UP has h-N) v (DOWN has h+N)

{a) Suppose COL has h

Now COL has h & (Ai: 0 < 1 < N: X.1i = h) (proved above)

S0 Ti: 0 i< N: X.i=h

8o Hi: 0 <1 < WN:X'.i=nh (aince Vi: 0 s i <« N: X.i = X'.1)
Buk X'N=h (above)

50 Ai:0<1<N:x'.i=XxX'.N

So ®1,J:0< i, N:di#jAXei=X . .(i.e. when § = N)

S0 ~(Wi,j: 0si,j<m: i#j=X'.1¢ X9
S0 m does not sarisfy the existential quantifier in the definition of

PCorrect{X") {defn 3)
But vi: X' has i« 0s i <m {(part =(b) above)

And for anmy n sacisfying the quantifier in PCorrect(X')

Vi: X' has 1 a0 1 < n {defn 3)
So if m does not satisfy the quantifier no other value does.
S0 ~ PCorrect(X')

(b) and (¢). The same result may be proved assuming, Tespectively,
(UP has h~N) and (DOWN has h+N).

80, aince at least one of the assumptions {a) (b) and {¢) must hold if
(COL hag h) v (UP hag h-N) v (DOWN has h +N)
we have shown that in thia case
~ PCorrect(X')

=38~

Lemma 4. let N, cOL, UP, DOWN
= Config.'n', Config.'Col’, Config.'Up’, config.'Down'
Ther 0 ¢« h < 7 A PCConf {Config) A N < 8
A ~(COL has h) A ~(UP has h - N) A ~(DOWN has h+N) }—

PCConf (AddNewQueen (Config, h))

Proof: Let X = Config.'x'
Let Config' = AddNewQueen (Config, h)
Let X', N', coL', up', DOWN'!
= Config'.'x', Config'.'n’, Config'.'Col’, config'.'Up', Config'. 'Daym'
We are proving
PCConf (Config')
We proceed to check each of the clauses of the definition of PGConf (defn 3)
(a) Config' = Structure('n': N+1,
'z': append N:h to X
"Cel’: append h:nil to coL
'Up": append h - N: nil to UP
"Down’: append h +N: nil to DOWN _
(defn 7)
So N! N+1
X" = append N:h to X
COL' <= append h:pil to COL
UP' = append h ~N: nil to UP
DOWN': append h+N: nil to DOWN

n

{prop. of Structure)

Now X' ~ append N:h to X (above)
and 0 < h < 7 A ~(UP bhas h -N) A ~(DOWN hes h+N) (assumption)
So PCorrect (X') (Lenma 3)

®) X' = append Nth to X
So . ¥i:X'has i ei=NyX has 1 (from append axiom)

But PCConf (Config) (assumption)

So Vi: Xhas 1 o 0 <c 1 < N {defn 5)

So Vi: X' has 1 e Oc 41 <Ny { =X

So Yi: X' has 1 e D < i < N' (since N' = N + 1)
{c) PCConf (Config) (asaumption)

So Fk: 0< k< 7; COL hag k & (Fi: 0 < L < N: X.1 = k)) (defn 5)

-39-

But X' = append N:h Lo X
So Vi: 0 ¢ i <« N: X'.1 =2X.1
So (vk: 0 < k< 7: COLhags ke (T4: 0 < £ < N: X' =k))
Now COL' = append h:nil to COL
So Tfj:ja‘h:GOL'Im_sanOL_l'g_j (append axiom)
30 Vk: 0cs k<7 Ak #h: coL' has k « (Fi: 0 < i < N: X'.1 = k)
Now '.N=nh {append axiom)
So Vk: 0 x k<7 Ak # he (M: 0< i <N: X'.1 = k) «
(Ft: 0 < 1 < N: X'.1 = k)
So Yk: Dg ka7 ALk #£7: COL' bas ke qi: 0 < i < N; X'.4i = &
But COL' has h (since COL' = append hinil to COL)
And Ii: 0 i < N: X'.4 = § (since X'.N = h)
So Vk:0<k<7: COL" has k & 51: 0 < 4 < N: X'.1 =k
But H'=N+1
So Vk: 0 gk < 7: coL* has ke TL: 0 < L < H: X' = K a8 required.

(d) (e) The proofs of the remaining two clauses are very similar and are
left to the reader.

Lemma 5. PCConf{Config) — -
(&ddNerueen(Config, h}).'x" extends Config. 'x'

Proof: Let Config' = AddNewQueen (Config, h)
Let X, X'y N = Config.'x", Config'.'x', Config.'n’

Now PCConf (Config) (assumption)

Sa Vi:Xhas i e 0< 4 <N (defn 5)

So Yi: X has 1 =241 # N

But X' = append N:h to X

So Vi: X has 1 AL # New X' has £ AX'.4 = X.4 (append axiom)
So Vi: X has { = X" hes i A X'.1 = £.1

i.e. X' extends X, as required. (defn 8)

Lemma €, X extends Y A Correct (X)
AfPn: 0 n< 8 A (yi: yhas 1 « 0 < i < n)}
= PCorrect(Y)

We verify each clause of the definition of PCorrect{Y) under the agsumptions
of the lemms,

-40-

(a) M: 0 <cne8 A (Vi: Yhas i » 0 < i< n) {assumption)
This is the first part of the defn. of PCorrect(Y)

{(b) Correct (X) (assumption)

So PCorrect{X) (defn 4)

So Hn:OSnsBA(‘Vi'Xhasiﬁﬂsi<n) (defn 3)

Let this n = N, and let the similar n in the statement
of the lemma be renamed M.

l.e. ¥i:Yhas i« 0<cich

and Vi:XhasieOciciN

But X extends Y {assumption)
So Vi: Y hags 1 = X has 1 A X.1 = ¥.1 (defn 8)
So M< N

Now (¥1: 0 g 1 < N: 0 < x.1 < 7)
AL 04, J<N:ifdjoe (RifX]
AX L +1 &%+
AXL -1 #X.]3-3) {defn 3)
The quantifier structure of thig is such that ite validity is not impaired
by reducing the size of the univerae of quantification. -
80 (VL1 0= i < M: 0 < X.i < I8
AL, i 0< £, <M: 14 J= &X.1i# x4
AX L +1 #X.5+ 3
Al - 1 £X.5 - 3D

But Vi: 0 g i< My has i (above)
And Vi: Y has 1 = X.4 = v,i {dafn 8)

So (vi:Osi<H:OsY_1s7)
AL 01, <M 4 £ (Yol £ Y.
AY.L+ 1 #Y.5+ 3
AY L -1 g1 - 1))

This is the remainder of the definitfon aof PCorrect(Y)

Lemma 7, Let S, C, P = Ag.'Sol', Ag.'Conf', Ag.'Proc',
Then (1) SPvalid(S) A PCConf(C) A ProcOK(P)
A (VX: Correct(X) A X extends C.'x' = ~(S contains X))
= SPValid(Rg') A (vY: Rg' contains Y o § cuntains Y
V (Correct(Y) A Y extends C, 'x)]
(2) Generate terminates, at least whenever PCConf (C).

Proof: (1) This part must be proved by induction,as Generate {s a recurgive

————

procedure. We take the following as our inductive hypothesis.

Hypothesis: Let {1, 2} index the two apply actors in the program Generate.
let P;, Ai, R'i be the corresponding Iinks (procedure, argument and result,
respectively) for apply actor 1,
Let § = A ."Sol", 4
Then

«'Proc', A,.'Conf',

10 Bys © i 1

Vi:1s 1< 2: Py referato Generate =
[SPValid(Si} APCConf(Ci)A ProcOK(Pi}
A (¥X: Correct(X) A X extends Ci.'x' = ~(Si contains X))
= SPValid(E.i') A (Y Ri' contains ¥ « S, contains Y
V (Correct(¥) A Y extends c.'zx'))]

The reader is referred to the diagrame of the Generste program for the binding

of the varicus identifiers used in the proof,

Cf, Pr, Sn = Ag.'Conf’, Ag.'Proc', Ag.'Sol' (Select)
=C, P, § (defn)
and Rg' = if b(C,P,5) then £(C,P,8) else g(C,P,8) (conditional)
Now Db(C,P,8) = (C.'n' = 8) (program for b)

So there are two cases in the proof that Rg' has the desired properties,

Cagse 1: C.'n' =8

In this case Rg' = zf' (see the program for £)
Now Al = append 'Sol':§ te C
Sa Al,"Sol' = g (append axiom)
and SPValid(S) (agsumption)
and PCConf (C) (assumptian)
But C.'n' = 8 (this case)
So CConf(C) {defn 6)
So Cerrect(C. 'x') (Lemma 2)
But Al 's' = ¢.'x' (append axiom, since 'x' F 'Sal")
Now ¥X: Correct(X) A X extends C.'x' = ~(S contains X) (asgumption)
But C.'x' extends C.'x' (extends is reflexive)

and Correct(C, 'x") (above)

43w

So ~(3 contains C.'x")

And Al.'x' = Q. 'x'

Now let 8, X, = Al.'sol', Al.'x'

Then SPValid{Sl) A Correct:(xl] A ~(sl contains xl)

Now ProcOK (P} (assunption)

B0 P.'pr’ refers to Print (defn 9)

And Pl = P, 'pet’

So SPValid(RL') A V¥: (RL' contains Y < §, contains Yv Y = Xl) (Lerma 1)
Now assume Y = Xl

Then Correct(Y) (since Gorrecl:(xl))

and Y extends £ (extends 1is reflexive)

Conversely, assume Correct(Y) A Y extends Xl

So Correct(Y)

So (Vi.’YhﬁiﬁO;i(B) {(defn &)

But Correct (Xl) (agsumption)

8o (vi: xl has 1 =0 <1< 8) (defn 49

But Y extends }[1

So vi: X, has i = Y has i AR .dl=Y.d (defn 8) .
So Vi: X, has { & Y has 1

and Vilellggirxl.i=Y.i

ie. Y= X {equality of structures)

So ¥ Xl = Correct(Y) A Y extends xl
So, substituting in the result of applying Lemma 1 abova,
SPValid(R1') A (¥Y: R1' contains Y o S1 contains ¥ v (Correct(Y) A Y extends Xl))

as required. (zince 4 =0C.'x")

Case 2: C.'n' # 8

PCConf (C) (agsumpticon)
So C<cC.'un' 58 (by the same argument as at the start of the proof
oF Lemma 3)
But C.'n" # 8 {this casge)

So 0« C.'n' « 8

In this case Rg' = Zg'. (See the program for g.) 2Zg' is part of the output of
an iteration, and we prove its properties in the usual way,
We take the following predicate ag our invariant for the iteration:

i3

P(h, C, P. S} =
OshsBAC=CfAP=PrASPValidCS)
A [¥Y: S containg Y » (Sn containsg Y
V (Correct (Y) A Y extends C.'x' AY.N < h)]
where N = Cf, 'p!

We must first show that P holds for the input values ro the iteration:
i.e. that P(ho, Cf, Pr, Sn) holds.

(a) h0=0,5005h058
®){c) ¢Cf = cf, and Pr = Pr
(d) SPValid(Sn) (assumption for Generate)
(e) Suppoee for some Y, Correct(Y)
Then PCorrect (Y) (defn 4)
And (‘Vi:Yga;_a__iaOsi'(B) {(defn 4)
So Vi: 01 <B8:0<cv,i¢7 (defn3,puttingn=8)
In particular 0 < Y.N (Since 0 < N < 8, thia casge)-.
S0, since ho = , (abave)

Correct(Y) = Y.N ¢ ho
i.e. #Y: Correct(Y) A Y.N < ho A ¥.extends Cf, "x! -,
So (Vv¥: 8n containg Y o (5n contains Y

V (Correct(Y) A Y extends Cf.'x' A Y.N < h;D]))

So P(ho’ Cf, Pr, Sn) holds.

We must now show that P ig preserved by the body gl, whenever
blch, C, P, 8) ia true. That 1is to say, we must prove for the program gl:
P(h, €, P, Sy AbL(R, C, P, 8) | P(k', C', P', 8')

We prove each clauage of the required result in turn.

{a) bl(h, C, P, 8) {assumption)
So h<38 (program for bl)
And P(h, C, P, S) (assumptioen)
S50 0chxag {defn of P)
83c 0<ch<a3g
But h' = h + 1 +1 azctor)

So 0 <h'<8 as required.

(b)
Bur
So

Y-

Gt a @ {program for g')
C = CE (assumption, since P(h, ¢, P, 8))
c' = Cf,

(¢) Similarly, P' = pr.

(d) S' = if b2¢(h, C, P, 5) then f2(h, C, P, S) else g2th, ¢, P, 8)
So, coneidering the program for b2, we let

N, COL, UP, DOWN = C.'n', C.'Col", C.'Up’, C.'Down'

o Cnm, Cc, Cu, Cd = N, COL, UP, DOWN (Axioms for select)

And

b3 = COL has b {Axiom for exists)

Similarly b4, b5 = UP hag h - N, DOWN has h+N

And

Zb' = b3 v b4 v b5 (Axiom for v)

(COL has h) v (UP has h-N) v (DOWN has h +N)
~(~(COL has h) A ~(UP has h~N) A ~(DOWN has h +N))

For S' we must consider two caged.

3

1.

Zb' iz true.

Then §' = £2(h, C, P, §)

=3 (program for £2)

But SPValid(S)
SPValid(S') as required

S0

Case 2,

Zh!

is falae

L.e. ~(COL has h) A~(UP has h~N) A ~(DOWN has h +N)

Then

8' = g2(h, ¢, P,)

= 31! (program for g2)

It may readily be verified (the task ig left to the reader) that

Now

i.e,

~(COL has h) A ~(UP has h - N) A ~(DOWN has h+N) (

c2 = AddNewQueen - (c, h)

0d<h<8 (above)

O<chg?

PCConf (C) (aasumption for Generate)

N< 8§ (above: thia case of outer conditional)

PCConf (c2) {Lemma 4)
X2 = c2,Tx!
X1l = CF.'x"

(Conditional)

this case of
inner conditional)

_45-

Now X2 extends C, 'x' (Lemma 5)

and C =¢Cf

So X2 extends X1

S0 ¥X: X extends X2 = X extends X1 (extends is transitive)
So ¥X: Correct(X) A X extends X2 = Correct(X) A X extends X1
But VE: Correct(X) A X extends X1 = ~(8n contains X)

(agsumption for this lemma)
and VX: B containg X e Sn contains X

YV (Correct(X) A X extends X1 A X.N < h) (since by .assmuption
P(h, C, P, 8))

So, gince

VX: Correct(X) A X extends X2 = ~(Sn contains X)

we have
VX: Correct(X) A X extends X2 = (S contains X = X.N « h)
But if X extends X2,

Vi: X2 has 1 = X has 1 A X.1 = X2.1 (defn 8)
But: X2.N = h (by defn 7)
So VX: X extends X2 = X,N = h
So VX: Correct(X) A X extends X2 = ~(S contains g .
Now p2 = P, "gen! (axiom for select)
And ProcOK (Pr) {asaumption for Generate)
And P = Pr (assumption: P(h, C, P, 8))
So pZ refers to Cenerate (defn 9)
And A2 = Structure('Sol';:s, Proc’:P, 'Conf':G2)
S0 S, P, C2 = A2.'S01", A2, 'Proc', A2, 'Conf'. (Structure)

So since S5PValid(8) A PCConf (C2) A ProcOK(P)
A (¥X: Correct(X) A X extends C2'x" = ~(S contains XN
we have, by the inductive hypothesis:
SPValid(R2') A (V¥: R2' containg Y e § contains Y
Vv (Correct(Y) A Y extends £2.'x"))
In particular, since §' = g2’
SPvalid(S') as required.

(e) We mst prove
VY: S containg Y e« (Sn containg Y
V (Correct(Y) A Y extends C'.'x' A Y.N' < h'))
where N = ¢', 'p!
We know h' = h +1 and C' =¢ = Cf,

-~

So, letting N = Cf."™n' as befare, we are proving
YY: 5 containa Y & (Sn containg Y Vv
(Correct (¥) A ¥ extends C,'x' A Y.N < h))

YY: S containa Y & (Sn contains ¥
v (Correct(Y) A Y extends C.'x' AY.N < h)
V (Correct(Y) A Y extends C.'x' A Y.N = h)
Again, as in part {(d), we must geparately consider two cageg according as
zb' 18 true or false.

fase 1. zb' iz true
L.e. (using the same notation as before):
~(~(COL has h) A ~(UP bas h~N) A ~(DOWN has h +N))
Let XI = Cf.'x"'
Now consider H = AddNewQueen(C, h)
Let Xh = H, 'x'

Then Xh = append N:h to X1 (defr 7)
So ~PCorrect(Xh) (Lemma 3) -,
Nowe PCConf{(C) {assumption)

- 8o (vi: X1 has { @ 0 < 4 <.N) {defn 5)

So, by the axion for append :
{(vi: Xh has { & O<1<Nvi=nN)
And 0 < N< B (for this case of outer conditional)
S50 if M=HN+1
OsMsSAWi:}m]_l_ggihOs i< M)
But since, by Lemma &
X extends Xh A Correct(X) A {7m: 0<cme 8 A (Vi ¥h has 1 « 0 g i < m)}
= PCorrect(¥h)

and we know ~PCorrect (Xh) (above)
We have #X: X extends Xh A Correct(X)
Now X extends ¥h =
¥i: Xh has 1 = X has i A X.1 = Xh.{ (defn 8)
But Xh = append N:h ro X1 ‘ (above)
So v1:)ﬂ1_h_¢y_ini=brvxlﬂs_i (append axiom)
So X extends Xh

=XENAX.N=hA[Vileﬁi#xhﬁi/\x.i-xl.i}

-47-

i.e. X gxtends Xh = X extends X1 AXhas NAX.N=h

So #X: X extends X1 A Correct(X) AX.N = h
So 8o contains Y v (Correct(Y) A Y extends X1 AY.N<h)

& 8n contains Y v (Correct(Y) A Y extends X1 A Y.N < h)
But ¥Y: S contains Y & Sn containa ¥
v (Correct(Y) A Y extends X1 A X.N < h)
(since P(h, C, P, 9))

50, since 8" = § for thig case

¥Y¥: 8' contains Y = Sn contains Y
Vv (Correct(Y) A Y extends X1 AX.N g h) as required.

Case 2, 2zb' is falge

For i:his case we have already proved (case (d) above)
VY: S' contains Y & S contains ¥
V (Correct(Y) A Y extends C2. 'x*)
Lat C2.'x' = x2

Then X2 = append N:h to x1 (above)
(where X1 = C. 'x', as before)
30, by the argument used in cagse 1 = .

Y extends X2 s Y extends X1 A Y.N = h
So ¥¥: S' contains Y « S contaipa Y v (Correct (Y} A Y extends X1 A Y.N=h)
But, since we are assuming P(h, C, P, §),

VI: S contains Y « Sn contains Y v (Correct(Y) A Y extends X1 AY.N < h)
So ¥Y: 5" contains Y = Sn contains Y

V (Correct(Y) A Y extends X1 A Y.N £ h) aa required

S0 we have proved

P(h0, CEf, Pr, Sn)
and P¢hy C, 2, 8) ADLGh, C, P, 5) P(n', C', P', §"
S0 by the iteration induction rule, we have

P(RO', CE', Pr', Sn') A ~bl (hd', cf', Pr', sn")

0< hO' < 8 A CFf! = CE APr' = Pr A 8FValid (Sa')
A [¥Y: Sn' containsg Y = Sn containg Y

V (Correct(Y) A Y extends Cf'.'x' A Y.N < h0")]
ANBO' > 8

where N = Gf, 'n’'.

~43-

S50 h0' = 8
Now 1f Correct(Y)
we have, from definitions & and 3:

Vi: 0xi<8:0<cv.ic 7
And we know 0 < N < 8 (this case of outer conditional)
80 Correct(Y) = Y.N < §
50 Correct(Y) A Y.N < h0' o Correct(Y)
So, since zg' = Sn’, we have in particular:

SPvalid(zg') A [VY: 2g' containa ¥

o (Sn containa Y v (Correct (¥} A Y extends Cf."x'"M]

This concludes the proof of Lemms 7 part 1,

Froof aof Part 2:

This is straightforward: for the recuraion we can order the

set of poassible arguments for Generate according to:
8 - (Ag.'Conf').'n’
Since PCorrect(Ag.'Conf') fs an assumption, we have
0 < (Ag.'Conf').'n' < 8.
8o the ordering expression is always non-negative, and the get is well-
founded, Moreover, for the only recursive call, it has alrea&} been
verified that
(AZ.'Conf'), 'n' = (Ag."Conf’), 'n' +1
So the argument is less than the original argument in the ordering,
as required for termination.
Similarly, for the iteration, we order the set of poagible input
and output values according to
8 -h
Since 0 ¢ h < 8, thia algs is always non-negative, and the set is,
therefore, well-founded. And, since
h! =h+1
the input tuple is mapped into a lesser one by the body, as required
for termination.

Theorem (1) A = nil —

SFValid(R') A (¥¥: R' contains ¥ o Correct(Y))
(2) The main pragram terminates.

-49-

Proof: (1) (See the main program diagram for the meaning of the
identifiers used.)
We wish to show that A0 satisfies all the agsumptions of the Generate
theorem., Now,
AQ = Structure('Conf': C0, 'Sol': 50, 'Proc': PQ)
So €0, SO, PO = AQ, 'Conf', A0.'Sol', AQ.'Proc’

(8) S0 = Structure('k’:0, '"W'inil)
S0 80.'k" = ¢
So 80.'k" = 0
And (Wi: 15 j < 80.'k’': %)
where ¥ is any formula, as {311 < § £ 0} is empty.
S0, in particular,
SPValid(S0) as required,

(b) cO = Structure('n':0, 'x':nil; 'Col':nil,
'Up':nil, 'Down':nil)
We must show PCConf (C0)
(1) We claim that O satisfies the existential quantifier in

PCorrect(nil) (defn. 3) '
(1) 0s0¢38
(2) #i: nil has i (nil axiom)

and #i: 0 c i <« 0O
So Vi: (nil hags i » 0 < £ < 0)
(3)-(4) The remaining clauses are trivially true, as the
universes of quantification are empty,
So PCorrect((@. 'x")
(i) co.'n' =9
o #1:0¢ i< C0.'n?
But #i: (C0.'x") hasg 1 ((€0.'x') = nil)
So wi: (€0.'x") has i « 0 < 1 < 0, 'p!
(1i1) €0.'Col' = nil
50 Vk: ~((CO.'Col’) has k) (ail axiom)
Algo #i: 0 < i < CO.'n' (since CO.'n' = Q)
S0 ¥k: 0 g kg 7: (CD.'Col") has ke 7i: 0 < { < CO.'n":
((€0.'%").1) = k
(iv)(v) Similarly for the other two clauges,
So PCConf(C0) as required.

-50-

(c) We can easily see that PO."'pr' refers Lo Print and PO.'gen' = go,
and g0 refers to Generate
80 ProcOR(PQ) as required.

(d) 80,'k' = (above)
So BL: 1 <t < S0.'k’
So VX: ~(80 contains X) (defn. 2)

So VE: Correct(X) A X extends CO.'x' = ~(80 contains X)

as8 required,

So AQ sacisfies all the agsumptions of Lemma 7, and g0 refers ko

Generate
S50, by Lemma 7
SPValid(R') A (vv: R' containg Y « 50 contains Y
V {(Correct(Y) A Y extends CO."'x"))

Now ¥Y: ~(80 containg ¥) (above)

Also, aince yi: ~((CO.'x") hag 1) (since CO.'x' = nil)
YY: Y extends CO.'x’ (defn. &)

So

SPValid(R') A (VY: R’ contains Y « Correct(Y)) as required

Part (2): The proof of termination ig trivial, since we have proved chat
Generate terminates, and the main program is therefore an acyelic com-
position of actore each of which terminateg.

-51-

References

[1]

f2]

31

f4]

[5]

[6]

R. W. Floyd. Assigning meanings to programs. Proc. Amer. Math. Society
Sympogium in Applied Mathematica 19 (1967),19-31.

C. A. R. Hoare, An axiomatic basis for computer programming.
Comm, of the AMM 12 (1969), 576-580, 583.

J. B. Dennis. First Version of a Data Flow Procedure Languape.
Computation Structures Group Memo 93, Project MAC, M.I.T., 1973.

J. B. Dennis and J. B, Fosseen, Introduction to Data Flow Schemas.
Computation Structures Group Memo 81, Project MAC, M.I.T,, 1973.

G. Kahn., A Preliminary Theory for Parallel Erograms. Internal Memo,
IRIA (Laboria), 1973,

E. W. Dijkatra, Notes on structured programming. Section 1 of-Structured
Programming by 0,-7. Dahl, E. W. Dijkscra and C, A. Hoare,
Academic Press, London and New York, 1972,

