MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 113
(First Draft)

Decidabilicy of Equivalence for Two Classes of
Tteration Schemas

by

Joseph E. Qualitg

This work was supported in part by the National Science

Foundation under research grant GI-34671 and in part by
funds from International Buainess Machines.

Mareh 1975

In this paper, we examine & class of computation schemas and consider
the probiem of deciding when pairs of elements in this class represgent
equivalent programs, We are able to show that equivalence is decidable for
two non-trivial classes of monadic program schemas [2,3} , and consider the
applicability of these results to more general equivalence problems.

The most general class of achemsa we consider, the iteration schemas,

consiste of those program schemas whieh may be represented by finite
sequences of asgigmment statements, conditional stetements, and iteration
statements ("while” or "until" statements). We are able ro show that
equivalence is decidable for such schemas which are free, i.e. in which tests
are not repeated, provided they satisfy either of two szets of conditions:

- They are ipdependent location schemas (the result obtained from the
exé.cution of an assignment statement is always stored in the same location
from which the argument value for the execution was cbtained) and they contain
no conditional statements; or

- They are restricted location schemas (their subschemas are independent

location) and no predicate symbol appears in more than one statement of the

schema,

I, Iteration Schemas

A (monadic) iteration schema ia a seven-tuple

5 = (L, Ly, L, 5. 02, 3, F)

where:

L is. a finite set of location symbolas.

Ly | L is a finite set of input location symbols. -

Lo L is a finite set of output locatlon symbols.

{}'is a finite set of function letters.

@ is a finite set of predicate letters.

.23 :_Ls a finite set of iteration schemas, the subschemas of S.

P - is the progray of 5, a finite sequence of statements of t:hé .fonuwing

types:

i) Assizoment statement of the form_

L., := f(Lj)

i
- or of the ferm
Li = Lj

~ where L. and L, are location symbols apd £ is a funccion leattar,

ii) Conditional starement of the form

IF L THEN S, ELSE 8
p(1 N . |
where p is a predicate letter, Li is a location symbol, and S, and

Sf are subschemas.

iii) ITteration statement of the form
WHILE p(L.) DO S;

or of the form

UNTIL p(L) DO 5,

where p is a predicate letcer, L

i

is a location symbol, and Si is a

subschema,

£ 5' = (L', L', Ly, F', P, 8", P') is a subschema of. S, then
we require that L'CL, t?" < !;3 . VAR= 6) » and at.,)' < -‘g » Also, an iteration
schema is not allowed to be recursive, i.e, it may not be a subschema of itself,

nor may it have a subschema which is a subschema of itself.

Iﬁtarnretat;gns, Computations, and Equivalence

Let 5 be am iteration schema with input location symbols I'I =
{Lil, s 3. Lik}’ predicate letters in a set of aymbols @,. and function letters

in a set of symbols 3:: Then a (free) interpretstion for S consists of:

i) The domain D of all strings in 3‘*'1{, where K is a seb of

symbqls { Ail’ rar Aik], such that Kn F is .empty.

ii) For each j, 1% j<k, the association of the string A; with the

*

: 3
location denoted by Lij’ and the association of ¢ with all other locarions.

iii) The association, for each symbol f in 3, of the total fumetion

£ .

.1 D= D defined bytpfcw} = f-uw,

iv} An association, for each symbol p in ¢ » of a tgtal pradicate

HP: D - {true, falsel.

Each interpretation for a schema defines a computation by that schema in

2 straightfomward way: we simply execute the statements in the program of the

schema in the order in which they are encountered, associdting appropriace
domain individuals with locations as required by assignment statements, and
exacuting the programs of sﬁbschemas in accordance with the values of
predicates applied during the exscution of conditional or itaration statements.
When an assignment instruction of the form L;:= Lj is exscuted, the elemeat
of the domain currently associated with Lj is asscciated withILi;'when.an
assignment atatemgnt of the form.Li:= f(Lj)_is exacuted, the values qf(ﬁl) is
associatad with Li’ where W is the element of the domain associated with Lj
at the time of execution. When a conditiocnal statement of the form

IF p(Li) THEN S_ ELSE Sg is executed, the predicatellp ié avaluated at the
element of the domain currently associated wi;h L;, and the program of S, or
of 8¢ is exscuted, according as the outcome o% the evaluation is true or

false; whan the execution of the appropriate program is completeé, execution

of the main program resimes with the statement immediately following the

conditional. Fipally, when an iteration statement of the form WHILE(UNTIL)
p{ly) IO 8; is executed, the predicate Hp is evaluéted‘at the current value
of L, and the program of S; is egecuted if the dutcome of the evaluation is
true (false); upon completiom of tha program’s execution, exscuzion of the.
main program resumes with the iteratiou statement, This cycle iz repeated
until an evaluation of Hp has outcowe false (true), at which point exscution
proceeds to the statement following the iteration st2tement. The computation
by fhe schema is complete whan and if all statements.iﬁ the program have
been executed,

. The value of a camputatign by a schema_s defined by aﬁ interpretation
I fof S-(written VAL(S,I)) is the aequence.éf values associzted wich Lt

the output locations of S when the computation defined by I is completas, and

is undefined if rhe computation fails to terminata,

Let S and §' be iterstion schemas with the same set of input location
symbols and the same set of output location symbols, Then S5 and 5' are
equivelent if and only if, for each interpretation I for S and 3', VAL(S,I) =

VAL(S',I).
Classes of Lteration Schemas - Definitions

An iteration schema 5 is an ipndependent locatiorp schema if each

asgigrment statement in the program of 8 is of the form I..1 1= f(Li.) for
some location symbol L; and some functlon letter f, and esch subachema of §
is an independent location schema.

An iceration schema S is a restricted location schema if each iteration

subschema of S is an independent location schema,

A schema S is a free schems if, for each interpretation I for S, no.
predicate is ever applied twice to the same value during the computation by

S defined by I,

A schems § is a conditional-free schema if the program of S contains
no conditional statements, and each of the subschemas of S 18 a conditional-

free achema.

Finally, a schema S satisfies Property A if no predicate letter appears
in more than a single statement in the collection of programs belonging to

S and the subschemas of S,

Conventions Begarding Input and Qutput Locations

1f our definition of independent location schem& 1s to be reascnmable,
we must require that each loeatlon of such a schema be an input location of
the schema, otherwise the location will never have a non-trivial velue
associated with it during & computation., In keeping with tradition, we shall
require each location of an independent location schema to be an output

location as well.

For convenience, we adopt the same conventions regarding input and output

locations for restricted location schemas,

Ieminology

For convenience, we shall often refer to a statement being in a schema S,
rather than stating formally that the statement ia in the collection of
programs belonging to the schema S and its subschemas, If we wish to imply
that the statement is in the program of S5, as opposed to that of one of its

subschemas, we shall do so explicitly.

We shall often want to modify schema interpretations to obtain computa-
tions differing in some respect frem those defined by the original interpreta-
tiona, Faor simplicity, we shall generally definme such modificatioms in terms
of the computstions themselves, rather than the defining interpretations. In
particular, we shall often refer to obtaining & new computation from & original
computation by changing the outcome of ascme test made during the computation,
whereas what is meant is that we may obtain the new computation by changing, in

an appropriate manner, the interpretation defining the original computation,

II. Additional Definitions

Definition: Let S and S8' be iteration schemas. Then computations C by S and
C' by 5' are congistent computations if there is an interpretation I for §

and 8' such that C and C' are defined by I.

Definition: Let § be an iteration schema with predicate letters @, and let D
be the domain of each free interpretation for 8. Then the set of tests for S

is the set D xp. A test T = (% ,p) ia said to be made at statement s of 8

during computation C 1f, during the computation C by S, the predicate HP agsigned
by the interpretation defining C to the predicate letter p appearing in s 1is
evaluated at & during the execution of s. We denote by TESTS(s,C) the sequence
of tests made at statement s during C, and by TESTS*(S,C) the aequence of all
tests made at any statement of 5 during C. & test v 18 said to be free with

respect to the computation € if r ¢ TESTS*(S,C).

Vetinition: Let s and 8' be statements in iteration schemas S and 5', respectively.
Then s and s" are logic equivalent if, whenever C and C' are consistent computa-

tions by S and 5", TESTS(s,C) = TESTS(s',C').

Definition: Let s be an iteration statement in & schema S, Then location L

is the teset location of 8 if L is the location symbol appedring in statement s,

In such a case,.wa say that L is the location of each test r made at s during a
computation by S. A location L is bounded at =2 if, during any computation by S,

the value associated with L prior to any execution of atatement 8 iz the same as

that associated with L at the concluasion of the execution. A location L is passive
in statement s if L is not the test location of s and there is no statement 8' in the

gubschema called in s such that L is the test location of s'. (Intuitively, a locatic

is passive in s if its associated values are never tested during an execution

of s8.)

Definitign: Let S be an iteration schema. We denote by MAIN(S) the collection

of statements in 5 which are not in some ilteraticon subachema of S.

Definition: Let I be an interpretation for some schema S conteining predicate
letter p, Then we denote by (I/p) the partial interpretation for § idemtical
to I, except that p is not interpreted by (I/p), i.e. except that no predicate
is assigned by (I/p) to predicate letter p. If p' is a predicate letter not
interpreted by some (partial) interpretatiom I' for S, we denote by AﬁJ(p',I')
the set of all interpretations which can be formed by adjoining to I' an

interpretation for p'.

S L
Definition: Let:gbe a get of Interpretations for a schema 5. We denote by

PART(S,gﬂ) the partition of gﬂ into subsets of interprecations which are
equivelent with respect to schema S5: I, I'EcQ are in the same equivalence

class 1ff VAL(S,I} = VAL(S,I').

Definiticn: Let 5 be an iteration schema. Ihen the size of S, written 3IZE(S),

1s the number of iteration statements in S, (While this notion of size is,
perhaps, not the most intuitive, it shall prove to be gquite useful as an

argument for induction in subseguent proofs.)

Definition: Let S be ar iteration schema, and p a predicate letter of the schema
Then p is a productive letter in S if there exist interpretations I and I' for §,

such that T and I' differ only with respect to tha predicate assigned to p and

such that VAL(S,I) # VAL(S,I').

Our final definition pertains to schemas which satisfy Property A.

Definition: Let S be an iteration. schema satisfying Property A, and let p and
p' be predicate letters appearing in iteration atatements in S. Then we write
p> p' iff p' appears within the subschema called in scatement s, where & is
the statement in § in which p appears. (The reader may note that " > " is a
partial ordering of the predicate letters of S which appear in iteration
statements, and that a specification of the partial ordering describes

fully the menner in which the various iteration subschemas of S are "nested"

in the schema.)

- 10 -

I1I, Two Decidability Results

In this section, we prove that equivalence is a decidable property
for two classes of free iteration gschemas: restricted location achemas with

Property A, and lndependent location schemas which are conditional-free.
We begin with a2 fundamental lemma:

Lerma 1. Let X, X', ¥, Y' and 2' be set of words over some alphabar T, and
let vy be a word in T*. Let 51: X - X' and f3: X = X' be total func-
tions; 1et £,: Y - CY')* be g total function such that for each
.0 € ¥ we have E2(¢) - fZ(p) = fg(*ﬂ)- Suppose we have, for each
@ € X and each B € Y, the following aqualities:

Lo v-a=£f6@ - £@)
2. v B o=@ c £,08) - £

Then for each w & Y* we have vy » W » oy = faﬁy} . fzﬂﬂ) . floy).

Proaf: We know from (1) and (2) that the assertion is wvalid for w = g and for

Then

] € Y. Assume the assertion is valig for all w ¢ Yl, 0 i< 10.

the asgsertion is valid for all w ¢ ¥ 0 4¢ follows:

ipg-1
Let W = wl - w2, ul €Y 0 s m2 € Y. We consider three cases:

Cage L. g = flﬁm), v = fa(a). We have by asaumption
Yo ry= vy £(0) -2 and v ocwy s g o=y - £5,(0) - 4, from

which we have 41 . dz = E2(+1 . AZ) and thus
Yoot 53(7) . fzfél © =yd - B @),
Case 2. = .+ 5{z), L&%, vy = E;{z). Then:
Telly * 2 - a= £4(a) » 000 - £ () =
v rz2rwr £.(0) = £3(@) + £,(0) » £ () =
A RO A S
O s et asy e £500)) =

(o » w=1u. £,(e0)]

Substituting wl and w, for 5 yields:

"JJ]- A § 5 = Iu, * fz(wl)
Myt =t £,(0,)

- 11 -

Then :

YoWra=y @y £ (o)
=YYy £ ()
=y . ui TR fz(wz} . fI{Q-}
¥orws B0 - £) - £)
fylad - £o(w) « w)) - £,()
=) - £, ¢ £ ()

Case 3. » oy = f]_(a'), mEA Y= f3(rr) T

The proof for Case 3 is similar to rhat for Cage 2 and is left

t .
to the reader ‘ o

We consider first the problem of deciding equivalence of free, independent
location schemas (FIL schemas) which are conditional-free. The proof of the

following lemma is rather tedious, and is Beferred to Saction IV of this paper:

Lemma 2. Let 5 and S' be equivalent FIL schemas such that each is conditional-
Eree and each contains some iteration statements, Lat s be the last iteration

statement in the program of S, Then there exists a statement 8' in the program
of 8' such that s and s’ are logic equivalent; moreover, s and s' have the sape
untounded locarcions, and 12 the i:3 location af sccema S is unbounded ar s, znen

the ith location cf schema 3' is sassive im all statements followiag s'.

Proof: Ses Section IV,

Corollarw 2.1. Let § and S' be FIL schemas such that each is conditional-
free and each contains some iteration statements. Let s be the last iteration
statement in the program of § and let L; be the test location of s. Ihen

5 and 3' are equivalent only if s is logic equivalent to statement s', whare

1
§

L

1s the last iteration statement in the program of S' with test loecation

i

- 12 -

Lemma 3. Let S and S' be conditional-free FIL schemss. Let s be the laat
iteration statement in the program of S, and let s' be an iteration statement

in the program of §' such that s and 8' are logic equivalent, each has the same
unbounded locations, and each location unbounded at s is passive in all statements
following a'. Then 5 and S' are equivaient if and only if they appear

equivalent for all pairs of consistent computations C by S and C' by S' such

that TESTS(s,C) and TESTS(s',C') each contain no more than two elements.

Progf: {(Only If) Immediate.

(If) Suppose that S and S' appear equivalent for each pair of
computations C and C' as above. Let C, and C,' denote arbitrary
consistent computations by 5 and S', respectively, and let L; be
any location unbounded at a. (The reader will note that if no such

location exists, other then the test location of s, the lemma is trivial.)

We may write the value asscciated with location Ly of S at the
conclusion of computation C as V-B-C, where @ is the value associated
with Ly just prior to the ex;cution of statement s, B-O 138 the value
associated with L; immediately following the execution of statement s,
and vy is the fixed portion of the final value due to the asgignment
statements involving L; which follow statement s. 1In a similar manner,
we may write the final value associated with location Ly of 8' at the
conclusion of computation Cipas Y'.B*'. 0" okere ' {5 the value
associated with L; jusc prior to the execution of statement a', Br-
is the value associated with L; immediately following the execttion

of stacement s', and Y' is the portion of the final value due to the

executicn oI statements following s'.

By definitiom, the values associated with locations bounded at
statement s are the same prior to and immediately following the execu-
tion of s during Co' Since the locations unbounded at s are passive
in all statements following statement 3', we have that v.o0 = v'.o',
and hence that o' and y' are completely determined by . Also, it
must be the case that B' is completely determined by p:

= 13 =

Suppose otherwise. Then there must be a test T made during CD
prior to the execution of statement s such that £' is dependent on
the outcome of T, i.e., such that T is made in C,' during the
exscution of statement s'. Let T..j be the location of T. Since §'

is iree, L, must be unbounded at s' and hence, by hypothesis, passive

J

in all statements following s',

Let Cl' be the computation by S' consistent with C,' except that
the outcome of the first test made at 8' during Cl' is txue or false,
according as 8' is an UNTIL or WHILE statement. Clearly, Cl' is
finite,

Let 8" denote the statement in S at which test T is made during
computation Cu‘- Let C1 be the computationr by S consistent with C,
except that the outcome of test T and each subsequent test made at

statement s" is true or false, according as s" is a WHILE or UNTIL

statement. C, is clearly infinite and is consistent with Cl'; also,
TESIS(&,CI) is empty, while TESTS(s',Cl') has but a single member,
contradicting oué’ﬁ#pothesia regarding the appearance of equivalence

of § and &' for such computations.

From the preceeding arguments, it is clear that there exist
functions £}, f,, and f3 such that for all computations C, and C,'’
as above, @' = £.(®), B = £,(B), and Y' = £4(9). The reader may
verify, moreover, that concatenation "distributes” over £5. The

lez=ma then f{ollows froo Lemma 1.

11

The following lemma provides us with the remaininz result for our prooi

of the decidability of equivalence for conditional-free FIL schemaas:

- 14 =

Lemma 4. Let S and §' be conditional-free FIL schemss such that each contains
af least one iteration statement, Let k be the maximum of the sizes of S and
8'. Then the problem of deciding the equivalence of S and S' reduces to the
problem of deciding the equivalence of four pairs of conditional-free FIL

schemas such that each schema in each pair is of size no greater than k-1l.

Eroof: Let s be the last iterdtion statement in the program of schema 5, and
let L; be the test location of s, Let s’ be the last iteration state-
mant in the program of schema S' with test location Li. We may assume
that the statements s and s' have the same unbounded lochtions, and that
the locations unbounded at s ave passive in the statements following s';
otherwise we ms§ immediately conclude thaet S and S$' are not equivalent,

Let 5, be the schema obtained from S by removing statement s from
the program of S, as well as all assigoment statements involving location
L; which follow statement s, Let S; be the schema obtained from S by
replacing statement s with the program of the subschema called in s, and
then deletiﬁé thé following assignment sracements invalving location Li,
as above. Let S;' and 5)' be the schemas obtained in a similar manner
from S', with statement a3' in place of statement s. By Corollary 2.1,

§ is equivalent to §' only if S, is equivalent to S,', and S; is
equivalent to SI'. From Lemma 1, s is logic equivalent to s’ if S5 is

equivalent to 5_', and S; is equivalent to 5¢'.

Let 82 be the schema obrained fram 5 by rercoving statement 8 from
the program of 85, and let 53 be the schema obtained from S by replacing
statement 8 with the program of the schema called in s. Let S’ be the
schema obtained from S' by deleting statement s' from the program of
8', and let 53' be the schema obrained from 5' by replacing s' with the
program of the schema called in s'. Assuming that 8 and s' are logic
equivalent, S5 is equivalent to 8' (by the previous lammaj if and only
if 8, is equivalent to S;', acd Sq is equivalent to 84"'. From the

rematks in the previous paragraph, then, S i{s equivalent to S' 1f and

- 15 -

only 1f 8 is equivalent to Si', 0 <41 =3, The lemma follows from
the observation that SIZE(Si) is less than SIZE(S), and SIZE(Si') ia

lesa then STZE(S'), ¢ = 4 < 3,
=

We are now in a position to state our first decidability resulc:

Theorem 1: Let S and S' be conditional-free FIL achemas. Then it is decidable

whether or not S and S' are equivalent.

Proof: By induction on the maximum of SIZE(S) and SIZE(S'), and the observation

that equivalence i1a trivially decidable for schemas of size 0.

pué

- 16 -

Our second decidability result concerna free restricted location schemss
(FRL schemas) satiafying Property A. The proof of each of the following two

lemmas is quite easy and ia left to the Teader:

Lemma 5. Let 5 and §' be equivalent FRL achemas satisfying Property A, Let
G)w and GJU be the sets of predicate letters appearing in WHILE and UNTIL
statementa, respectively, in schema S, and let G)W‘ and @U' be the sets of
predicate letters appearing in WHILE and UNTIL statements in achema S'. Then

@w = @w' &nd @U = @U'.

Lemwa 6. Let S and S' be equivalent FRL schemas satisfying Property A. Let

p and p' be predicate letters appearing in iteration statements in schema §

such that p > p'. Then p> p' in achema §°',

The proof of the following lemma is also straightforward, but the

_arguments employed are of some interest: »—

Lemma 7. Let § and 8' be equivalent FRL schemas satisfying Property A. Let
P be a predicate letter appearing in a conditional statement in
MAIN(S). =~ Then either p is a non-productive predicate letter in 8, or p

appears in a conditional statement in MATN(S').

Eroof: Suppose that p is a productive letter. 3y definition of productivity,
there exist interp;erations for § which differ only with respect to the
predicate assigned to p, and which are not equivalent with respect to
8. Clearly, then, predicate letter P must appear in any schema
equivalent to S, and hence must be in S'. From Lemma 5 and Propercy A,
it must be the case that p labels a conditional scatement in §'. More-
over, this conditional statement must be in MATIN(S'):

Suppose otherwise. Since p is productive in S,and S' and S are
equivalent, p must be productive in S'. But, by hypothesis, p appears

within some iteration subschema R of 5'; hence, for each n 2 0, there

- 17 -

exists an interpretation I, for 8' such that PART(S',ADI(p, (I,/p)}))
contains precisely 2% equivalence clagses, (We may choose for I,

any interpretation in which schema R is executed n times.) But

this implies that S and §' are non~equivalent, since PART(S,ADJ(p,(I/p)))
contains no more than two equivalence clasaes for any interpretation

I for 5, a contradiction., Hence, our hypothesis that p is not in

MAIN(S) must be ipcorrect,

Arguments similar to those employed in the proof of Lemma 7 may be used
to prove the following:

Lemma 8. Let S and 5' be equivalent FRL schemms satisfying Property A. Let

p be & predicate letter appearing in &n iteration statement in echema S, and
let p' be & predicate letter appearing in & conditional statement in S such

that p > p', Then either p' is non-productive in S, or p > p' in schema S°'.

Progf: Left to the reader.

The proof of the following result is excremely tedious and is left as an

exercise for the ambitious reader:

Propogition. Let .5, 8' be FRL gchemws satisfying Property A, such that the
programs of 5 and S' are each free of conditional statements, Let I; be an
interpretation for the schemas such that the ith elements of VAL(S,I;) and
VAL(S',I4) differ, and let Ij be an interpretation such that the jth elements
of VAL(S,Ij) and VAL(S',Ij) differ. Then there exists an interpretation

Ii,j for the schemas such that both the ith elements and the jth elements of
VAL(S,Ii’j) and VﬁL(S',Ii’j) differ.

Proof: See Sectiom 5.

We now prove a result similar to that of Lemma 3 for a class of FRIL

schema 52

- 18 -

Lemma 10. Let S and S' be FRL schemas satisfying Property A, such that MAIN(S)
and MAIN(S') are each free of conditional statements. Let s be the lasgt
iteration statement in the program of S, and let s' be an iteration statement

in the program of 5' such that s and &' are-logic equivalent, Then S and S'

are equivalent if and only if they appear equivalent for all pairs of
consistent computations C by S and C' by 8' such that TESTS5(s,C) and TESTS(s,C')
each contain nc more than two elements,

Proof: (Only 1f) Immediate.

(If) Suppose that S and S' appear equivalent for each pair of
computations C and C' as above. Let C, and Co' denote arbitrary
conaistent computations by § and $', respectively, let p be the
predicate letter appearing in s and s', apnd let Ly be any loecation

unbounded at s.

We may write the value associated with Li of S at the conclusion
of computation € as Y- P +@, where @ is the value associated with
L; just prior to the execution of statement s, P.@ ia the value
associated with L; immediately following the execution of statement s,
and Y is the fixed portion of the final value due to the assignment
statements involving Ly which follow statement s, Similarly, we may
write the final value associated with location L; of 8! at the
conclusion of the computation C ' ag Y¥'.P'. @', where @' is the
value associated with L; just prior to the execution of statement s',
B'+ @' ig the value associated with L; immediately following the
execution of statement a', and vy' is the portion of the final value
due to the execution of statements following s'.

8ince § and S aatisfy Property A, it must be the case that each
location unbounded at s is unbounded at s', and each location unbounded
at s' is pasgive in all statements following a', Also, since S is a
FRL schemm, the values associated with the locetions bounded et g are

the same immediately prior to and Immedistely following the execution

- 19 -

of 8 during C,. Hence, we must have both @' and v' completely

determined by <., Also, B' must be completely determined by B3

Suppose otherwise. Then there must be some test made during the
portion of C_ prior to the execution of statement s such that B! is
dependent on the outcome of the test, Let p' be the predicate letter
of this test. Clearly, p' 1s a productive letter in S' and p > pf in
S', This implies that, for some interpretation I for S' such that
precisely two tests are made at s' during the .compul:a:ion defined by I,
PART(S',ADJ(p',(I,p'))) contains two equivalence classes. Let C; be
a computation by §' from the first class, and Cy a computation by S’
from the second. Then any computatioo by S consistent with €, must
also be comsistent with Gy, since, by Lemma §, p' cannot be productive
in S, and thus PART{5,ADT{(p',(I/p')) has.a single equivalence class, for any
But this contradicts our aasumption about the appearance of equivalence
for S and 8', since TESTS(s',C;) and TESTS(s',C;) each contain two
elements, as must TESTS(s,C) for any computation € comsistent with C;

or C, (sioce s and s' are logic equivalent).

We must again, therefore, have functions f;, fj, and f3 as in
Lemmsa 3, and the result then follows from Lemma 1.
i

The proof of the following corollary is virtually identical to that of
LemmA 4, and i3 left to the reader:

Corollary 10.1: Let S and S' be FRL schemas such that each satisfies Property
A, and the programs of each are free of conditional statements. Let k be the
maximm of SIZE(S)} and SIZE(S'). Then the problem of deciding the equivalence
of § and S' reduces to that of deciding the equivalence of four pairs of FRL

schemas such that each schems in each pair is of size no greater than k-1 and

satisfies Froperty A.

We need only show, to conclude that equivalence iz decidable for FRL

- 20 -

schemas satisfying Property A, that the problem of deciding equivalence for a
pair of such schemes reduces to the problem of deciding equivalence for a
finite number of effectively constructed pairs of FRL schemas which satisfy
Property A, have no counditional statements in their programs, and are each

of size o greater than the maximum of the sizes of the schemas in the original

pair. To that end, we have:

Lemma 11: Let S and 8' be FRL schemas, let k be the maximum of SIZE(S) and
SIZE(S'), and let £ and £' be the number of conditional statements in
MAIN(S) and MAIN(S'), respectively. Then we may construct from $ and _8i; w
pairs of achemas such that:

i} Each schema in each pair is of size no greater than k.
ii)} Each schema in each pair has a program devoid of conditional
statements,
iii) S and S' are equivealent if and only if each constructed pair
consists of equivalent schemas,

: ' 4y
where w is a constant bounded by (n+max(f.{)y -2t

Eroof: We may assume that S and §' have the same number of locations, otherwise
they cannot be equivalent. Let Ly, een L, be the symbols denoting
these locetions,

Let @ = {pl, ees 3 pm] be the set of predicate letters which
appear in conditional statements in both MAIN(S) and MAIN(S'). Let S,
and 5,' be the schemas comstructed from S and S', respectively, by
ineluding m new locationnsygbols Lo4gs oee » L +m in the set of locaticn

n
symbols for the schemas, and adding, for each i, 1 < i < m, the statement

Ln+i = Lj
to the beginning of the programs of each of the slternative subschemas

called in the conditional statement in which predicate letter Pj appears,
where Lj is the teat location of that statement. (Intuitively, the added

- 21 -

locations are used to remember the value, if any, which is tested at

the corresponding conditional stetement during a computation by the
schema, }

Let Pys =«e 5 Pos pm+1, see 3 Py be an enumeration of the
predicate letters appearing in conditional statements in MAIN(S), and
let T be an arbitrary element of[lggggagglgg}%. Then the T-expansion
of schems S, written (T,So), ig the schema formed from S, by
replacing, for each i such that p; appears in 4 conditional statement
in the program of §,, the statement containing Py with the program of
its true or false alternative subschema, &ccording as the ith element
of T is true or faisge, and repeating this recursively until the
program of the resultant achema is devoid of conditional statementa.

In a similar manner, we may define (T',5 '} for any T' in
(true,false}?".

A necessary and sufficient condition for the non-equivalence of
S and §' is that there exist TE{ true,false}’ and T'¢{ true,false}’’
such that, for some computation € by (T,5,) and some consistent
computation C' by {T',S. '), the ith element of VAL(C,{T,5,?)
differs from that of VAL{C', <T',S°')) for some i, 1 £ 1 < n, and
the jth element of VAL(C, { T, so)) differs from that of VAL(C',6 {T',3,"))
for all j, ntl = j < ntm, such that the {j-n)th element of T differs from
that of T'. (If this condition holds, it indicates that during the
computations by S and 5' corresponding to C and C', tests made at main
conditional statements containing the same predicate letters had
opposite outcomea only if the predicate was evalusted at a different
value in each case (and thus that the computations are consistent), and

that the values of the computations were different, this in turm

implying that S and S' are non-equivalent,)

We are thus faced with the problem of deciding, for a pair of FRL

schemag R and R' whose programs are each devoid of conditional statements,

- 22 -

whether or not a pair of consistent computations for the schemas
exists such that for some set of output locations {Lii’."’ Ly 1,

the value associated with L, at the conclusion of the computation

i.
by R differs from the value gssociated with Lij at the conclugion of

the computation by R', 1 < § < n,. For each such j, let Ry and Rj'

be the schemas obtained from R and R', respectively, by appending

to their programs the atatement L := Lij for each location symbel

L in the schemias. From the Proposition, suitable computations for R and R'

exist if and only if R, and RJ.' are not equivalent, 1 = j < n,.

We note that these last pairs of schemaszs are FRL schemas, are
each of size no greater than k, and each have programs devoid of
conditional statements. Verification of the bound on v is left

ag an exerclse for the reader.

Finally, we have:

Theorem 2: Let S and §' be FRL schemes satisfying Property A. Then it i=s

decidable whether or not 5 and 3' are equivalent.

Proof: Follows immediately from Corollary 10.1 and Lemma 11, by induction
on the maximum of SIZE(S) and SIZE(S').

- 23 -

IV, Digeussion

1) Considering the application of Lemma 1 in the proofs of Theorems 1 and 2,
the reader might be tempted to conclude that a pair of FIL achemas which are
conditional-free, or a pair of FRL achemas which satisfy Property A, are
equivalent if and only if they are equivalent for all consistent pairs of
base computations, i.e. computations in which each instance of a subschema is
executed no more than once. This conclugion cannot be justified on the basis
of the previous proofs, however, since the relationships among the output
locations do not remain unaffected during the procedure by which each pair

of corresponding iteration statements is removed from two schemas being
compared. Moreover, it can be demonstrated that the conclusion would be

errongous in each case., This is the object of the following two theorems:

Theorem 3. There exist conditional-iree FIL schemag S and S' puch that
S and S' appear equivalent for all consistent pairs of base computations by
the schemas, but are not equivalent schemas.

Proof: Let S and S' be the FIL, conditional-free schemams with programs P

and P' as given below:

P: L = F{L} B': L := F(L)
WHILE p(L) DO 3; L ;= F(L)
L := F(L) UNTIL p(L) DO §,
L := F(L) L := F(L)
WHILE p(L) DO 5; WHILE p(L) DO 84

where S is the schema with program
L := F(L)
Clearly, S and S’ are not equivalent. In particular, S converges and

and 8' diverges under the free interpretation which assigns to p the
predicate HP defined as follows:

- 24 .

IIP(Fi. A) = falge, 0=<ic<4

I (Fi. &) = true, i>4
P

The reader may verify that S and §' appear eqi.-.ivalent for all pairs
of consiatent computations in which no instance of Sl 18 executed more

than once,
H

Theorem 4. There exist FRL schemaa S and §' satiefying Property A such thar -
§ and S' appear equivalent for all consistent pairs of basge cumputatioﬁs, but

are not equivalent schemas.

Proof: S and S' are the schemas with programs P and P' ag given below:

P: WHILE p(L,) DO 5, P': WHILE p(L;) DO §, '
IF p'(Ll) THEN 52 ELSE 53 IF p'(Llj THEN Sz ELSE 53

where Sl has program L, = F(Ll)

L2 = F(Lz)

Sl' has program Ly 2= 6(L)

Lo = F(LZ)
S2 has program L4 i= L2
L1 := L4
and 53 has program L4 1= L3
¢ L1 t= L4

The reader may verify that S and S' are not equivalent, but appear
to be 8o for all consistent pairs of bage computations.
.

In each of the above proofs, S and S' demonstrate their non-equivalence

L

for pairs of consistent computations in which no instance of a subschema ig

- 25 _

executed more than twice, It is eagy to construct, however, non-equivalent
schemas which &ppear equivalent for 8ll pairs of consistent computations in

which no instance of a subschema is executed more than k times, for any k > 0.

i11) Extensions of the results:

We are able to show that equivalence is decldable for restricted location
schemas satisfying Property A, even if they are not free,

We are also able to show that equivalence is decidable for conditional-
free FRL schemas.

We conjecture that equivalence is decldable for conditional-free independent
lacation achemas which are not free, although we are able to show that equivalence
is not decidable for the class of such schemas which are restricted. locdtion,

rather than independent location [1],

iii) Open questions:

1z equivalence decidable for FIL schemas in general?

Does the equivalence problem for independent location iteration schemes
reduce to that for FIL schemas?

An answer to either question would be quite interesting; an affirmative
answer to both would indicate that equivalence is decidable for multi-tape
finite automata [3] and hence for independent location program schemas [2],

via the results in [4].

- 26 -

V. Proof of Lemms. 2.

For convenience, the Lemm ig reproduced below:

Lemma 2, Let S and 37 bae equivalent FIL schemas such that each is conditional-

free and each contains some iteration stétementu. Let s be the last iterarion
atatement in the program of 5. Then there exists a statement s' in the program
of 5' such that s and g' are logic equivalent; moreover, a and 8' have the

same unbounded locationa, and if the ith location of schema S is unbounded at

S, then the ith location of achema S' ig passive in all statements following s',
Proof: Let C be a computation by S such that TESTS(s,C) contains infinitely

many elements, and let C' be a consistent computation by S',

Clearly, every test in TESTS(s8,C) muat be 1ip TESTS*{S',C'), for if
some test T € TESTS(s,C) were not in TESTS*(S',C'), we could change
the outcome of T in C to obtain a finite computation C" by 5 conaistent

‘aith computation C', contradicting the equivalence of S and §'.

Alsa, &1l but finitely many elements of TESTS(s,C) must be in TESTS(s' ,C')
for some statement s' in schema 5':

Suppose otherwise. Then there exist statements 8; and 83 in schema
S' such that TESTS(sI,C') and TESTS(sy,C') each contain infinitely
many elements of TESTS(s,C). (For simplicity,_we shall assume that 81

and g9 are the only Such statements.) We must have one of the state-

ments, say sy, nested within the lteration subschema called at the
other statement, Let T be any test in TESTS(s,C) " TESTS(s3,C")., We
may change the outcome of T in computation C to obtain a finite
computation C" by S. But we can easily change the outcome of T in

¢' without resulting in a finite computation: the first test made ac
Statements sy after T is made at 8, must be free with respect to C"

since the expression tested must be longer than any similar expresaion

- 27 =

tested during C". 1If 8; is a WHILE(UNTIL) statement, we choose the
outcome of this test to be true(false), as we do for each subsequent
test made at s;. The resultant computation is consistent with C"
but is infinite, again contradicting the equivalence of S and 5°,
Hence, there must exist a single statement a' in achema S5' such that
all but finitely many elements of TESTS{s,C) are in TESTS(s*,C').

We now show that the statement s' must be in the program of
schema 5':

Let Lj be the teat location of statements s and s', and suppose
that 8' is not in the program of S', i.e. suppose that there is an
iteration statement s, in the program of 53' such that 8' is within
the subschema called in s,. Clearly, no stetement following 8, in

o
the program of 5' can be an iteration statement with test location

Lj, else we can obtain a finite computation by S and a consistent,

infinite computation by $', by changing the outcome of any test T €
TESTS(s,C) N TESTS(s",C'), as above. Similarly, statement s, itself
cannat have test location L,. Let 7' be the first test made at s,

with the property that, during the corresponding execution of the
subschema called in s,, s' makes some test T" € TESTS(s,C), let Cy
be any computation by 5 consistent with C except for the cutcome of
test T" (if it is made during C), and let C;' be any computation
consistent with C' except for the outcome of teat T"., (We note

that C) and C,' may be chosen such that C; and C,' ave consistent,
TESTS(s,Cl) is infinite, and C;" is conaistent with C' prior to the
execution of statement s,.) If we then apply the arguments of

the previous paragraph, we have that there exists & statement 81’ in
schema 8' such that all but finitely many elements of TESTS(s,Cl) are

in TESTS(s,",C,'); moreover, a.' must be within the iterstion subschema
1 1 1

called in some statement 8y which follgws s, in the program of §'-
{since C' and-cl' are the same prior to the execution of 8, and,
as noted, s," itself cannot be in the program of 5'). But then by

Tepeating this argument, we can generate an Infinite sequence of state-

- 28 -

meats a , 315 eve 5 B, 8 1’ e which must follow one another in
the program of §', violating the finiteness of ita program. Hence,
8’ must be in the program of 8', and must be the last iteration
statement in the progrem with test lecation Lj' Moreover, from the
preceeding argument, we may conclude that Lj is passive i all
statements following s' in the program of §',

The logic equivalence of s and 8' is now easily demonstrated:

We note first that, for any pair of consistent computations Co
by S and C,' by S', the last element of TESTS(s,C,) muat be the same
as that of TESTS(s’,C,'), (Dthefwise'we may change the outcome of
whichever test involves the longer expfession, or gither test if the
expressions tested are of equal length, without causing a conflict in
the computations. This will cause ancther test to be made at tha
corresponding atatement, and since this test, and all subsequent tests
made at the statement, is guaranteed to be free with reapect to the
computation by the other schema, we My permit one computation to
diverge while still remaining consistent with the other, contradicting
the equivalence of S and 5'.) Since the schemas are free, however,

the laat elements of TESTS(s,C,) and TESTS(S',CO') will be the same for
all consistent C, and Co' if and only if TESTS(s,C,) and TESTS(s',C,')

are the sewe for all such computations, i.e, if and only if § and s’

are logic equivalent.

It thus remains only to demonstrate that each location unbounded
at 5 must be unbounded at s' (it is clearly the case that each location
unbounded at 8" must be unbounded at s if S apd S' are to be equiva-

lent) and passive in all statements following s'.

Suppose that this is not the case:
We note that if all locations unbounded at s are passive in all
statements following s', then each such unbounded location must be
unbounded at s' also. (Otherwise, there must exist some location L

i
such that, for some camputation by S, the length of the value

- 29 -

spsociated with Li grows in propertion to the number of times the
subschema of s is executed, while, for any camputation by 8', the
length of the value associated with L; is independent of the number
of times the mubacheme of 8' is executed, contradicting the equiva-
lence of S and 8'.) Hence, there must be some location which is
unbounded at s and is active in some statement which follows s' in
the program of S'. Let s” be this statement (with no loss of
generality we may assume that there is only one such statement), and
let L be the location, We shall assume for simplicity that L is the
test location of s" - the generalization is straightforward,
Clearly, L must be unbounded at a':

Suppose otherwise. We may construct a computation by S (and
a consistent computation by 8') in which the length of the value
associated with L grows in proportion to tha number of times the
subschema of 8 is executed, and in which each test performed during
the execution of s on a value associated with L hes outcome true or
falge, according as s" is an UNTIL or WHILE statement. Let us denote
by k the length of the velue associated with L just prlor to the
execution of statement, and let us assume that we have terminated the
execution of s aftef its subschema has been executed some number of
times.

During the consistent computation by 5', we know that if a test
is made at 8" on a value of length gregfer than k, then the test will
either be free with respect to the computation by 5 (in which case
we may terminate the execution of s"), or it will have outcome true
(if 8" is an UNTIL ststement) or outcome false (if 8" is a WHILE
statement), in which case we must terminate the execution of s'. 1In
either case, it is clear that we may choose the computation by 8' in
such a way that the length of the value associated with L at the

conclusion of the computation depends only on the portion of the

- 30 -

computation by S prior teo the execution of statement s, and not on
the mumber of times the subscheme of s is executed, But then S and
3' cannot be equivalent, since we heve chosen the computation by §
in such a way that the length of the fipal value associated with L

is proportional to the number of times that the subschema of g has

been executed.

We have, .therefore, that L is unbounded at statement s'. An
argument similar to that above can be used to show that if L is active
in 8, then L is active in a' (left as an exercise for the reader).

But in fact, L pust be active in statement s: otherwise, we choose a
pair of consistent computetions by the schemas satisfying the property
that, during the execution of statement s', the value associated with
~ location L in S' grows longer than that associsted with L in § prior
to the execution of statement 8, Once this property is satisfied,
we may terminate the execution of 8" (and hence terminate the
computation by 5) and we are assured that the first test made at s"
is free with respect toc the computation by S. We asgsign to this

test the outcome true if s'" is a WHILE statement, or falge if it is
an UNTIL statement, and assign the same outcome to every subsequent
test made at s', The resultant computation is clearly infinite and
is consistent with the finite computation by §, contradicting the
equivalence of S and S§'. Thus L must be active in both a and s'.

Let sy and sL' be statements in the subschemas called in s and
s', respectively, such that each has test location L. For simplicity,
we assume that 5y, and s;' are the only such statements - again the
generalization is straightforward. Let Cﬂ be a computation by §'
such that infinitely many tests are made at s;' during CL' and no
more than a single test is made at any other statement in 8' during
the computation; let C; be a computation by S consistent with CL'.

¥o element of TESTS(SL,CL} may be free with respect to C ', otherwise

L
we may clearly terminate the computation by S without confliecing with

- 31 -

computation C ', thereby contradicting the equivalence of S and 5'.

In particuler, there is some element T which is in both TESTS(sL,c)
and TESTS(sL',CL'). Let C, be the finite computation by S obtained
by changing the outcome of 7 in CL and providing each subsequent
test in the computation with outcomes appropriate for its terminacion.
Let C.' be a computation by S' coansistent with Cr. We merely note
that the first test made at g" during C ' must be free with respect
to C., as must each subsequent test made at 8", and hence that C_r'
can be chosen so that it is infinite, again contradicting the

equivalence of S and S'.

We have, therefore, that no such location L can exist, and thus
that each location unbounded at s is unbounded at &' and is passive
in all statements following s' in the program of S',

REFERENCES

- Leung, C., and Qualitgz, J.

Undecidability of Equivalence for Restricted Location Schemas.

Computation Structures Croup Note 21, MIT, Feb. 1%75,

- Luckham, D., Park, D., and Paterson, M,S.

On Formalized Computer Programs.

Journal of Computer and Systems Sciences, Vol. &, Ne. 3, 1970,

. Paterson, M.S.

Equivalence Problems in a Model! for Computation.

Ph.D. Thesis, University of Cambridge, 1967,

Qualitz, J.E,
Redueibility of the Equivalence Problem for Multi-tape Finite Automata

Lo that for Independent Location lteration Schemas.

Computation Structures Group Memo 118, Mar. 1975.

. Rabin, M., and Scott, D.

Finite Automata and Their Decigion Problems.

18M Journal of Research and Development 3,2 1959.

