LABORATORY FOR MASSACHUSETTS
INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

e)

A Note on CLU

CSG Memo 112-1
November 1974
Revised June 1975

Barbara Liskoy

This work was supported by the National Science Foundation under research grant
GJ-34671.

L -)

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Introdyction

Our work on quality software concerns the development of toolas and techniques
which aid in the production of software thar is corrace, modifiable, underatandable,
and transferable. A major research effort of the previous year has been the design
of GLU, a language gystem Lo support stryctured programming, by a group of studentg
and faculty led by Professor Liskov. This work is motivated as follows: We be-
lieve that a significant improvement in software quality will resylt from the
use of programming methodologies which aid the programmer in discovering
correct and understandable problem solutions., Two promiging methadologies
have been described in the literatu;e: structured programming [1] and
modularity [2, 3},

Unfortunately, it {is not eagy to apply rthe methodologies to practical
software problems. The methodologies are degeribed by means of some ‘&ule{ of
thumb™ {llustrated by examples of "toy" problems. It is difficult to extra-
polate from such descriptions to real situations, and conscientious atrtempts
to apply the methodologies way fail [4]. 1In addition, even if the PrOETammer
succeeds in producing a design, the task of mapping the design into a pragram.
can be difficult and often introduces errors.

We believe the best approach to deve;oping 2 methodology that will serve
48 a practical tool for progr&m construction is through the design of a pro-

gramming language such that problem solutions developed using the methodo logy

_are programs in_Phe laquage. Severalhbenefits accrue from this approach.

—_—

First, gzince designe produced uging the methodology are actual pProgramas,
the problemg of wapping designs into programs do nqpt require independent

treatment, ' Second, completeneas and precision of the language will be

-3-

of a set of operatione [5]. We developed a set of criteria about the way

abatract data types should be handled :
1. A data type definition must include definitiong of all
operations applicable toc objects of that type,
2, A user of an abstract data type need not know how objects of the
type ﬁre Trepresented in storage,
3. A user of an abstract data type may manipulate the objects only

through the cype's operations, and not through direct manipuistion

of the atorage representation.

This last criterion ins;res that the operations provide a complete description
of the behavior of the type, and emhances the modifiability and provability of

Programs,

Analysis of Exfsting Languages

J. Aiello atudied a number of existing languages to determine whethsr they

could meet the data sbstraction needs of structured programming {6]. The criteria

used wnré those described in the Preceding paragraph. Programs were written in
the selected languages to define selected data type examples.

The first language analyzed was PL/I. PL/I is degcribed by IBM as an
all-purpose languasge, but like many conventiongl languages (FORTRAN, ALGOL),
fails to provide the user with a means for constructing data types. Analysis
of PL/I ravealed alternative mechanismg, for example, the miltiple-entry pro-
cedure, which could be used for type definitions, and abstractions were pro-
grammed uaing these mechaniema. None of the programg gatisfied all the
crite;in. Criterion 3 proved egpecially difficult, and attempts to gatisfy it
led to programs whose complexity greatly excedddd that of the abstraction being
Proprammad ,

The next language, Pascal [7), was chosen Secausa.it provides numerous

data structuring facilities. Pascal does gsupport data type definitioms, but

Since Simula came so close to satisfying our criteria, we imvestigated
the pogsibility that some simple changes to the gsemantics of the language
would result in acceptability, However, we found that ﬁhis augmented STMULA &7
failled in other respects (for example, representing cperations that take mere
than one argument of abstract type),

As a result of this Study, we concluded that existing languages, even
with minor modifications, do not support abatract data typea, and therefore thai

a new language must be developed for this purpose.

‘The Structired Programming Langusge, CLU
We are designing a structured programming language, called CLU, to permit the ab
gtractiona introduced during program design to be easily defined via CLU modules,
Two kinds of modules gre supported by CLU: procedures, which support abstract opera-
tions, and cluaters, whicﬁ support abstract data types in a way which Eatisfies the
three criteria discussed earlier. An abatract data type is defined tao be'a set of
operations, The cluster supporting the type coﬁca%gs definigiggf of the operations.

Important featu;;;—;g CLU are;

1. CLU iz a modular programeing language/system, Each CLU module 1s an
independent entity and ia accepted by the system by itself. The
separaténess of modules 13 a conssaquence of thé view that modules
support abatra;tions. The purpose of ahstractian is to separate
use from implementation; therefore, the implementation of an ab-
straction (a module) should be treated eeparately from its use
(in another module or moduless.

2. Although each module is developed and submitted to the system inde-
pendently, a means must ba provided to permit modules to refer to

each other (so that one module can make use of the abstractfon pro-

vided by another module). To provide this facility, the CLU system

Example of a definition of an abstract dats type
An example of an abstract data type definition is presented to illustrate thos
features of CLU which are most novel. The type to be defined is that of integer

8ets; a reasonable set of meaningful operations for integer sets are:

create creategs an empity set
insert inserts an integer in a set
remove removea an integer from a set

.. _has tests whather a set contains a particular integer
equal tests whether two sets are the same
similar tests whether two sets contain the same integers
copy coples a set

Ordinary set behavior is desired: a set does not behave as if it contaiuns
multiple copies of the same integer.
A cluster implementing Iinteger sets is shown in Figure 1. A clubteg
. definition consists df_gg;ee.patts: o — -
1, interface description
2. object description
3. operation definitions

The interface description of a cluster dafinition provides a very brief

description of the Interface which the cluster presents to its users. It
consiats of the name of the cluster and a list of the operationa defining the
type which the cluster lmplements: e.g.,

intset = cluster is create, ingert remove, has, equal, similar, copy

The use of the resarved word is underlims the idea of a data type
being eguivalent to a group of operations; the group of operations

following is is called the is-list.

-ga

equal = oper(s, t: Evt) returns (boolaan);
return (EQ $ equal (g, t));
end equal;

aimilar = ggg(s, £: c=v£) returnsg (boolegn);
if E_f£$size(s)~#£=2$size(t) Lthen return (falge);
for 1; int := rep $ low(s) Lo rep $high(s) by 1 do
1f search(c, a[i]) > rep $ high(t) then return (falge):
Eetyrn (frue);
gi similar;

copy = gper(s: cvt) returns (g¥t);
return (zep $ copy(s));
end copy;

end I{ntset
=

_Flgure 1. The intset cluster {continued),

all=

1, array limits. Each array has an upper and a lower bound and a size.
All array elements between the bounds are defined (have values);
00 array elements are defined outside the bounds.
Thrae operatfone give limit information: _
low(a) raturns thé index of the loweat defined element, or
the initially defined lower bound If the array is empty,
high{a) returns the index of the higheat defined element, or
low(a)-1 if the array is empty,

size(a) returns high(a) - low(a) + 1. |

2. growing arrays. Arrays are empty when initially created. They may grow in
either direction one element ai: a time:
create{i) returng a new empty array a with lewer bound i. low(a) =:
high(a) = 1 - 1, gize(a) = q.

extendh(a, v) a grows in the high direction by one element, and
v is stored in that element. high(a) and size(a)
increass by 1,

-
-

extendl(a, v) like extendh, but growth is in low direction.

3. accessing arrays. Arrays may be accessed and updated in the usual way,
but only elements between the bounds may be referenced. The index is
interpreted abscolutely (not relative to low(a))
fetch(m, 1) returns the value in the ith element of a
if low(a) < 1 < high(a), else error. Syntactic
"augar" is provided: fetch(a, i} may be written
ali].
store(a, i, v) stores v in the ith element of a
1f low(a) < i < high(i), else error. Syntactic
sugar iz provided: store (a, 1, v) may be written

a[i) == v

Figure 2. CLU arrays.

-13-

Some operations create naew objects of the cluster type; create

is an example of such an operation. The first thing create does is to
bring intd exiatence a-variuhl&vr:n£‘thuutapzcsenking type

T rep
It then initializes ¥ to an object of the representing type; it creates
the object by calling on a creating operation of that type:

rep $ create(0)

Thig line is an example of an operation eall which requires a compound
name to be uged to specify the operation. The first part of the name

identifies the type of the operatiomn, while the second part identifies
the oparatfon. Since rep has been defined to be equal to array of int,

the above operation call is the same as

array of int $ create(0)

Thus a call on the create operation for arrays is made,

Finally, create returns thig object by the statement

return {r)

However, the type of r 13 the representing type, while the uger of
intset expects an object of type intsat, Therefore, the creata opera-
tion must cause the type of r to change before r ig pagsed to the user
of intset, The heading of the create operation specifies that this

conversion ig to uécur:

create = oper (5 returnshigzg)
This line states that the create operation expects no fnput parameters,
and returns a singl; value. The ugse of the reserved ward cvt states
that this return value will be of rthe cluster type (intset in thias case),

and that the value being returned should be converted to the cluster

=15~

Uses of intget look very aimilar to the uses of array objects which

appear in the intget operations. Variables may be declared of type intset:
d: intget
and intset cbjects created gnd asaigned to guch variables:
s = intset $ create()
Operatione may then be applied to intsef ob jecta:
intset § ingert(s, 3);
if intaet $ has (s, 7) Lthen intset $ remove(s, 7);

- Also intset objects may be passed to procedures and to operations of other
clugtera. In every case, the CLU translator will check that the.called . ..
procedure or vperation expects an intset object in the position in which s
occurs; any other expectation will cause a type error to be detected, and the
translacion will not complete. Therefore, it is impossible for any procedure

Or operation to receive an intget object as anything but an intaet object.
—_— oo - e -

- - Acceas to the r rep of an abstract object can accur only within a cluster oparation
in which a parameter or regult 18 marked by the indicator cvt. This indicator speei-
fies that the argument or regult ig congidered to be of the ¢luster's abatract type

outside the body of the Operation; but of type rep inside the operation body .
Thus intset objects can only be accessed as objects of type rep inside the

bodies of operations of the intset cluster,

‘As was mentioned earlier, hiding an object's representation (criterion 3)
i3 necessary to ensure that the behavior of the object ig completely defined
‘in terms of the type's operations. In addition, it is benefictal to software
quality. Programs produced in thig way are easy to modify: all changes to

the implementation of a particular abstraction are guaranteed to be limited

-17-

Assigmment and Parameter Passing

The semantics of CLU ig based on a sharp distinction betwsen variables and

objects. (LU objects are the values which are manipulated by CLU programs.
Each CLU object has a unique type associated with ir. CLU objects may be

simple, e.g., integer objects

® O

or complicated, e.g., an 2rray containing integers 1, 6, 10 in elements 1, 2, 3

However, the coﬁplicatedness or gimplicity of an object can't be observed directly;
all that can be done with an object 1s to manipulate it using the oper;tinna de-
fining the object's type. Theee operations provide tha only means for making
oﬂgérvatiana about objects of the type, and the operations completely define the
behavior of the objects of the type. The obj-ch of gome types exhibitr mutable
behavior: some operations exigt which will change the interior of an object
without changing the object's identity. Array objects have mutable. bahliavior;

for example, the gtore operation, if asked to change the first slement of the

array above to (:) » Will modify the array object iftself, so that 8t the

completion of the operation the object lacks like

-19-

the procedure or operation heading are congidered to be variables; thus

f = proc (s: array of iant, i: kat)

containg the declaration of two variables s and i. When a procedure or op-
eration fs invoked, the declaratioms take effect, and the variables are
initialized by assigning the actual parameters to them. For example, if t
ig an array containing 3, 6, and 10 in elements 1, 2, 3 then

£(t, 2)
is a legal call of f; it causes variables s and i to be created, and
assignments

a -ttt

=2

to be executed. The result of the ecall ;f f is illustrated in Figure 3a.

The reason that parameter paasing in CLU is unusual 1s that asgignment
to the formal parameters of a procedure or operation does not affect the actual
éa;;meters. If x 13 an array containing 4 in element 1, and the aséignmnnt

| 8 (=-x: | |
cccurs inside f; the result is that s now denotes a different chject, but t
is unaffected. Figure 3b flluatrates tﬁe effact of 8 = xx.

Because assigmment to formal parameters inside of procedures cannot affect
the actual parameters, CLU parameter passing is not call by reference, and one
kind of side-effeet is eliminated in CLU. We call our parameter'passing call
by sharing, because the objeck being passed is shared, as illustrated in
~ Figure 3a. Information can be exchanged between calling and called procedures by
. changing the state of the shared object (if its_type exhibits.atate behavior).
Changing the state of an object received as input is the only kind of aide

effect a CLU procedure can have,

-21-

Equality
In addition to the primitive notion of aggignment, a primitive notion

of equality is often required in order to write meaningful programs, How-
ever, unlike agsigmment, which hag a type-independent meaning and can be im-
plemented automatically, equality has a type-dependent meaning. Therefore,
it 18 not possible to provide an avtomatic {implemencation for equalfry.
Instead, each cluster must include an equal operation (the operation which is
named “equal™) to provide an implementation of equality which ig meaningful
for the type being defined,

Although the meaning of equality ts type-dependent, some general state-
ments can be made about rhe meaning of equality which will help the cluster
definer provide the correct definition of the equal operationm. First, we can
state what we expect equaiity to mean. Intuitively, two objects are equal if,
at any time in the fucure one can be substituted for the other without * any
. resuiting detectnble difference in program behavior.

Suppose T 18 a type, sl and s2 arse objecta of type T, and ol, ..., on are
operations of type T, If el has been determined to be aqual to s2 by an
application of the equal operntion for T at time t, then at - any time
~t'>t, any application of operatiom ol, -+:> 0n to object sl must provide
precisely the same results” as that operation applied to 82, where
"precisel} the same results" is measured by using the equal operation

for the type of the resulting object.

In trying to apély the above criterion when d?fining a type, {t ig helpful
to distinguish between constant and mutable types. For constant typea, two
objects are equal if the values ingide them are equal insofar as the other op-
erations of the type are able to distinguish. For example, two complex numbers
are equal if their real and imaginary components are equal; two strings are

equal if they contain the same characters in the same ordar.

For example, in the search operation of intset, the expression
1 =s[]]
means
int § equald, s[j])

Since the meaning of equality is 8o constrained for mutuable types, it is
useful to have other concepts of equivalence supported by other cluster opera-
tiona. Ome such definition is associated with the operation name "similar':
two objects are similar if their contents are gimilar, insofar as the other

cparations of the type are able to distinguish. Thus, for al and a2 above,
arrgy of int § aimilar(al, a2) = true

Another example is the similar aperation of intset (Figure 1); two intset

objects are similar if they contain the same integera, regardless of the order
in which the integers are stored. Note that for both constant and mitable typea,
equality of nhjécta implies similnrity. The definer of a cluaster has ;o obli-

gation to provide a "similar" operation.

Copying

Often a user does not wish to have two variables share an object, or to
share an object with a procedure he calls. Sharing of objects between two vari-
ables is dangerous because a change to the uﬁject through one of the varisbles
affects the other variable. For example, sfarting from the situacion {n Figure 3b,

af{l) = 5

is executed, the result ie that x[1] will now return (:) . Copying objects is
much safer than sharing because such anomolies don't arise. However, the meaning
of copy is not defined by the CLU semantics; instead copy (like egqual) is an op-
eration which must be defined for each abstraction by giving an operation defini-
tion in the cluster. The reason for this is rhat the meaning of copy may be ab-

straction dependent; in fact, some abstractions may not even have a copy operation.

-25-

Type-generators differ from ordinary cluaters in that they define a whole
class of types, rather than a single type. Conventionsal programming languages
contain one or more built-in typa-generatoraf An example of such a type
generator is the array. An array defines an access mechanism which i3 inde-
pendent of the type of data which is stored In the array. Wwhenever an array
is to be used, the program must specify what type of data the array is to con-
tain; e.g.,

array of fnt
array of string

Type definitions like these can be viewed as selecting a barticular array-
type from the class of such types which the array type~-generator defines.

CLU permits the programming of clusters which define type-generators
rather than types. An example of the ger type-generator is ashown in Flgure 4.
The set clugter is very similar to the intset cluster shown in Figu;; 1. The
“two clusters differ only in that the set cluster makes use of a type
parameter to define the type of element in the set, and everywhere the intset
cluster used the type int to define the types of set element, the set cluster
uses the type parameter.

The interface description for set identifies it as a type-generator by

the presence of the cluster parameter
set = cluster[etype: E!Bﬁl 18 create, insert, remove, has, equal, copy
All clusters defining type-generators take..one or more cluarar parameters.
The rep for set is now | |
ISP - 8xgay gf etype
The rep gtill mekes use of the array type-generator, but it selects the

Particular array-type using the type parameter of the cluster.

-27-

In addition to appearing in the cluster interface definition and in the
cep definition, the cluster parameter iz also used to define the types of input

and output parameters of operations; for example

insert = oper (s cvt, i: etype)
Finally, the set cluster makes use of some of the etype operations, For ex-

ample, in the search operation, the equal operation of etype is used:

etype $equal(i, a[j])

A user-defined type-generator defines a wﬁole clags of types just like
the built-in type-generator array. does, and the rules for using type-
generators are the same in either case, First it is neceasary to state
preciasely what type is desirati. This is done by using a type definition in
which values are spacified for the clugter parameters of the type gemerator;
for example - : oo

- intset = ger[int]

newset = set{set [ine]]

As with primitive type generators, such definitions can be viewed as: gelecting
particular sét—types from the class of types defined by the set type-generator.
Once a type has been defined, it can be used to declare variables and

make operation calls, B.E.,

8! intget := intset $ create(};
t: intset := intset $ copy(a);

88: newset :x newset $ create();

newset § insert(as, 8);

