LABORATORY FOR
COMPUTER SCIENCE

MASSACHUSETTS

INSTITUTE OF
TECHNOLOGY

~

A Note on CLU

CSG Memo 112-1
November 1974
Revised June 1975

Barbara Liskov

This work was supported by the National Science Foundation under research grant

GlJ-34671.

.

J

L

545 TECHNCLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

HE = =l ==i= N

= = — .

LI - - - - - - - - -
B l. - - B -
- - - L - L - - IIIIII - -
- - - -
- - - - - - - N . -
- - - - - -
- - - L L - - - — = = =
B D =l = &= e HE = - - N = = - o= - - - H ==
-
AN B Emn I EEEn - I AN n - LI _— - I N -
- - —m - - - -
- -
N W
=- - = - = o= - H = = - - u - =- Bl - -

Introduction

Our work on quality software concerns the development of tools and techniques
which aid in the production of software that is correct, modifiable, understandable,
and transferable. A major research effort of the previous year has been the design
of CLU, a language system to support structured programming,by a group of students
and faculty led by Professor Liskov. This work is motivated as follows: We be-
lieve that a significant improvement in software quality will result from the
use of programming methodologies which aid the programmer in discovering
correct and understandable problem solutions. Two promising methodologies
have been described in the literature: structured programming [1] and
modularity [2, 3].

Unfortunately, it is not easy to apply the methodologies to practical
software problems. The methodologies are described by means of some 'rules of
thumb'" illustrated by examples of '"toy'" problems. It is difficult to extra-
polate from such descriptions to real situations, and conscientious attempts
to apply the methodologies may fail [4]. In addition, even if the programmer
succeeds in producing a design, the task of mapping the design into a program
can be difficult and often introduces errors.

We believe the best approach to developing a methodology that will serve
as a practical tool for program construction is through the design of a pro-

gramming language such that problem solutions developed using the methodology

are programs in the language. Several benefits accrue from this approach.

First, since designs produced using the methodology are actual programs,
the problems of mapping designs into programs do not require independent

treatment. ' Second, completeness and precision of the language will be

reflected in a methodology that is similarly complete and precise. Finally,
the language provides a good vehicle for explaining the methodology to others.
Our research in the area of programming methodology led to a methodology [3]
which combines structured programming with modularity. _The fundamental activity
taking place in structured programming is, in our opinion, the recognition of
abstractions. Structured programs are developed by repeated analysis of a
problem into subproblems to be solved by program modules. Each module is a
program written to run on an abstract machine providing just those abstractions
(data objects and operations) suitable for the problem being solved. The ab-
stractions in this machine, if not already present in the programming language
being used, are thenrealized by means of further modules. The result of this
process is a program structure in which each element is a module developed
to support an abstraction. The simplicity of this structure, and hence the
understandability and provability of the structured program, is directly de-
pendent on a wise choice of suitable abstractions.

We have studied what kinds of abstraction are useful in writing programs,
and how such abstractions may be represented in programs. Two kinds of abstrac-
tion are recognized at present: abstract operations and abstract data types.
Abstract operations are naturally represented by subroutines orv.ppocedures,
which permits them to be used abstractly (without knowledge of details of
implementation). However, a program representation for abstract data types
is not so obvious; the ordinary representation, a description of the way the
objects of the type will occupy storage, forces the user of the type to be
aware of implementation information.

We believe that the user of an abstract data type is interested in how

the type's objects behave', and that the behavior is best described in terms

of a set of operations [5]. We developed a set of criteria about the way

abstract data types should be handled:
1. A data type definition must include definitions of all
operations applicable to objects of that type.
2. A user of an abstract data type need not know how objects of the
type are represented in storage.
3. A user of an abstract data type may manipulate the objects only
through the type's operations, and not through direct manipulation

of . the storage representation.

This last criterion insures that the operations provide a complete description
of the behavior of the type, and enhances the modifiability and provability of

programs.

Analysis of Existing Languages

J. Aiello studied a number of existing languages to determine whether they
could meet the data abstraction needs of structured programming [6]. The criteria
used were those described in the preceding paragraph. Programs were written in

the selected languages to define selected data type examples.

The first language analyzed was PL/I. PL/I is described by IBM as an
all-purpose language, but like many conventional languages (FORTRAN, ALGOL),
fails to provide the user with a means for constructing data types. Analysis
of PL/I revealed alternative mechanisms, for example, the multiple-entry pro-
cedure, which could be used for type definitions, and abstractions were pro-
grammed using these mechanisms. None of the programs satisfied all the
criteria. Criterion 3 proved especially difficult, and attempts to satisfy it
led to programs whose complexity greatly excedddd that of the abstraction being
programmed.

The next language, Pascal [7], was chosen because it provides numerous

data structuring facilities. Pascal does support data type definitioms, but

not in sufficiently abstract form. A Pascal type definition merely specifies
the storage representation of the new type in terms of existing data types.
There is no provision for conmecting the new type and the meaningful opera-

tions on objects of that type. So criterion 3 is not met.

" ELL [8], the next lamgusge ®xamined, is-an extensible language;
that is, ELl. pravides. the useti! with-m number of facilities: for defiming
extensions so that the programmer can shape the language to the problem at
hand. Using some of these facilities we were able to construct data
abstractions -- but only in a limited sense in accordance with our criteria.
The main problem is that ELl only permits four operations, preselected by the
language designer, to be associated with a type definition. The preselection
and limited number of operations restricts abstraction power: abstractions are
forced to fit into the four-operation mold provided by the language &esigner.
One result is that the ELl_code produced did not necessarily reflect the sim-
plicity of the conceptual solution to the given problem. In addition EL1
provides a facility which converts an abstract type to the representing type.
This facility does permit additional operations to be programmed, although they
have no special connection to the type, but it violates criterion 3.

The final language examined was SIMULA 67 [9], designed as a general pur-
pose simulation language. This language provides the closest match to ab-
stract data types in its class comstruct. A Simula class may be viewed as a
type-definition, and as part of that definition, the programmer may include
all the operations which make sense for the objects of the new type. Un-
fortunately SIMULA does not constrain access to the objects to occur only

through the operations, and thus violates Criterion 3.

Since Simula came so close to satisfying our criteria, we investigated
the possibility that some simple changes to the semantics of the language
would result in acceptability. However, we found that this augmented SIMULA 67
failed in other respects (for example, representing operations that take more
than one argument of abstract type).

As a result of this study, we concluded that existing languages, even
with minor modifications, do not support abstract data types, and therefore that

a new language must be developed for this purpose.

The Structured Programming Language, CLU

We are designing a structured programming language, called CLU, to permit the ab-
stractioné introduced during program design to be easily defined via CLU modules.
Two kinds of modules are supported by CLU: procedures, which support abstract opera-
tions, and clusters, which support abstract data types in a way which satisfies the
three criteria discussed earlier. An abstract data type is defined to be a set of
operations. The cluster supporting the type conta@ps definitions of the operations.
Important featuresr;f CLU are:

1. CLU is a modular programming language/system. Each CLU module is an
independent entity and is accepted by the system by itself. The
separateness of modules is a consequence of the view that modules
support abstractions. The purpose of abstraction is to separate
use from implementation; therefore, the implementation of an ab-
straction (a module) should be treated separately from its use
(in another module or modules).

2. Although each module is developed and submitted to the system inde-
pendently, a means must be provided to permit modules to refer to
each other (so that one module can make use of the abstraction pro-

vided by another module). To provide this facility, the CLU system

-6~

-——-__—___-_"—__——_H_'—__"————-_.—_— PRES

maintains a data base containing a descriptioh unit for each module

that has been submitted to it. Whenever a new module is submitted to

the system, it must be accompanied by an association list identifying

for each data or functional abstraction used in this module, the
description unit of the module which the programmer wishes to have
implement the abstraction.

The only free variables which a module can contain are those which
identify other modules (via the association list mentioned above).
These variables are bound at compile-time to the appropriate modules.
No free variables remain to be bound in the translated module at run
time.

The language is strongly typed and type-checking occurs at tranmslation
time. This means that every use of a data object is checked by the
translator to be sure its type matches exactly with the expected type.
A very important part of the type checking (and one which is often
neglected) is the checking of interfaces between modules. The CLU

translator checks such interfaces completely; it is able to do so be-

cause the association list tells what module is being ca1i€5f'ZEE‘

the description unit for that module contains complete information
about the type requirements of the module. The fact that modules are
bound together at translation time insures that the translator's
assumptions about what module is being called, and hence what the type

requirements are, are valid at execution time.

An example of an abstract data type definition is presented to illustrate those
features of CLU which are most novel. The type to be defined is that of integer

sets; a reasonable set of meaningful operations for integer sets are:

create creates an empty set
insert ingserts an integer in a set
remove removes an integer from a set
~ has tests whether a set contains a particular integer
equal tests whether two sets are the same
similar tests whether two sets contain the same integers
copy copies a set

Ordinary set behavior is desired: a set does not behave as if it contains
multiple copies of the same integer.

A cluster implementing integer sets is shown in Figure 1. A cluster
definition consists of three parts:

1. interface description

2. object description

3. operation definitions

The interface description of a cluster definition provides a very brief

description of the interface which the cluster presents to its users. It
consists of the name of the cluster and a list of the operations defining the
type which the cluster implements: e.g.,

intset = cluster is create, insert remove, has, equal, similar, copy

The use of the reserved word is underlines the idea of a data type
being equivalent to a group of operations; the group of operations

following is is called the is-list.

-8-

intset = cluster is create, insert, remove, has, equal, similar, copy;

(2]
(1]
o
"

ayof &

II
B

create = oper() returns (cvt);

r: rep : E_e!_:_$create(0);
return (r);

end create;

insert = oper(s: cvt, i: iﬁ);
if search(s, i) < rep $high(s) then return;
rep $ extendh(s, 1);

return;
end insert;

search = oper(s: rep, i:int) returns @at);
for j: int := rep$ low(s) to rep $high(s) by 1 do
if i = s[j] then return (§);
return fgep $ high(s) + 1);
end search;

remove = oper(s: cvt, i:int);

E int := search(s, i);
if j < rep $high(s) then
begin
s{j]l := s[rep$high(s)];
rep $ retracth(s)
end;
return;

end remove;

has = oper(s: cvt, i:j.E)-feturns (boolean);
if search(s, i) < rep $ high(s)
then return (true)

else return (false);

e_Lc_l has;

Figure 1. The intset cluster.

equal = oper(s, t: cvt) returns (boolean);

return (rep $equal(s, t));

end equal;

gimilar = oper(s, t: g__t;) returns (boolean);
if rep $ size(s) ~=rep $ size(t) then return (false);

for i: int := rep $ low(s) to g$high(s) by 1 do
if search(t, s[i]) > rep $ high(t) then return (false);

return (true);

end similar;

copy = oper (S: -g_ﬁ) returns (_g_g);
return (cep $ copy(s));

end copy;

end intset
E —3

Figure 1. The intset cluster (continued).

-10-

Users of the abstract data type view objects of that type as in-
divigible, non-decomposable entities. Inside the cluster, however, objects
are viewed as decomposable into elements of more primitive type. The ob-

Jject description defines the way objects are viewed within the cluster,

by defining a template which permits objects of that type to be built and
decomposed. For example, the representation chosen for integer sets is

merely an array of integers:

rep = array of int

This simple representation is possible because CLU provides a powerful
kind of array of unbounded size. Although CLU arrays are primitive in the
sense that they are supported by the CLU translator, they may be viewed
just like any data type as a group of operations, and a description of the
array operations is sufficient to provide a programmer with a thorough
understanding of the array abstraction. A subset of the array operations
is described in Figure 2.

The rep description is actually a type definition: rep is defined to
be equal to the type specified on the righthand side of the equal sign.
Whenever the word rep appears later in the cluster, it means this type.

The body of the cluster consists of operation definitions, which provide

implementations of the permissible operations on the data type. An operation
definition must be given for every operation named in the is-list. Operation
definitions are like ordinary procedure definitions except the bodies of
operations have access to the rep of the cluster, which permits them to de-
compose objects of the cluster type. Operations are not modules; they may

be written only as part of a cluster.

1.

2.

3.

-11-

array limits. Each array has an upper and a lower bound and a size.
All array elements between the bounds are defined (have values);
no array elements are defined outside the bounds.

Three operations give limit information:
low(a) returns the index of the lowest defined element, or

the initially defined lower bound if the array is empty.
high(a) returns the index of the highest defined element, or

low(a)-1l if the array is empty.

size(a) returns high(a) - low(a) + 1.

growing arrays. Arrays are empty when initially created. They may grow in

either direction one element at a time:
create (i) returns a new empty array a with lower bound i. low(a) =1,

high(a) = i - 1, size(a) = 0.

extendh(a, V) a grows in the high direction by one element, and

v is stored in that element. high(a) and size(a)

increase by 1.

extendl(a, v) like extendh, but growth is in low direction.

accessing arrays. Arrays may be accessed and updated in the usual way,

but only elements between the bounds may be referenced. The index is
interpreted absolutely (not relative to low(a))
fetch(a, i) returns the value in the ith element of a
if low(a) < i < high(a), else error. Syntactic
"gugar" is provided: fetch(a, i) may be written
al[il.
store(a, i, V) stores v in the ith element of a
if low(a) < i < high(i), else error. Syntactic
sugar is provided: store (a, i, v) may be written

af[i] :==v

Figure 2. CLU arrays.

-12=-

4. shrinking arrays. Arrays may shrink from either end, one element at a time.
retracth(a) if a is non-empty, returns the value in high(a) and

reduces high(a) and size(a) by 1, else error.

retractl(a) like retracth, but for low end of array.

5. equality:

equal(al, a2) two arrays are equal if and only if they are the same

identical array.

similar (al, a2) two arrays are gsimilar if and only if they have the

same limits, and they are element by element similar.

6. copy
copy (a) returns a new array having the same limits as a,

and containing a copy of each element of a.

Figure 2. CLU arrays (continued).

-13-

Some operations create new objects of the cluster type; create
is an example of such an operation. The first thing create does is to
bring intcd existence a wariablé r .of the representing type
r: rep
It then initializes r to an object of the representing type; it creates

the object by calling on a creating operation of that type:

rep $ create(0)

This line is an example of an operation call which requires a compound

name to be used to specify the operation. The first part of the name
identifies the type of the operation, while the second part identifies

the operation. Since rep has been defined to be equal to array of int,

the above operation call is the same as

array of int $ create(0)

Thus a call on the create operation for arrays is made.

Finally, create returns this object by the statement

return «r)

However, the type of r is the representing type, while the user of
intset expects an object of type intset. Therefore, the create opera-
tion must cause the type of r to change before r is passed to the user
of intset. The heading of the create operation specifies that this
conversion is to occur:

create = oper () returns (evt)

This line states that the create operation expects no input parameters,
and returns a single value. The use of the reserved word cvt states
that this return value will be of the cluster type (intset in this case),

and that the value being returned should be converted to the cluster

type from the rep type just before it is returned.

Other operations manipulate previously existing objects of the
cluster type. For example, the insert operation inserts a given
integer into a given intset:

insert = oper (s: cvt, i: int)

insert doesn't return any values, but instead modifies the contents
of the intset object passed to it as a parameter. The use of the word

in

<
cr

c

I3

again means that outside the intset cluster, s is an object of type
intset, and that a conversion is to occur. However, in this case the
conversion is from the cluster type to the rep type, so that whenever
8 is used inside of insert; it denotes an object of the rep type.
The conversion occurs immediately after insert is entered.

The first line of inmsert

if search(s, i) < rep $ high(s) then return

illustrates the use of an internal cluster operation. The name search
does not appear in the is-list and therefore search is not available
for use by users of intset. Note that search expects an object of
type rep as its first parameter:

search = oper(s:rep, i:;gg) returns (int);

The call of search matches the type requirements because s has type
rep inside insert. The operation call of search does not require a

compound name, intset $ search, because it is an intra-cluster call.

-15-

Uses of intset look very similar to the uses of array objects which
appear in the intset operations. Variables may be declared of type intset:
s: intset
and intset objects created and assigned to such variables:
s 1= intset $§ create()
Operations may then be applied to intsef objects:
intset $§ insert(s, 3);

if intset $ has (s, 7) then intset $ remove(s, 7);

Also intset objects may be passed to procedures and to operations of other
clusters. In every case, the CLU translator will check that the.called .
procedure or operation expects an intset object in the position in which s
occurs; any other expectation will cause a type error to be detected, and the
translation will not complete. Therefore, it is impossible for any procedure

or operation to receive an intset object as anything but an intset object.

Access to the rep of an abstract object can occur only within a cluster operation

in which a parameter or result is marked by the indicator cvt. This indicator speci-

fies that the argument or result is considered to be of the cluster's abstract type

outside the body of the operation, but of type rep ingside the operation body.
Thus intset objects can only be accessed as objects of type rep inside the
bodies of operations of the intset cluster.

As was mentioned earlier, hiding an object's representation (criterion 3)
is necessary to ensure that the behavior of the object is completely defined
in terms of the type's operations. In addition, it is beneficial to software
quality. Programs produced in this way are easy to modify: all changes to

the implementation of a particular abstraction are guaranteed to be limited

-16~

to the supporting cluster since users of the original cluster were not able

to make use of any implementation details. For example, the cluster for

infset could be fewfitten to store the set elements in sort order. Users of
intset would be unaffected by this change (their programs would continue to
run correctly) although performance differences would be noticed.

Hiding the representation is also beneficial to proofs of.program cor-
rectness because it permits the proofs to be modularized along program module

boundaries.

-17-

Assigmment and Parameter Passing

The semantics of CLU is based on a sharp distinction between variables and
objects. CLU objects are the values which are manipulated by CLU programs.
Each CLU object has a unique type associated with it. CLU objects may be

simple, e.g., integer objects

® O

or complicated, e.g., an array containing integers 1, 6, 10 in elements 1, 2, 3

However, the complicatedness or simplicity of an object can't be observed directly;
all that can be done with an object is to manipulate it using the operations de-
fining the object's type. These operations provide the only means for making
observations about objects of the type, and the operations completely define the
behavior of the objects of the type. The objech of some types exhibit mutable
behavior: some operations exist which will change the interior of an object
without changing the object's identity. Array objects have mutable behavior;

for example, the store operation, if asked to change the first element of the
array above to (:) , will modify the array object itself, so that at the

completion of the operation the object looks like

-18-

Objects of type intset, defined in the previous section, have mutable
behavior too; operations insert and remove change the state of intset objects.

The objects of other types exhibit constant behavior: for such types, no opera-

tions exist to change the state of one of the type's objects. For example, inte-

gers, characters and strings have constant behavior.

CLU objects have an exiéfence indepéndent_of particular CLU programs.
They reside in the CLU universe which is like an Algol 68 heap. CLU variables,
on the other hand, only exist in programs. They merely provide a convenient
way for programs to reference objects. CLU provides a primitive assignment
operator which permits a variable to be associated with an object. Thus execution
of

x = 3

results in the variable x denoting the object (:) . CLU variables have type,
defined when the variable is declared, and an assignment is only legal when
the type of the variable and the type of the object are compatible. Compatible
means either the types are equal, or the variable's type is a union of several
types including the object's type.

CLU follows the ordinary conventions about coercing a variable to the
object it denotes whenever the variable appears anywhere but on the left hand
side of :=". CLU is unusual in not viewing an array reference or record

selector as a left hand side; as explained in Figure 2,

a[i] =~
is merely syntactic sugar for a call on the array operation, store. The
symbol a[i] is not considered to be a variable in CLU ; rather it is an
operation invocation.
The semantics of parameter passing in CLU is very straightforward but

somewhat unusual. The identifiers of the formal input parameters defined in

-19-
ariables; thus

the procedure or operation heading are considered to be v

f = proc (s: array of int, i: 225)

e

contains the declaration of two variables s and i. When a procedure or op-
eration is invoked, the declarations take effect, and the variables are
initialized by assigning the actual parameters to them. For example, if t
is an array containing 3, 6, and 10 in elements 1, 2, 3 then
£(t, 2)
is a legal call of f; it causes variables s and i to be created, and
assignments
s =-tt
i =2
to be executed. The result of the call sf f is illustrated in Figure 3a.
The reason that parameter passing in CLU is unusual is that assignment
to the formal parameters of a procedure or operation does not affect the actual
parameters. If x is an array containing 4 in element 1, and the assignment
§ ==X
occurs inside f, the result is that s now denotes a different object, but t
is unaffected. Figure 3b illustrates the effect of s := xs.
Because assignment to formal parameters inside of procedures cannot affect

the actual parameters, CLU parameter passing is not call by reference, and one

kind of side-effeet is eliminated in CLU. We call our parameter passing call

by sharing, because the object being passed is shared, as illustrated in

Figure 3a. Information can be exchanged between calling and called procedures by
changing the state of the shared object (if its type exhibits state behavior).
Changing the state of an object received as input is the only kind of side

effect a CLU procedure can have.

-20-

heap

Figure 3a. Situation after f has been called.

heap

Figure 3b. Situation after s := xx has been executed.

-21-

Equality

In addition to the primitive notion of assignment, a primitive notion
of equality is often required in order to write meaningful programs. How-
ever, unlike assignment, which has a type-independent meaning and can be im-
plemented automatically, equality has a type-dependent meaning. Therefore,
it is not possible to provide an automatic implementation for equality.
Instead, each cluster must include an equal operation (the operation which is
named '"equal') to provide an implementation of equality which is meaningful
for the type being defined.

Although the meaning of equality is type-dependent, some general state-
ments can be made about the meaning of equality which will help the cluster
definer provide the correct definition of the equal operation. First, we can
state what we expect equality to mean. Intuitively, two objects are equal if,
at any time in the future, one can be substituted for the other without any
resulting detectable difference in program behavior.

Suppose T is a type, sl and s2 are objects of type T, and ol, ..., on are

operations of type T. If sl has been determined to be equal to s2 by an

application of the equal operation for T at time t, then at any time

t' > t, .any application of operation ol, ..., on to object sl must provide

"precisely the same results'" as that operation applied to s2, where

"precisely the same results' is measured by using the equal operation

for the type of the resulting object.

In trying to apply the above criterion when defining a type, it is helpful
to distinguish between constant and mutable types. For constant types, two
objects are equal if the values inside them are equal insofar as the other op-
erations of the type are able to distinguish. For example, two complex numbers
are equal if their real and imaginary components are equal; two strings are

equal if they contain the same characters in the same order.

-22-

For mutable types, two objects are equal if and only if they are the
same identical object. The equal operations for intset (Figure 1) and for
arrays (Figure 2) are examples of such a definition. The necessity for such
a stringent definition arises directly from the requirement, given above,
that one of two equal objects can be freely substituted for the other with the
same results. Suppose, for example, that the two distinct array objects,

denoted by variables al and a2

a2

were considered to be equal. Now consider the program text:

array of int $ extendh(al, 4)

:

:= array of int $ size(al)

where i is some integer variable. Since a2 can be freely substituted for al
with no detectable difference in program behavior, the following text should

have the same behavior

array of int $ extendh(al, 4)

;

:= array of int $ size(a2)

Clearly there is a difference in behavior; the value of i in the first case is
2 and in the second case, 1. The difference arises because, for mutable types,
operations exist which change the state of objects.

Since the equal operation is present in almost every type, and its use
is very widespread, CLU provides a short form for calling it. The expression

X=Yy

is valid only if x and y are objects of the same type, and if they are, it
means

typeofxSequal (x,y).

-23-

For example, in the search operation of intset, the expression
i=s[i]
means
int $ equal(i, s[j])
Since the meaning of equality is so constrained for mutuable types, it is
useful to have other concepts of equivalence supported by other cluster opera-
tions. One such definition is associated with the operation name "gimilar":

two objects are similar if their contents are gimilar, insofar as the other

operations of the type are able to distinguish. Thus, for al and a2 above,

:

ray of int $ similar(al, a2) = true

Another example is the similar operation of intset (Figure 1); two intset

objects are similar if they contain the same integers, regardless of the order
in which the integers are stored. Note that for both constant and mutable types,
equality of objects implies similarity. The definer of a cluster has no obli-

gation to provide a 'similar' operation.

Copyin,

Often a user does not wish to have two variables share an object, or to
share an object with a procedure he calls. Sharing of objects between two vari-
ables is dangerous because a change to the object through one of the variables
affects the other variable. For example, starting from the gsituation in Figure 3b, if

s{l] :=5
is executed, the result is that x[l] will now return (:) . Copying objects is
much safer than sharing because such anomolies don't arise. However, the meaning
of copy is not defined by the CLU semantics; instead copy (like equal) is an op-
eration which must be defined for each abstraction by giving an operation defini-
tion in the cluster. The reason for this is that the meaning of copy may be ab-

straction dependent; in fact, some abstractions may not even have a copy operatiom.

-2 -

Since copying is frequently desired, definers of clusters are urged (but not
required) to provide a copy operation.
A general guideline for the definition of the copy operation, along the
lines of the one given for equality in the preceding section, is:
1. for constant types,
y := typeofx $ copy(x)
implies

X =Yy

2. for mutable types

y := typeofx $ copy(x)

implies

typeofx $ similar(x, y)

Examples of copy definitions satisfying the above guidelines are given for

arrays (Figure 2) and for the intset cluster (Figure 1).

Type Generators

The integer set example described earlier does not capture the concept

of a set as a general receptacle for values; it only defines one particular

kind of set -- a set containing integers. The.concept of a generalized set

presents a more powerful abstraction, the concept of ''setness', than does the
concept of integer set. Since the purpose of CLU is to support the use and
definition of abstractions, particularly abstractions involving data, we felt
it was important that CLU be powerful enough to permit a generalized set ab-
straction to be defined. The CLU mechanism which supports the programming of

such abstractions is called a type-generator.

-25-

Type-generators differ from ordinary clusters in that they define a whole
class of types, rather than a single type. Conventional programming languages
contain one or more built-in type-generators. An example of such a type
generator is the array. An array defines an access mechanism which is inde-
pendent of the type of data which is stored in the array. Whenever an array
is to be used, the program must specify what type of data the array is to con-

tain; e.g.,

array g£ int
array gg gtring

Type definitions like these can be viewed as selecting a particular array-
type from the class of such types which the array type-generator defines.

CLU permits the programming of clusters which define type-generators
rather than types. An example of the set type-generator is shown in Figure 4.
The set cluster is very similar to the intset cluster shown in Figure 1. The
two clusters differ only in that the set cluster makes use of a type
parameter to define the type of element in the set, and everywhere the intset
cluster used the type int to define the type of set element, the set cluster
uses the type parameter.

The interface description for set identifies it as a type-generator by

the presence of the cluster parameter
gset = cluster[etype: type] is create, insert, remove, has, equal, copy

All clusters defining type-generators take..one or more cluster parameters.
The rep for set is now

rep = array of etype

:

The rep still makes use of the array type-generator, but it selects the

particular array-type using the type parameter of the cluster.

-26-

set = cluster[etype: type] is create, insert, remove, has, equal, similar, copy;
rep = array gg etype;
create=oper() returns (gg);
return (rep $ create(0));
end create;
insert = oper(s: cvt, i: etype);
if search(s, i) < rep $high(s) then return;
rep $ extendh(s, 1);
return;
end insert;
search = oper(s: rep, i: etype) returns (int);
for j: int := rep$ low(s) to rep$high(s) by 1 do
if etype $ equal(i, s[j]) then return {j§);
return (rep $ high(s) + 1);
ggg search;
end set

Figure 4. The set cluster.

-27-
In addition to appearing in the cluster interface definition and in the
rep definition, the cluster parameter is also used to define the types of input

and output parameters of operations; for example
insert = oper(s: cvt, i: etype)

Finally, the set cluster makes use of some of the etype operations. For ex-

ample, in the search operation,_the equal operation of etype i_.s used:

etype $ equal (i, s[j])

A user-defined type-generator defines a whole class of types just like
the built-in type-generator array does, and the rules for using type-
generators are the same in either case. First it is necessary to state
precisely what type is desired. This is done by using a type definition in
which values are specified for the cluster parameters of the type generator;
for example

intset

set [E_L_E]

newset = set[set[int]]

As with primitive type generators, such definitions can be viewed as: selecting
particular set-types from the class of types defined by the set type-generator.
Once a type has been defined, it can be used to declare variables and

make operation calls, e.g.,

s: intset := intset $create();
t: intset := intset $ copy(s);

ss: newset := newset $create();

newset $ insert(ss, 8);

-28-

References
1. E. W. Dijkstra. Notes on structured programming. Structured Programming,

A.P.I.C. Studies in Data Processing No. 8, Academic Press, New York 1972,
1-81.

D. L. Parnas. Information distribution aspects of design methodology.
Proceedings of the IFIP Congress, August 1971.

B. H. Liskov. A design methodology for reliable software systems.,
Proceedings of the AFIPS 41 (1972), 191-199.

P. Henderson and R. Snowden. An experiment in structured programming.
BIT 12 (1972), 38-53.

B. Liskov and S. Zilles. Programming with abstract data types.
Proceedings of ACM SIGPLAN Conference on Very High Level Languages,
SIGPLAN Notices 9, 4 (April 1974), 50-59.

J. M. Aiello. An Investigation of Current Language Support for the Data
Requirements of Structured Programming. Technical Memo TM-51, Project MAC

M.I.T., Cambridge, Mass., September 1974.

N. Wirth. The programming language PASCAL. Acta Informatica 1 (1971),
35-63.

B. Wegbreit, B. Brosgol, G. Holloway, L. Prenner, and:J. Spitzen.
ECL Programmer's Manual. Center for Research in Computing Technology,
Harvard University, Cambridge, Mass., September 1972.

0.-J. Dahl, B. Myhrhaug, and K. Nygaard. The SIMULA 67 Common Base Lan-

guage. Publication §-22, Norwegian Computing Center, Oslo, 1970.

