MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 116

Deadlock Avoidance in a Data-Flow Architecture-

by

David P. Misunas

A paper to be presented at the Milwaukee Symposium
on Automatiec Computation and Control, April 1975,

February 1975

DEADLOCK AVOIDANCE IN A DATA-FLOW ARCHLTECTURE

David P. Mlgunas
Project MAC
Yassachusetts Institute of Technology

Abstract

The implamentation of a data-flow program on a data-flow computer architecture can
introduce a synchronization problem berwean succasaive stages of the program. When
the program is being utilized for pipelined computation, this problem can cause a
deadlock condition to arise. The prevention of deadlock Lavolves establighing a
form of communication betwean the stages of the program, allowing a value to pro-
ceed to the next stage In the computation only when that stage 1z empty. Although
this solution does not affect the processing time for some computations, it in-
craases the minimum delay between guccessive activations of a given imstruction in
the program, and, in ganeral, causess 2n increass in the cime necessary to perform

the complete computation.

1. INTRODULTION

Efforts to develop a model of computation which can
effectively expresa parallel activity have vielded

'@ uew form of program representation, lmowm as data

flow. The attractiveness of data flow lies in the
faet that it is data-driven; that ie, an instruc-
tion is emabled for execution only after each re-
quired oparand has been provided by the execution
of a predecesscr instruction. Data-flow represen=
tations for programs have been described by Karp
and Millar [7], Rodriguez [11), Adems {1], Dennis
and Fosseen [4], Bahrs [2], Kosineki (B], and
Dennis [3].

We hava beern conducting architectural studiza ta in-
veatigate the design of a processor which can ef-
ficiently executs data-flow programs by taking ad-
vantage of the parallelism inherent in the data-
Fflew rapresentatiom. The resulting architectures
affer attractive solutions to some of the problems
of parallel systams. The usval problems of proces-

‘sor switching and memory/processor intercomnnection

are avoided by tha use of incarconnection networks
which have & graat daal of inherent paralleliam,
The structure of the processor allows a large mm-
bar of fnstrvctions to be active atmultaneously.
These active instructions pass through the networks
concurreantly and form streams of ingtructions for
each pipelined Functiomal unit,

Two such srchitectures utilizing a data-Flow base
language have been described by Dennie and Misunas

[55; 6]. The elementary data-flow processpr has been
designed to execute a simple class of programs which
ars wall-guited for the representation of signal
processing type computations [53]. This class of
programs permits only alemsneary compntation; no

‘decislion capabilircy ia provided. The basic data-

flow proceggor adds conditional mand iterative con-
gtructs to the langusge and architecture and in-
corporakes a multli-lavel memory system in which the
active mamory is operated as a ceche, and individual
ingtructions are retrieved from the auxiliary mem-
ory a3 they ars required for computation [6]. The
extansion of rhe architectural concepts to e
geuneral-purpose computer, Iincorporating procedures,
recursive program activation, and data structures
of arbitrary siz2e and shape, is currently undar
study.

A cloge exemination of the architectural basia of

these machinas {mmediately brings one face-to-face
with ona of the classic prablems of parallel compu-
tation, that of demdlock [9]. This deadlock prob-
lem manifesta itsalf in a manner which affects the
fundameatal operation of these machines, and hence,
modifications to the architectures ere necessary in

‘order to prevent s deadlock conditiom from arising.

In this papsr, the nature of the deadlock problem
and its golution are explored within the anvironment
of the elementary data-flow procsssor. Tha exten-
sion of the solution re tha basic machine is a
straiphtforvard matter.

Figure 1. An elementary data-flow program.

2, THE ELEMENTARY PROCESSOR

The computational capability of the elementary data-
flow procesgor is limited to programs expresssad in
the elementary data-flow languaga. A program in this
Langusge is constructed of two kinds of elemants,
called operatoras snd links. An opsracar, designated
by a circle, has a number of input arcs which supply

Qperation
Unit

L]
[

Ld -
Opsration
Unit m=i{

J Instruction |
i)| 2] [

o Cofi

' Mamory

| Ingtruction |
] cell n-| [

Figure 2. Structurs of the elementary
data-flow processor.

valuea necessary for its execution, and one ontput
arc. A small dot represents a link which has one
input arc upon which it receives results from an op-
erator and a2 number af oubput arce over which it dis=-
tributes coples of the result to other cperators.

Tokens are represented by large solid dots and con~
vey values over the arcs of the program. An operator’
with a token on each of its input arca, and no token
an {ta cutput arc, is ernabled and sometime later will

"Eire, removing the tokens from its Input arcs, com-
. puting a resulc using the values carried by the in-

put tokens, and associating the result with a token.
placed oo 1lts output arc. In a similar wanoner, a
link is enabled when a token Is present on its input
arc, and mo token iz pregent on any of itg output
arcs. It Eires by removing the tokem from its imput
arc and agsociaring copies of the value carried by
the Input token with tokena placed on its output
arca.

The elementary data-flow program of Figure L has a
token present on each input arec, Lioks L1 and 12
are enabled, and either one can fire -- suppuse L2
dces. Then operator A2 and link Ll are engbled, and
once again, sither can fira. In this manner, ctokans
travel through the program until a token appears on
the cutput conveying the valve Ax{x+y). Omce op-
erators Al and AZ have fired, there are no tokena
prasant oo any af tha arca emanating from L1 and

1.2, and the links can fire as soon as the iaput op-
erators deliver new values.

The atructurs OF the elementary data-flow procezsor
is presented in Figure 2. The Memory is a callee-
tion of Inatruoction Cells; one I[nstruction Cell must
be zssociated with each oparacor of the program. An
Instruction Tell condains three reglsters (Figure

3), one to hold an Llnstruction which encodes the Lype
of operator and its conrections to other operators

in the program, and two regfsters that receive val-
uss for use in the next execution of the instruction.
When all cthree registera of a Cell are full, the

Cell is sald to be enahled and sends {ts concenta

to be opergted upon by an apprepriate Operation

inie.

The instruction format is showm in Figure 4. The
firat field containg the operation code which speci-
Eiag the type of Dperatiom Unit to be uged and the
function it 18 to perform. The sacond and third

Inatruction Cell

ragister

instruction o

data régister :
operation
chat aparand |
po P packet

ragister
data 9

e —

Flgure 3. Operacion of an Inatruction Cell.

———— operation code

destination destination
! 2

L speciolized function

operaticn unit

Figura 4. Instruction format.

Eields hold the addresses of the registers which
are to receive copies of the result.

In order to intercormect the Instruction Cells of
the Memory and the Operation Dnits, a mebwork,
called the Arbitration Network, provides a path
from each Imstruction Cell to each QOperation Unit.
When an Instruction Cell iz enabled, it passaz ita
entire contents as an gperation packet, consisting
of the instruction and the two operands, lnto the
Arhicration Metwork. The network is capable of ac-
capting many operarion packets simulransously and
will deliver each packetf to the correet Uperatiom
Unit.

Upen racelving an operation packet, an Operation
Unit performs the functiom apecified by the opera-
tion code on the operands of the packec and produces
a data packet, containing one copy of the result and
& deatination register address, for each destination
gpecified in the instrxuction. A Distribution Net=
work concurrently accepts data packets from the Op-
~eration tnits and, ucilizing che destinsation address
of the packer, delivers each ta the specified regis-
ter. The Instruction Cell containiog that register
may then be enabled if #n Iinstruction and all opar-
ands are present.

A aiwplified structure of the Arbitration and Dis-
tribution Wetworks Ls presented in Figure 5. The
natworks are composed of rhree typas of units. An
arbitration unit pasges packets arriving at its in-
put ports one-at-m-time toc 1ts output pori, using a
round-robin discipline to resolwve any conflicts. A
awitch unit passag a packet at ita ianput ta one af
Lts outputs, controlled by some property of the pack-
at. In the Arbitration Network this property is the
operation code, whereas in the Distributiom Network,
the switch units are controlled by the destination
addrasa. A buffer unit atoreas a packet untii the
succasding switch or arbitration unit is ready to
accept ft.

Dus to the large nomher of inputs to che Arbitracion
Network, we wish te transfer data between the Memory
Calls and the Arbitration Network inm serial format to
reduca the number of wires necessary. Howevar, in
arder to walntaln a high rate of packet flow at the
output ports, we wish to transfer packets to the Op-~

eration Units in parallel format. For this reason,
serial-to-parallel conversicom is done gradually
within the Buffer units as a packat travels through
the Arbitration Network. Parallel~to-serial conver-
slon is performed in the Distribution Hetwork for
gimilar reasons.

3. THE DEADLOCK PROBT.EM

The firing rule for an operator or link ¢f a data-~
flow program setates that the operator or link cannot
become enabled unless there is ne token on any out-
put arc of thak operiator or link. Howewver, the
architecture, a8 described, provides no mechanism by
which an instruction can check that the registers
specifled In its dastination addresa fields are emp-
ty. Consequently, the Firing rule cam be violated,
In illustration of what ascrt of problem this causes,
consider the first input operator of Figure 1. The
instruction ‘representing this operator has no way of
knowing whether or not the destination registers of
the Instruction Cells representing operators Al aund
A2 are empty and ready to receive new values, and
the input instruction can send data packets to the
Cells containing these destination reglgters before
the Cells are ready to receive them. Such packets
are stored in the buffer units of the Diactriburion
Hetwork, bloeking access to succeeding switch units
end preventing any other packet from being trans-
ferred to the portion of the Memory serviced by the
succesding switeh unics. A deadlock condition arizes
when cne of the stored values blocks a dats packet
which iz needed by the program in order to enable
the Cell to which the stered packet i{s destined.

Agguming correck onaratise of the Operation Units,
ne deadlock condition c¢an arise with the Arbitration
Netwark. 4 packelt tn that network cam only be
blocked temporarily until the blocking packet moves
into an Operation Unit.

The solution to the deadiock problem requires the

fram
Instruction
Calia

to
Dpermtion
Units

{al Arbitratian Networs

N

o—] E E € {“e%““ :femor‘r

froen f
Operation : i Register
Unilg - nils
ol ors—<[Ragister
3n-i

{b} Distribution Network

Flgure 3. Structure of the Arbitration and
Disgeribution Netwarks.

fa) decider {b] control link

(d) combined aperator
ond gate

[z} gote

Figure 6. Additional constructs af
the data-flow language.

addition of a8 form of feedback batween operators of
_a program in order to force the program to chserve
the firirg yule. In Figure 6 we preaent several new
congtructs which must be added to the deta-flow lan-
guige in order to estebliah the necasaary feedback.
The feedback 18 acecmplished by the backward flow of
gontral tokens. A c¢ontrol roken is generated at a
decider (Figure 5a), which, upan receiving s data
token on each input arc, applies its predicata to
Lhe values carried by the input tokens and praduces
on its output arc a control ctoken conveying elther
the value true or false or conktrol. A control-
wvalued token is produced by a decider with the nil
‘predicate and is used £o provide the necessary syn-
chronization to avold a deadloek. Control tokens
ara conveyed over comtrol arcs and are transmitted
by control links (Figure &b).

The flow of data through the program is coutralled
by means of a gate (Figure 6c). A gaka is enabled
when it has & control-valued boken on its control
ifnput and & data token on its data input. Upan
firing, the gate removes the daca Eoken from its
foput are and places am identical data tokan on ite
output arc, and the cantrol token is ghaorbed. In
order to simplify the diagrams, an operatcr and gate
may be combined (Figure 6d). Such a joint operator
is enabled when thara is a date token present om
aach dats input and a control-valued token present
on the comtrol input.

‘& deadlock-free version of & program is canscructed
From the original versian by replacing each operator
which could possibly place wmultiple tckens on ics
output arc by a joint operator and gate. Tha gate
is controlled by the cucput of the immediately auc-
ceading operator(s}. When tha link on the output
of each of these succeeding operacors recelves s
data token, it sands one copy to & declder with the
pnil predicate. This decider generates a control- "
valued token which is passed to the gats on the out-

Figure 7. Deadlock-free version of the elementary
data-flow program of Figure L.

put of the first oparator, allowlng that eperator
to become reenabled when all necessary operands are
present.

A deadlock-fras version of the elementary data-flow
program of Figure L is shown in Figure 7. The pro-
agram coptalna an initlal marking of gontrol-valued
tokena which permit the first set of dara to enter,
Link L2 provides a fan-out of two for the valves
produced by input operstor l, and hence, the con-
trol token for that operator is groducaed by ANDing
two contral-valued tokens Erom the succeeding op-
erators Al and a2,

Not all valid data-flow constructions can deadlock.
For example, consider the program forf a Eirst ordar
recursive digital filter shown in Figure §. This
program computes the value y(t) = Ax(t) + By(t-1).
Operatare A) and A4 cannct cause a deadlock within
the loop since there can only be one token in the
loop at a time. However, the posaibility of a deed-
loek does arise with respect to the chain of op-
erators: Al, A2, A3, A5..

If wa introduce the possibility of mora than one
token being present in & loop, for example, by com-
structing a secand order filter {5], we find that
the posgibllity of a deadlack within the loop im-

Al A2

O ><+> A3

A5

) T

y{t-1)

Figure 8. Data-flow praogram for a first
order vrecursive digital filter.

medfately acises. The procedure which has heen de=
ascribed to solva the deadleck problem is in line
with this observation: in utilizing the procedurs,

a program ila restructured so it consists of a meries
of adjacent loops, each of which can contain only

~one token at a time.

4. THE HEADLOCK-FREE ARCHITECTURE

Now that we have described the nature of the program
modificationa necessary to insure freedom from dead-
lock, we must consider the Impact of these modifica-
cions on the architecture of the elementary data-

" flow processor. In ordar te convey control values

to Instruction Cells, a special metwork, called the
Centrol Network, {s provided {Figura %). This net=-
work is utiligzed, racher than the exiating Distribu-
tion Network, due to the fact that a control packer,

aparotion
hels
Opaeration ! pac
Wnits N }
eontrd
packers
dato
pachels
Cantrol
Network
a & a
» Instruction
o Celt Q
- -
Distribution | e |Arbitratio
Nutwork . Mamory Network

o Instruction N

o Cell n-i

Figure %. Revised version of the elementary
data-flow processor.

control status

control receipt

cperation code

destingtion dastination
[2

—_— -

1) 1
S5|R : nl: gl nE: d2

be—-— destination address

netwark identifier

Figure 10. Ravised inatruction farmat.

conveying a control valee, consists merely of an ad-
dress to which the value is to be directed, and since
there ig no advantage Lo using serial format For its
trargmizaion, the parallel-to-serial conversiom and
bufferiag of the Distribution Network are not neces-
sary. Also, the time between succegsive activations
of a given operator 18 greatly affected by the neces-

‘sity of waiting for a control token, snd using a

special high-speed network to convey the control to-
kens will increase utilizarion af the Cells of the
machine.

For eimilar reasons, the Arbitratfon Necwork is di-
vided into two parcs -- one whieh conveys cperation
packeta to the Operation Units, and one which trang-
mita control packets in a parallel formet to the Con-
tral Network. .

The revised instruction formar is pregsented in Fig-
ura 10. Each deetination address has a network iden-
tiff{er (nl, n2) zesocilated with Lt. This identifier
specifies whether the address is to be used to direet
& dats packet through the Distribution Network or

a control packet through the Control Network. If the
Discribution Network is specified, operation proceeds
as previcusly described. However, if the nectwork
identifier designates the Control Wetwork, rhe aszo-
clated address is removed from the operation packet
ac the first gtage of the Arbitration Network and is
vsed to form & control packet which ia conveyed to
the Control Mecwork for delivery to the specified
registar.

The control status field of an instruction is equal
to L if tha output of the Instruction Cell is gated,
that is, if the Cell must receive a control-valued
packet before bacoming enablad. A 1 in the pontral
receipt fleld indfcates the receipt of a coukrol-
valued packec. An Instruction Cell iz enabilsd when
it containg an instrucclon, all raquired operands,
and the control scatus field 18 equal to the control
receipt field. Upon being enabled and having its
conténts digpatched to the Arbitration Network, an
Instruction Cell will reset 1ta countrol receipc Field
to 0 to ewalt the arrival of a2 new conktrol packet.

o -

coil 0 Cell3
[4
0o [afzliut 4-7.a-10 o911 [ptus| ¢-14.6-0,¢-3
Gl chonnat | 1o i)
0z - 1 r
Catll] Cell 4
v .
t - ' Lg |muit] d-17,¢-6,¢-9
o3 'l'lm°”1 d=ll 21c ~ﬂ}| ¢ ___]
o4 chonnal 2 3 i
05 - 4 t)
Cell 2 Cal 5
o6 |1 |i [mut] 4-13, -0 15[ofolouresr -
or [N} 18 chonnal 3
o8 a 7 1)

Figure li. Initializetion of Instruction Cells for
the deadlock-free program of Figure 7.

The inttial contents of the Cells For the deadlock-
free elementary data-Elow program of Figare 7 ace
shown in Figure ll. Fer the sake of simplicity, we
have taken the Liberty of writing any number of
destination sddresses in tha destination address
field of an instructiom and have indicated tha
AND operetion by serting the control status field
af Cell 0 Eo two, requiring the receipt of two
control-valued packets before the Cell can become
enzbled. The initial marking of contrel tokensa 1ie
fodicated by the inirial values in the control re-
ceipt fialds of rhe Cells.

Inieially, Cells 0 and 1 are enabled and are di-
racted to an input Cperation Unit. Two input values
are sccapted over chamnela 1 and 2 aud ere sent as
data packets threugh the Distribution Network to
registers 7, 10, and 11. Upon transferring chelr
contents as operation packecs to the Arbitration
Network, Cells 0 and L cannot ba enabled agein until
euch has raceived the specified number of comtrol~
valued packets. Thesa control packets are provided
to Calls D and 1 by Celle 2 and 3.

Although we have allowed ourselves to write an arbi~
trary number of destinaclon addresses in the deszi-
nation address fileld of an instruction, the imstruc-
tion format, as deseribed previously, only allows
two destination addresses to be specified. Thia re-
striccion necessitates the nse of data digtribution
and contral digtribution Cells within the program to
provide the desired fan-out., A data or control dis-
tribution Cell accepts a data or control packet and
dispatchas it through an ldenticy operator to two
destination ragisters. It should be notad that the
ANDing of coatral packets from two succeeding op-
erators can be implemented for free simply by re-

- quiring two operands in the designated control dis-
tribution Call.

The architecture presenred in Figure & greatly re-
sepbles the arzhitecture utilized in the basic ma-
chine for the incorporation of conditional and it-
erative mechavisms [$]. FRowever, 2 major df fference

exists ln the fact that the elementary proceéssor
wtilizes all aperators of a program equally as of-
ten, whereas within the basic machine, only certain
portieng of a program will be active at any point
in time, necessitating the utilization af a wmalti-
level memory system s0 that only the active por-
tfons of a program are preseat In the Instruztion
Cells of the progcessor,. This multi-level memory
system of the basic processor iz the main struc-
rural difference between the two architecktures.

S, THE CDST OF IMPLEMENTING THE DRADLOCK SOLUTION

The utilization of the Instruction Cells of the ele-
mentary processor can be measured in texms of the
elapsed time between successive enablings of a given
Cell. In the architecture criginally described, the
uvtilization of a Cell can be rather high, since data
packets can be waiting in the Distribution Network
for the Cell to output an operaticn packet and can
move into the Cell immediately after the operation
packet has been sent to the Arbitration Network.

Tn the deadlock-free veraion of the proceszor, there
ia a much greater delay between successlve enablings
of g Cell, since tha Cell, upon sending out an opera=
tion packet, must wait for a data packet to arrive
at each destinmtion. At that time, assuming best

case conditions, each destination Cell is enablad

and returns a control packet to the original Cell,
allowing it to be reenabled if new operands are
presant.

If D is the ninimem delay encountered by an instrue-
tion in passing through the Arbitration Network, am
Oparation Unit, and the Distribution Network, and

d i8 the minfoum delay through the Arhitration Net-
work and Control Netwerk sncountered by a contral
packet; then, if a Cell has one predecesscc end one
successor, the minimm delay between successive ac-
civations of the Cell 1s equal co DFd. If the Cell
has two pradecessors and two successors, 4 for-
warding Cell of sach typs is required, snd the mini-
owm delsy becomes 2(Dad).

The details of how these delays are computed are
described in [10]. For the purposes of thia dis-
cussion, wa need merely nora that this deadlock so-
luticn has & slgnificant effect upon the utiliza-
tion of a given Instructivn Cell, necessitating, in
genersl, more Instruction Cells to maintain a de-
sired computstional rate. Howevar, there are spe-
cific algorithma, such as the fast Fourier trans-
form, in which there exists a large amount of in-
fierent parallelism and for which the deadlock selu-
tion doea not cost anything in terms of throughput
{lo].

6. CONCLUSION

The problem of deadlock manifests itself in ele-
mentary plpelined computation. In higher level
programs the problam i3 often already solved through
the structure of procedurss and loops which operate
upon one set of data at a time. When the problem
does arise, ita asclution i3 a straight-forward pro-
cess, permitting a compiler to implement it eaaily,
and freeing the programmer frowm the burden of es-
tablishing ivs absence.

10,

11.

7=

7. REFERENCES

Adams, D. A. A Computation Model With Data Flow
Sequencing. Technical Report (5 117, Computer
Sclence Departmwenkt, Schoal of Humanities and
Sciences, Stanford University, Stanford, Calif.,
December 1948.

Bahrs, A. Operation patterns (An extensible
model of an extensible language). nposlum on
Theoretical Programming, Novosibirsk, USSR,
August 1972 (preprint).

Deonis, J. B. First version of a data flow pro-
cadure language. Lecture Maotes in Computer
Science 19 (C. Gocs and J. Hartmanis, Eds.),
Springer-Verlag, Kew York, 1574, 362-376.

Dennls, J. B., and J. E. Foszgeen. Introduction
to Data Flow Schemas. WNovember 1973 (submitced
for publication).

Dennis, J. B., and D. P. Misunas. A computer
architecture for highly parallel signal pro-

Conference, ACM, New York, November 1974.

Denris, J. B., and D. P. Misunas. A prelimimary
architacturse for a basic data-flow processor.
Proceedings of the Second Annual Svmposium pin
Computer Architecture, IEEE, New York, Januiry
L575.)

Karp, R. M., and R. E. Miller. Properties of &
model for parailel computations: determinacy,
termination, queuveing. SIAM J. of Appl. Math,
14 (November 1966), 1390-141l.

Eosingkl, P. R. A date flow language for op-
arating systems programming Proceedings of ACH
SIGPLAN-SIGOPS Interface Meeting, SISPLAN Notices
8, 9 {September 1973), 89-94.

Habermann, A. ¥. Prevention of system deadlocks.

Misunas, D. P. Performance of an Elementary Data-
Flow Procegsar. Computation Structures Group
Mamc 115, Project MAC, M.I.T., Cambridge, Masm.,
Febyuacy 1975.

Rodriguez, J. E. AGraph Model for Parallel Com-
putation. BReport TR-64, Project MAC, M.I.T.,
Camhridge, Mags., September 136%.

