IEEE TRANSACTIONS OX SOFTWARE LNGISEDRING, VOL. sBE-1, N0, 1, Marcr 1875 7

Specification Techniques for Data Abstractions

BARBAHA H LISKOV anp STEPHEN N. ZILLES, MEMBEE, IEEE

Abstrect—The main purposss in writing this paper are to discuss
the importance of formal specifications and te snrvey a number of
promising specification techniguee. The role of formal specifications
both in proofs of program correciness, and in programumning meth-
odoiogies leading to programs which are correct by construction, is
explained. Some criterin are esteblished for evalusting the practical
potential of specification techniques, The importance of providing
specificalions at the right level of abstraction is discussed, and a
particularly intercsting clase of specification techniques, those used
to construct specifications of data abstractions, is identifled. A num-
ber of specification techniques for describing data abstractions are
purveyed and avsluated with respect to the criteria. Finally, direc-
tions for foture research are indicated.

fndex Terms—Data abstractions, programming methodelogy,
proofs of ¢orractness, specifications, specification techniques.

I INTRODUCTION

IN THE past, the advantages of formal specifications
have been culweighed by the difficulty of constructing
them for practical programs. However, reeent work
in programrung methodology has identified a pro-
gram unit, supporting a data abstraction, which is hoth
widely useful, and for which it is praetical tc write formal
spectfications. Some formal specification techniques have
already been developed for deseribing data abstractions.
It is the promize of these techniques, some of which are
deseribed later in thiz paper, which leads us to believe
that formal specifieations ean soon hecome an intrinsic
fealure of the program construction process. By writing
this paper, we hope to encourage research in the develop-
ment of formal specification techniques, and their applica-
tion to practical program eonstruction.

In the remainder of the introduction we diseuss what is
meani by formal specifieations, and then explain some ad-
vantages arising from their uze. In Bection IT a number of
criteria are presented which will permit us to judge tech-
niques for constructing formal specifieations. Seation TIT
identiftics the kind of program unit, supporting a data ab-
straction, to which the speeification technigues deseribed
later in this paper apply. Section IV discusses propertics
of specification technigques for data abstractions and in
Section ¥ some existing techniques for providing specifica-
tions for data abstractions arc surveyed and compared.
Finally, we conelude by pointing out arcas for futurc re-
search.
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Proofs of Correctness

Of serious concern in softwarc eonstruetion are techni-
ques which permit us to recognize whether u given program
is correet, Le., does what it is supposed to do. Although we
are coming to realize that correetness is not the only de-
sirable property of reliable software, surely it is the most
fundamental. If a program is not correct, then its other
properties {e.g., efficiency, fault tolerance) have no mean-
ing sinece we cannct depend on them.

Techniques for establishing the correctness of programs
may be classified a3 to whether they are formal or informal.
All techniques in eommon use today (debugging, testing,
program rcading) are informal techniques; either the in-
vestigalion of the propertics of the program 1s incomplete,
or the steps in the reasoning place two much dependernce
on human ingenuity and intuition. The continued exis-
tence of errors in software to which such techniques have
been applied attests to their insdequacy. Formal teehni-
ques, such as the verification condition 11}, §2] and fixed-
point [3] methods, attempt to establish properties of a pro-
gram with respect to all legitimate inputs by means of a
process of reasoning in which each step is formally justified
by appeal to rules of inference, axioms and theorems. Un-
fortunately, these teechnigques have boen very difficult to
apply, and have therefore not yet been of much practical
interest. However interest in formal techniques can be ex-
peeted to increase in the future; economic pressure for
reliable softwarc is growing [4] and the domain of appli-
eability of formul techniques is also growing beeause of the
development of programming methodologies leading to
programs to which formal techniques are more readily
applicd. Indeed, application of proof techniques to prac-
tical programs is being attemptced in the arca of operating
svstem security [5]-[7], where the need for absolule cer-
tainty about the correet funetioning of software Is very
great.

To study techniques which establish program correct-
ness, it is inberesling to examine a model of what the cor-
rectness of a program means. Whal we are looking foris a
process which establiches that a program correctly imple-
ments o concept which exists in someone’s mind, The eon-
ceplb ean usually be implemented by many programs—an
mfinite numhber, in general— bub of these only a small
finite number are of practical inferest. This silualicn is
shown iny Tig. 1. Tn eurrent. practiee, the eoncept, is stated
informally and, regardless of the technique used to demon-
struie the correciness of a program (usually testing), the
result of applying the technique ean be stated only in in-
formal terms.
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Tig, 2, Concept, its formal specification, and all programs which
can be proved equivalent to the specification.

With formal techninues, s specification iz interposed be-
tween the concept and the programs. Its purpese is to
provide a mathematical deseription of the soncept, and the
correetness of o program is established by proving that i
is equivalent to the specification. The speeification will be
provably satisfied by a elass of programs {again, often an
infinite number of which only a small finite number are of
interest). This situation is shown in Tig. 2,

Proofs of large programs do not consist of a single mono-
lithic proof with no interior struclture. Instead, the overall
proof is divided into a hierarchy of many smaller praofs
which establish the correctness of separate program units.
For each program unit, a proof is given that it satisfies its
specification; this proof malkes use of the specifications of
other program units, and rests on the assumption that
thuse program units will be proved consistent with their
gpecifications.! Thus a specification is used in two ways:
ag a description against which a program is proved correct,
and ag a set of axioms in the proof of other programs. At
the top of the proof hierarchy ig o program untt whiel cor-
responds to the entire program. Al the boltom is the pro-
grammiog language, and the hierarchy is based on the
axioms for the programming language and its primitives.

The proof methodology ean fail in two ways. First, a
proof may incorreetly cstablish some program {or program
unit) P as equivalent to the specification when, in fact, it
ig not. Thig is & problem which can be eliminated by using
a computer as, at least, a proof cheeker. (Observe that one
advantage of using formal specifications is that such speei-
fieations can be processed by a computer.)

The gecond way the methodology ean fail is if the speni-
fication does not correctly capture the meaning of a con-
cept. We will say a specification captures a concept if every
@.in Tig, 2 1s some P;in Fig. 1. There is no formal way of
catablishing that a speeification captures a eoncepl, hul
we expect Lo have gained from nsing the proof methodelogy

tSpecial technigues [3) must be used if the program units are
miutually recurgive,
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beeause Chopefully) a specification is casicr to understand
than a program, so that “convineing oneself” that a speci-
fication capturcs a conecpt is less oreor prone than a similar
process to a program. Furthermorce, any distinction be-
tween conecept and specificalion may be irrelevant hecause
of the hicrarchical nature of the proof process. 11 a pro-
gram P is proven equivalent to its specification, and every
program using £ is proven eorroet using that specifieation,
then the coneept wlich I* was intended to impleanent ean
gafely be ignored.

Advantoges of Formal Specifications

Proving the correctness of programs is described above
as a two step process: first, & formal specification s pro-
vided to deseribe the eoncept, and seeond, the program is
proven cquivalent to the specification by formal, analytie
means. Formal techniques are not necessarily limited to
axiomatic methods. For example, it mav also be possible
to develop testing methodelogies that arc based on a com-
parison of the formal speeilieation and the implementation.
The output of a methodology would be a set of critical
test cazes which, if successfully executed, establish that
the program correctly implements the specification. The
formality of the specification means that the computer ean
aid in the proof process, for example, by checking the
steps of a program proof, or by automatically generating
test cases.

Clearly, the specification must be present before a proof
can be given. llowever, formal speeilications are of in-
terest even if not followed by a formsal proof. Furmal spect-
fications are very valuable in conjunction with the idea of
meking eode “public” [8] in order to encourage pro-
grammers to read ohe another’s code. In the absence of a
formal specifieation, a programmer can enly compare a
program hc is reading with his inluitive understanding of
what the program iz supposed to do. A formal specification
would be hetter, sinee intuition is often unreliable. With
the addition of formal specifications, ¢ode reading becomes
an informal proof technique; cach step in the proof process
now resty on understanding a formal description rather
than manipulating the description in a formal way.? As
such, it can be a powerful aid in establishing program cor-
reetness.

Formal specifications can also play & major role while a
prograun is being construeted. Tt is widely recornized that
4 specifieation of what a program is intended to do should
be given befora the program iz actually coded, both to aid
understanding of the coneept involved, snd o ineresse the
likelihood thet the program, when implemented, will per-
form the intended Tunetion, However, because i is dif-
fieult to construct specifications using informal techniques,
such as Fnglish, specifications are often omitted, or are

3 The relalivuship between proofs and understanding is a major
motivating faetor in structured programming. For example, the
fga W' staternent is eliminated bepause ihe remaining control
structures are each associated with a well-known proaf technique,
and therefore the prograng are intellectually manageable [9].
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given in a sketehy and incomplere manner. Formal speci-
fication technigues, like the ones to be deseribed later in
this paper, provide a eoncise and wellunderstood specifi-
cation or design language, which should reduee the dif-
ficuliy of constructing specifications,

Formal specifications arc superior to informal ones as a
eommunication medium. The specifications developed dur-
ing the design proeess serve to communicate the intentions
of the designer of o program to its implementars, or Lo
eommunicate between two programmers: the programmer
implementing the program being specified, and the pro-
grammer who wishes to use that program. Problems
arise if the specification is ambiguous: that is, fails for
some reason to caplure the eoncept so that two programs
with different conceptual properties both satisfy the spesi-
fication. Ambiguities can be resoived by mutual agreement,
provided those using the specifieation realize that an am-
biguity exists. Often this is not realized, and instead the
smbiguity is resolved in different ways by different people.
Formal speeifications are lesa likely to be ambiguous than
informul ones beeause they are written in an unambiguous
language. Also, the meaning of a formal specification is
understood in a formal way, and therefore ambiguities
are more likely to be recognized.

The above paragraphs have sketehed a program con-
struction methodology that eould lead to programs which
gre correci by construetion. Formal specifications play
a major role in this methodology, which differs from stand-
ard deseriptions of struetured programming (9] primarily
in the cmphasis it places on specifieations.? Specilications
are first introduced by the designer to deseribe the coneepts
he develops in & precise and unambiguous way. Kach con-
cept will he supported by a program module. The zpecifica-
tions are used as a eommunieation medium among the
designers and the implementors ta insure bolh that an
implementor understands the designer’s intentions about
a program rdule he s coding, and that two implementors
agree about the interface hefween their modules. Finally,
the eorrcetness of the program is proved in Lhe hierarchical
fashion described carlier. The method of proof may be
sither formal or infermal, and the proofs ean be carried out
as the modules are developed, rather than waiting for the
eniire program ta be coded. Progress in developing formal
specificaticn technigues will enhance the practicality of
applying this methodology to the construction of large
pr()grams.

1I. CRITERIA FOIL EVALUATING
BPECIFICATION METHODS

An approach to specification must satisfy a number of
requirements if it i= to be useful. Since one of the most
important goals of specifieation techuigues is to permit
the writing of specifications for practical programs, the
eriteria deseribed below inelude praetical as well as theoret-
ical consderations,

*3ee the er by Hoare [10] for a structared programming
exumple in which specifieations are emphasized.
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We consider that the first criterion must be satisfied by
any specilication technique.

1) Formality: A specification method should be formal,
that is, specifieations should be written in a notation
whieh is mathematieally sound. This eritcrion is mandatory
if 1he speeifications ere to be unsed in conjunetion with

proofs of program corrcetness. In addition, formal speci-

fication technigues cen be studicd mathematically, so that
other interesting questions, such as the cquivalence of
two specifications, may be posed and answered. Finally,
formal specificalions arc eapable of being understood by
computers, and automalic processing of specifications
should be of increasing importance in the future.

The next two criteria address the fundamental problemn
with specificatioms- ~the difficulty encountered in using
them.

2) Constructibilily: 1t must be possible to voustruct
specifications without unduc difficulty. We assume that
the writer of the specification understands both the speci-
fieation teehnique and the eoneept to be specilied. Two
facets of the construction process are of interest here:
the diffieulty of construeting a specification in the first
place, and the difficulty in knowing that the spceification
captures the concept.

4} Comprehensibilily: A person trained in the notation
being used should be able to read a specifieation and then,
with a minimum of difficulty, reconstruet the concept
which the specification is intended to describe. Here (and
in criterion 2) wec have a subjective measure in mind in
which the difficulty encountered in eonstructing or reading
a specification is compared with the inherent complexity
(as intuitively felt) of the concept being specified. Prop-
erties of speeifications which determine romprehensibility
are size and lueidity. Clearly small specifieations are good
since thev are (usually) easier to understand than larger
oncs, For example it would be nice if a speeifieation were
substantially smaller than the program it specifies, How-
ever, even if the speeifieation is large, it may still be casier
to understand than the program because ite deseription of
the concept is more lucid.

The final three criteria address the flexibility and gen-
erality of the specifieation technique. It is likely that tech-
niques satisfving these eriteria will meet criteria 2 and 3
as well.

4y Minimatity: 1t should he possible using the speeifi-
cation method to construet specifications which describe
the interesting properties of the concept and nothing more.
The properties which are of interest must be deseribed
precisely and unambiguously but in a way which adds as
little extraneous information as possible. In particular, a
specification must say what function(s) a program should
perform, but little, if anything, about kew the funetion is
performed. One reason this eriterion is desirable 13 beeause
it minimizes eorreetness proofs by reducing the number of
properties to be proved.

5) Wide Hange of Applicebility: Associated with each
specification technique there is a class of concepls which
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the technigue ean deseribe in & natural and straightfor-
ward fashion, leading to speeifications satisfving criteria
2 and 3. Coneepts oulside of the class can only he defined
with difficulty, if they can be defined at all {for example,
conecepts involving parallelism will not be describgble by
any of the teehniques diseussed later in the paper). Clearly,
the lurger the elass of coneepts which muy be sasily de-
scribed by a technique, the more useful the teehnique.

G} Extensibilaty: It is desirable that a minimal change
in & concept results in a similar small change in its speci-
fication. This criterion especially impacts the construct-
ibility of specifications.

IIT. THE SPECIFICATION UNIT

The quality of a specification {(the extent to which it
satisfies the eriteria of the preceding sectinn) is dependent
in large part on the program unit being specified. If a speci-
fication is altached to too small 2 unit, for example, &
single statement, what the specification says may be unin-
teresting, and furthermore there will be more specifics-
tions than can conveniently be handled. (The specification
could cxpresa no more than the following eormment, some-
times seen in programs:

ri=z—+41; “inerease x by 1.7)

A specification of too small & unit does nol correspond to
any uscful eoneept. What Is wanted iz 4 specification unit
which corresponds naturslly to a coneept, or abstraction,
found useful in thinking abour the problem 4o be solved.

The most eommonly used kind of abslraction is the
funetional or procedural abstraction in which a parara-
everized expression or colleetion of statements is treated as
o singic operation. The specification for a funetional ab-
ghraction is normally given by an tpui-output specificalion
which describes the mapping of the set of input values into
the set of cutput values.

Heeent work in the area of programming methodology,
however, has identified another kind of abstraction, the
dala abefractinn. This ecomprises s group of related fune-
tions or operations that act upcn & particular class nf ob-
jeets, with the constraint that the behavior of the objects
can be observed only by applications of the operations
[11].* A typical example of a data abstraction is & “push
down stack’: the class of objeets eonsists of all possible
stacks, and the group of operations ineludes the ordinary
stack operations, like push and pop, an operation to ereate
new stacks, and an operation to test whether a stack is
emply. ’

Data abstractions are widely used in large programs,
although the eonstraint on obscrvable object behavior
has not elways been followed.” Some examples are seg-
ments, processes, fles, and abstract devices of various
sorle, in addition to the more ordinary stacks, gueues,
and symbol tables. In each easc the implementation of

* Morrig has disruesed some eriteris for determining what con-
slitutes o suflicient set of operations [12].
® The constraint hag heen followed in the Venus system [13).
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the abstraction is given in the form of a multiprocedure
module [14], Each procedure in the module implements one
of the operations; the module as a whole may provide a
single object {for cxample, there is a single system dats
base), gsome fixed muximum number of ohjeets (for example,
there is a fixed maximum number of segments), or as many
objects as users require (for example, 2 new stack is pro-
vided whenever a user asks for one).

The realization that a multiprocedure module is im-
portant in system design preceded the identification of
the multiprocedure meodule as an implementation of a
data abstraction.? It is illuminating to examine the argu-
ments in favor of the multiprocedure module as an imple-
mentation unit. The procedures arc grouped together be-
epuse they interaet in some way: Lhey shure certain re-
gources (for example, a data base which only they use,
and possibly some real resource, like the real-time elock
owned by the process abstraction in [15]); and they also
share information (for cxample, zbout the format and
wicaning of the data in the shared-data base, and the mean-
ing of the states of the shared resource). Considering the
entire group of proeedures as a module permits all informa-
tion about the interaetions to be hidden from other mod-
ules [16]; other modules obtain information ahout the in-
teraclions only by invoking the procedures in the group
[i4]. The hiding of information simplifics the interface
between modules, and lcads dircetly 1o simpler specifica-
tions beeausc it is precisely the interface which the speci-
fications must deseribe.

As an example of the problems which arise when the data
abstraction is ignored and the operations in the group are
given input—output specifications independently of one
another, eonsider the following specification for the opera-
tion push. Assuming the push operation i a funetion,

push: stack X integer — siack

the input—output specification must define the informa-
tion content of the output value of push (the stack object
returned by push) in ferms of the input values of push (a
stack objcet and an integer). This can he done by defining
a slructure for stack objects, and then degeribing the
effect of push in terms of this etructure., A typical stack
structure might be (in pascan [177])

type stack = record top: integer,
data: array [1---100] of integer

end

and then the meaning of
t := push (s,2)

oould be stated {using notation developed by Hoare [2])7

11 is an upen question whether every multiprocedure modula
implement? a data abstraction. We helieve that the eorcespondence
holds, Lo the Yenus system [13], which was built entirely from such
medules, every modnole did eorrespond to s daty abstraction.

! Thus specification ignores the behavior of push if the stack ia
full, that 1s if s.top = 100,
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true {t := push (s,)} Vj[1 £j < stop
T t.datals] = s.datalj]
& t.dataft.top] = ¢
& t.top = siop + 1L

A similar specifieation could be given for pop.

There arc several things wrong with such a specification.
A serious flaw is that it does not describe the eoncept of
stack-like behavior, but instead specifies a lot of extrane-
ous detail. Concepts of stack-like behavior—for example, a
theorem stating that pop returns the value most recently
pushed on. the stack—can only he inferred from this detail.
The inclusion of extraneous detail is undesirable for two
reasons, First, the inventor of the coneept must geb in-
volved in the detail {which is really implementation in-
formation), rather than stating the concept directly.
Seeond, the inclusion of the detail detracts from the mini-
mality (as defined in the criteria) of the specifieation, and
it is Tikely that a eorrectness proof of an implamentation
of push and pop based on a different representation for
stoek objects would be diffieult. Another problem is that
the independence of the specifieations of push and pop is
ilhasory; & change in the specification of ane of them is
almost certain to lead to a change in the specification
of the other. For cxample, in addition to being related
$hrough the structure chosen for stack objects, the speci-
fications of push and pop are also related in their interpre-
tation of this structure: the decision to have the selector
“top” point to the topmost piece of date in the stack
(rather than tu the first available slot).

1f a dats abstraction such as stack is specified as a
single entity, much of the extraneous detail {concerning
the intcractions between the operations) can be eliminated,
and the effcets of the operations can be deseribed at a
higher level. Some specifieation techniques for data ah-
gtractions as a unit usc input—ouptut speeifieations to
deseribe the effects of the operstions, but these speeifica-
tions arc expressed in terms of abstract objects with ab-
stract propertics instead of the very speeific properties
used in the example above. Tn other techniques, it is not
¢ven necessary to deseribe the individusl operations sep-
srately, but instead, the effcets of the operstions can be
deseribed in terms of one another. As an example, just to
convey a feeling for the latter approach, the effect of pop
might be defined in terms of push by

pop (push (s2)) = »
which states that pop returns the value most recently
pushed.

In the remainder of the paper, we will concentrate on
specification techniques for data abstractions. In doing
this we will not ignore input—output specifications since
these form a part of some of the technigues we will dis-
cuss, but we will also diseuss techniques, like the one il-
Tustrated above, that are applicable only to data abstrae-
Hons. We limit our attention in this way because the speci-
fication techniques for data abstractions are all fairly
recent, and have reccived relatively little attention so
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CREATE* —=STACK

PUSH STack X INTEGER —= STACK
POP ' STACK -» STACK

TOF 4 STACK -~ INTEGER

Fig. 3. Operstions of the stack abstraction and their funetionality.

far. Also, the information-hiding aspeet of data ahstrac-
tions, discussed above, promises that specifieation tech-
nigues focused on such units will satisfy the eriteria very
well.

1V. PROPERTIES OF SPECIFICATIONS OF
DATA ARSTRACTIONS

Although the specification techniques to be deseribed
in the next section differ from one another in many parti-
culars, there are also ways in which they are similar, All
the techniques must convey the same information—in-
formation ahoul the meaning of data absiractions—and
this information is conveyed in a mathematical way. In
this section, we discuss a mathematical view of the speci-
fication techniques, and the information contained in the
specifications. We also discuss some of the problems arising
from discrepancies between the mathematical and pro-
gramming views of data abstractions.

All the specification techniques for data abstractions
can be viewed as defining something very like o mathema-
tical déscipline; the diseipline arises from the specification
of the data abstraction in a manner not unlike the way
in which number theory arises from specifications, like
Penno’s axioms, for the natural numbers. The domain of
the discipline—the set on which it is based—is the class
of objects belonging to the data abstraction, and the opera-
tions of the data abstraction are defined as mappings on
this domain. The theory of the discipline consists of the
thecrems and lemmas derivable from the specifications.

The information contained in a specification of a data
sbstraction ean be divided into a semantic part and a
syniactic part. Information about the actual meaning or
behavior of the data abstraction is deseribed in the seman-
tic part; the deseription is expressed using a voeabulary
of terms or symbols defined by the syntaetio part.

The first symbols which must be defined by the syntac-
tie part of a specification identify the abstractivn being
defined and its domain or class of objects. Usually, ap
abstraction hus a single class of defined objects, and, in
this ease, it is conventional to use the same symbol to de-
note both the abstraction and its class of objects. Thus the
objects belonging to the data abstraction, stack, are rc-
forred to as stacks. (It is possible for an abstraction to
have moere than one clags of defined objevts, but this pre-
gents no mathematical difficultics, and we will not consider
it further [187].)

The remaining symbols introduced by the syntactic
part name the operations of the ahstraction, and define
their funetionality—the domsins of their input and out-
put valucs. An example is shown in Fig. 3, where the fune-
tionality of the operations of ihe data abstraction, stack,
iz described. (In Fig. 3, the operation, ToP, returns the
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value in the top of the stack without removing it; pop re-
moves the value without refurning it.}

Several interesting observations can be made about
this example. First, more then one domain appears in the
speeificatinn in Fig. 3, In practice, the specifications for
almost all Interesting data absiractions inelude more than
onc domein. Normally, only one of these (the class of
stacks in the cxample) is being defined; the remaining
domains (integer in the example) and their properties are
assumed to be known. Of vourse, the specifications must
clearly distinguish between the domaing assumed to be
known and the ones to be defined.

A second ohservation is that, given this distinetion, the
group of operations can be partitioned into three bloclks.
The first block, the primiive ronsiructors, consists of those
operations that have no operands whieh belong to the class
heing defined, but which yield results in the defined class.
Thig black includes the constants, represented as argu-
mentless operations (for example, the cREATE opcration
for stacks). The second block, the combinational construe-
tors, consists of those operations (rusH and PoP in the
example) which have somc of their operands in and yield
their results in the defined class. The third block consists
of those operations (Tor for stacks) whose results arc not
in the defined class.

A third obscrvation is that the mathematical descrip-
tion of the functionality of an operation does not neces-
sarily correspond o the way the operation would be pro-
egrammed. One difference is that the functions in the ex-
ample have only one output value, while in practice it is
often desirable for a program to meturn more than one
result. For cxample, one might define a stack operation

POPZ; STACE — STACK X INTEGER

which removes a value from a stack, and returns both the
new stack and the value. This operation can be modeled
mathematically by a pair of operations, one for each result.
For cxample, the result of ror? ean be definerd as the pair
of results from pop and Top, where both are applied simul-
tanecusly to the vame stack value. When such an associa-
tion is made, the specification must clearly indicate Lhe
rclationship between the operation symbals.

A mare serious discrepancy is that the operations are
viewed by the specification as acting on time-invariant,
mathematical values, but the objects found in most
progremming languages can he madified in some way.
These modifications are the result of side effects in some of
the applicable operations. For example, although the posw
operation used above is purely funectional, it would more
likely be implemented so that no result is returned, and
rusHE modifies (has a side effect upon) an existing stack
objeet.

The now conventional solution to this difficulty is to
factor a modifiable vbject into two components: an ohject
identity (unique for each distinct object) and a eurrent
state. The modifieations affect only the state component,
80 a given objeet (over time) is represented by a sequence
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of pairs of values in which the object identity is always
the same. Each operation with a side effcct is defined by
5 mapping which vields a new pair of values represenling
Lhe same object and a new state.

There are two frequently occurring eases in which the
identity component of an objeel can be omitted in the
speclfications. First, if there is only one object, such as in
the KWIC index example described by Parnas {19, then
the identity component is obviously redundant. Second, if,
ags is the case in certain programming languages, the
identity of an objeet is uniguely given by the symbolic
name of identiticr that denotes the object, then a separate
identity vomponent is unnecessary. The symboliec name
of an ohject becomes its identity, and the use of a new
symbolic name implies that a new object is introduced.?
This approach is unsatisfactory for the many languages
in which a given object may have two or more distinet
symbolic names; for example, an objecl may be accessible
both via o parameter and a global name. Then the ap-
proach fails beeause side offects will not appear under both
names (gee for example, |20{).

The semantic part of the specification uses the symbols
defined mm the syntactic part to express the meaning of
the data abstraction. Two different approaches are used in
in capturing this meaning: either an abstract model is
provided for the cluass of objcets and the operations defined
in terms of the model, or the elass of objeets is defined im-
plicitly via descriptions of the nperations.

I following the abstract model approach, the behavior
is actually defined by giving an abstract implementation
in terms of another dula abstraction or mathematical dis-
cipling, one whose properties are well understood. The
data abstraction being used as the model also has a nurm-
ber of operations, and these are used to define the new
opcrations. The complexity of the deseriptions depends
on how closely the new operations match the old ones.
Sometimes they match very closcly; at other times the
deseriptions can be arhitrarily complex.

The approach of defining the objects implicitly via de-
scriptions of the operations is much closer to the way
mathematical disciplines are usually defined. The domain
or class of objects is determined induetively. Usually
it is the smallest saet closed under the operations. Only
those operations identified above as constructors are used
in defining this elosure, The closure ie the smallest set
which contains the results of the primitive eonstructors
and the results of the combinational construetors when
the appropriate cperands are drawn from the set. For
example, with stacks, the only primitive constructor is
the constant operation cReATE which vields the empty
stack, and the class of stacks congists of the empty stack
and all stacks that result from applying scquences of
prusE’s and rop's to it. One difficulty with the implieit
definition approach isthat if the specifications are not suf-
ficiently complete, in the sensc that all the relationships
among Llhe uperations are indicated, scveral distinet sets

" See, for example, Hoare’s rule of assignment [2].
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may be closed under the operations. The distinet. sefs re-
sult from different resolutions of the unspecified relation-
ships.

Tn the next scetion, specification techniques employing
both the abstract model and the implicit definition ap-
proaches will be discussed.

V. SPECTFICATION TECHNIQUES

In this scotion we present a survey of selected tech-
niques for giving formal specifieations of data abstractions.
Thig survey is not complete, but it is intended to be ilhus-
trative. We do not describe the technigues in enough de-
tail for the reader to be nble to immediately apply them,
indeed, achieving such a deseription is a matter of re-
search for at least some of the technigues. Rather, our in-
tention is to introduce the mast promising formal tech-
nigues, to indicate their strengths and weaknesses, and
to provide pointers into the literature so that more informa-
tion can be oblained.

Of the many techniques by which a data abstraction ean
be specified, most do not meet the criteria set forth in Sce-
tion IT because they are either too informal, or too low
level. Thus, textual (English) specifications and sperifi-
cations in terms of an implementation, such as the class
defimitions of SIMUTA 67 [21], will not be considered.
In addition, & number of techniques developed [or speeify-
ing the scmanties of programming languages—though
relevant in varying degree—are not considered because of
their specialized use. The techniques that are discussed
and which seem mast promising are thosc which use some
form of abstraction to reduce the complexity of the
gpeeifications.

The techmigues fall into five eategories which are (in
order of increasing abstractness of the specifieations): use
of o fixed domain of formal objects, such as scts or graphs;
usc of an appropriate, but otherwise arbitrary, known for-
mal domain; use of o state machine model ; use of an im-
plicit definition in terms of axioms; and use of an implicit
definition in terms of algebraic rclations. Techniques in
the first two eategories use the abstract model approach,
while those in the remaining eategories use the implicit
definition approach. Each of the categories is illustrated
by ovne particular technigque chosen to be typieal of the
category and, where possible, to be necessible in the hiter-
ature. Following the description of the exarple, the tech-
nique is evaluated with respect to the eriteria of Section
II. Finaily, we summarize the cvaluations, and compare
the eategories with one another.

Use of a Fiaed Diecipline

We begin by diseussing specifieation techniques in which
a fixed language—ithat of seme established mathematical
digeipline—is used for all specifications. The given disci-
pline is used to provide a high-level (abstract} implementa-
tion or model of the desired data abstraction. The class of
ohjects is represented by a subset of the mathematical
domain and the operations are defined in terms of the
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Fig. 5. V-graph representing the initial stack eonfiguraiion.

operations on that domain. Although any mathernatical
diseipline (number theory, analysis} might be used, prae-
tica] usage has been restricted primarily to graphs [22)-
[24], sets [25]-127], and the theory developed around the
Vienna Definition. Tanguage [28].

As an example of using a fixed discipline, we will con-
sider Earley's usc of graphs in deseribing data siruetures
[22]. Eaeh instance of a data structure is represented by
a graph or, as he ealled it, s V-graph, These are constructed
frem atoms, nodes, and links. Atoms represent data with
e substructure. Links are given labels, called seleetors,
and are directed from nodes to nodes or atoms; the only
requirernent on links is that two links with the same sclee-
tor ean not emanate from Lhe same node. The selectors can
be any node or atom (strings, integers). Nodes have no
significanee other than as place holders in the strueture
heing described; in our discussion, we will display nodes
as vircles, exeept that header nodes will be displayed as
boxes. For example, n representation of a stack holding
the integers 2 and 25 is shown in Fig. 4; the structurc has s
gingle header node, and the node labeled niL is a speeial
terminator. The values stored in the stack are accessible
via the selector, covr.

Onee a V-graph representation has been chosen, two
methods are available for defining the operations. Virst,
operations may be defined by expressions written in terms
of primitive V-graph opcrations. These operations provide
the ability to use the selectors to access and modify the
links and nodes. Thus, the stack operalion Torp can be
defined directly to access the contents of the node selected
by the selector Tor.

A second definition methaod is used to deseribe operations
which modify the structure of the representing V-graphs.
These operalions arc defined by means of pictures of V-
graph transformations. The operations could be described
by complicated expressions in terms of the primitive opera-
tions; however by using pietures, a more minimal deserip-
tion, conlaining less extraneous detail, can be achivved.
For example, the slack operations rusw, rop, and crEATE
are defined via transformations. Fivst, an initial configura-
tion is defined to represent. the emply stack produccd by
ouwaTe: (his is shown in Fig. 5. Then, pusu and ror are
defined by giving before and after pictures for the cor-
responding transformations. The left-hand V-graph dis-
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Fig. 7. V-graph resulting from PUiﬂing & onto the stack shown in
Fig. 4.

plays a pattern, in the form of a path of selectors from a
header node to other nodes, o mateh against the operands
of the transformation. Some of the nodes in the left-
hand V-graph are given labels which ean be used to iden-
tify the new position of these nedes in the rearrangement
defined by the right-hsnd V-graph, which represents the
result of the transformation. For example, Vig. 6 describes
the operation push as follows: for any arbitrary stack ob-
jeet, PUSH causes a new node to be inserted between the
header node and the nede previousty connected to it via
the link labeled Tor; the value being Pusaed will be on the
cont link of the newly added node. Fig, 7 displays the re-
sult of pusming 8 anto the stack shown in Fig. 4. A similar
definition ean be given for pop; il would show ror to he
the inverse of PUsH (the arrow in Fig. 6 would be reversed).
The techniquc of using a fixed diseipline to express the
specitications sutisfies many of the criteria set forth in Sec-
tion 1I. Certainly, it can be made sufficient!y formal. For
someone [amiliar with the given discipline, the specifica-
tions are usually easily understond and easily eonstructed
if they deseribe concepts within the range of applicability
of the chosen discipline. Extensibility presents no problem
provided that the representation selected for the class of
chjects of the abstraction is adequate to express the pro-
perties of the extension. Fven proofs of correetness of the
uses of the specitications are simplified by using the multi-
tude of theorems which exist for established diseiplines.
However, techniques using a fixed discipline are defi-
cient with respect to the criteria of minimality and range
of applicability. Using such a technique to expiress speci-
fications is similar to writing programs in a programming
language which provides a single data structuring method #
although a single method ¢an be powerful enough to im-
plement all user-defined data struetures, it docs not follow
that all data structures are implemented with squal facil-
ity. Similarly, we rannot expect that all data abstractions
cant be specified equally well in terms of a fixed disecipline.
For example, the graphical representation is very suitable
for showing the paths by which the eontent of a data strue-
ture can be accessed. But, if the aeccss path is not relevant,
such as when testing whether an object is in a given set,

® In fact, Earley defined s programming language, YERs, in which
V-graphs wera the data structuring method [23]. -
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then the graphical representation over-speeifies the de-
sired strueture; that is, the abstract representation in-
troduces details which need not be preserved in an im-
plementation eapturing the specifier’s intentions, The use
of exira details violates the criterion of minimality and
places a practical limit on the range of applicability of a
fived discipline.

Use of an Arbitrary Discipline

The unwanted representational detail which results
Irom using a fixed discipline can be reduced by allowing the
specifications to be written in sny convenient diseipline.
This approach is partieularly useful when the class of
objecls of the desired data abstraction iz a subset of
gome established mathematical domain. Hoare has used
this approach to specify sets [29], [30] and certain subsets
of the integers [30]. The operations on the data absirac-
tion are defined by expressions in the chosen disectpline,

For example, an operation to insert an integer in a set
might be defined by

ingert (s,0) = 8 1= g ¢

where assignment is nsed to show that s is updated with s
side effect,

Many of the properties of specifications in whicl an
arbitrary discipline is chosen are the same as when a fixed
discipline is used. Allowing the speeifier 4o choose a con-
venient discipline removes some of the limitations of a
fixed diseipline, but not all. Actually, the number of dis-
ciplines available for use is not large, and, in addition, if
a completely free choice of discipline could be made it
is doubtful that the resulting speeifications would be
comprehensible. Thus, in reality, the specifier must choosc
among a small number of disciplines; some of these might
be cxisting mathematical disciplines, while others would
be disriplines developed esperially for use in specifications.
This situation is analogous to writing programs in a lan-
guage providing several data structuring facilities; pro-
gramming experience indicates that there will always be
(problem oriented) abstractions which cannot he ideally
represented by any of the data structuring methods. Thug,
it appears unlikely that all data abstractions can be given
minimal specifications by chovsing among a number of
diseiplines.

UUse of a State Machine Model

As was noted in Section IV, the class of objects can be
defined implicitly rather than by means of an explicit
model. If the class of objects is viewed as states of an
abstraet (and not necessarily finite) state machine, 1 then
the class can be defined implicitly by characterizing the
states of the machine, Parnas [31] has developed a techni-
que and notation for writing such specifieations. The bagic
ides is to separate the operations into two groupa: those
which do not cause a state change but allow some aspect

" In this case, the et of gtates of the mlate machine iz the aet of
time-invariant mathematieal valuos that we diseussed in Section Iv.
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v -operatign: TOP

paseible vawes: integer ; mibwlily unde fined
porometers: nona

elfect  error call it 'DEPTH' - O

O-gperation: PUSH [a)
possibie valaes @ none
porameters. integer 4
effect: errey call if "DOEPTH' = Max
else (TOP=a:DEFTH = 'DEPTH +11

Fig. & I'artialstate-machine specification for the stack abstraction.

af the state to be observed—ihe valuc retuming or V-
operations—and those which cause a change of state—
the operate or O-uperations. The (-operations correspond
to the constructors of Seetion IV. The specifications are
given by indicating the effect of each O-operation on the
resull of each V-operation. This implicitly detennines the
smellest class of statcs necessary to distinguish the ob-
servable variations in the values of the V-operations. It
also determines the transitions among these states cansed
by ithe (-operations.

We again usc the integer stack data abstraction as an
example, and consider the operations Tor and PUSH. TOP
is a V-operation which is defined as long as the stack is
not empty, and PusH is an O-operation which affects the
resilt of Top, Looking at just these two operations, the
state machine specifications might read as shown in Fig.
8, where pEPTH is another V-operation whose definition is
not shown here, but which is intended to refleet the num-
ber of integers on the stack, and Max represents the maxi-
mum number of integers which can be stored on the stack.
Quotes around an operation name are used ta indicate its
value hefore the (-operation is executed.

This type of specification is different from those pre-
viously considered because it is free of representational
details, Mo extra information is introduced if the specifi-
cations are expressed entirely in terms of the namecs of
operatinns, types, and possibly some initial values (like
aax in the definition of pusn), Thus, one might expect 1o
aehieve quite reasonable minimalily. In practice, however,
it is not always easy to build a simple description of the
effect of an O-operation. The problem is that eertain O-
operations may have “delayed effects” on the V-upera-
tions: some property of the state will be observable by the
V-operation only after some other O-operation has been
applied. For example Puze has a delayed eflect on Top, in
that the former top-cf-stack element iz no longer direetly
ohservahle by Tor, but will again be cbservable after vor
is applied. Parnas used an informal language to deseribe
this delayed effect [317]. Nelaved effects can be deseribed
formally by introducing “*hidden functions” to represent
aspeets of the state which are not immediately ohservable.
Users of the state-machine medel [6], [7] have made
cxtensive use of sueh hidden funciions. However, adding
hidden functions can also add representational detail, end
thus detract from the minimality of the specification.

The state-machine specifications are slightly deficient,
with respeet to the other criteria of Section II. Because of
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Fig. 9 Axiomulic apecification of the stack abatraction.

the problem of delayed effects noted above, they are some-
timeg difficult to construct. Because the O-operations which
change the result of s V-operation are totally separated
from that V-operziion, the specifications are sometimes
difficult to read. The separation alsu affects extensibility
since adding a new V-operation may require updates to
a large portion. of the O-operation specifications.

With respect to the eriterion of formality, we expect
that state-machine specifications can be given an ade-
quate formalization but mueh work remains to be done.
In particular, it is necessary to dewvelop a formal (not
neressurily effeclive) construetion for the state machine
specified by a given set of specifieations. This will nceessi-
tate defining the language which can be used to describe
the cffcets of an O-operation. In addition, work on develop-
ing the proof methodology to use with state-machine spect-
cations iz neaded. Price [6] has proven a number of proper-
ties of o particular data abstraction, but the methodology
for proving the correctness of an implementation still
needs 10 be developed. Some of the needed formalization
is being done in an ongoing project at SIUI [7], [32].

{736 of Aztamatic Descriptions

An slternative to using state machines io implicitly
determine a data abstraction is to give a list of properties
possessed by the objects and the operations upon them.
This approach can be formalized by expressing the prop-
erties as axioms for the data abstraction, Axiomatization
has been used by Hoare [2], [33] to define the built-in data
types of a programming language. The technique van also
be used to give specifications for uscr-created data abstrac-
tions.

An axiomatization of the integer stack abstraction in
which popping the top element off the stack (rup) and
examining the top elemnent (ToFP) are separate operations,
is given in Fig. 9. In this example, sTACK and DITEGER
are predicates; sTack is being defined, but INTEGER is as-
sumed to be defined elsewhere. The axioms are writtenin a
form analogous to Peano’s axioms for the natural num-
bers. Axioms 1 and 2 define the range of the applicable
operations. Axiom 3 is the induction axiom which limits
the class of staeks to those that can be ronstrucled wilk
the given operations, Axioms 4 and 5 insure the distinet-
nass of the results of the PusE operation. Axioms § and 7
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define the result of the Tor operation and Axiome 8 and 9
define the result of pop. Axioms 7 and D capture the fact
that neither Top nor poe may be legally applicd to an
emipty stack (the result of cREATE).M

The axioms determine an abstract representation for
stacks in the following manncr. Consider the set of all
legal expressions that can be construeted from the given
operations, This set of expressions names every possible
member of the closs of stacks. Some pairs of expressions
may name {he same stack, however; for example, both

PUSH (CHEATE, 7) and
por {pusH (pUsH (cheate, 7). 25))

dencte Lhe same stack. Therefore, the class of stack ob-
jects is represented by equivalence classcs over the set of
vll expressions. These equivalence classes are determined
{noncifectively, in general) by the axioms.

If ile axioms are suficiently well chosen, the equiva-
lence classes wre unique. If not, then several sets of equiva-
lence classes may satisfy the axioms. If, for cxample,
Axiom ¢ is omitted, then two distinet sets of equivalence
classcs—one in which the result of PUsH ie always distinet
from the cmpty stack and one in which it is not—would
both satisly the axioms.

The axiomatic specifications ean almost always be
minimal and widely applicable, in part beeanse there are
so fow limitations ¢n the form of the axioms. In addition,
the upproach scems to support extensibility, since, in most
cases, it suffices to add new axioms to describe the extended
coneept, or at most, to madify a few existing axinms. The
formalization of the axiomatic technique is borrowed
directly from existing mathematics. Proving the eorreet-
ness of an implementation of a dats abstraction specified
by axioms means showing that the implementation is a
model of the axioms.

The axiomatic approach is most seriously deficient with
respect to the criteria of comprehensibility and construc-
tibility. As diseussed in Section 1V, the approach does not
directly define a model for the class of objects; instead the
elase is defined only implicitly, It is sometimes difficult to
see that the axioms really define the sel of values of in-
terest, In addition, the possibility that several very dif-
ferent sets of values may satisfy the azioms is disturbing,

Use of Algebrate Definitions

It is rcasonable to expect that alt data abstractions one
might be iuterested in impiementing on & computer would
have finitely constructible, countable domains. In view
of this, the first three axioms in Fig. 9 can be omitted,
providing suitable notation is developed to imdicate the
group of applicable operations and their functionality.
Alygebraie specitications [18] provide such a notation.

1In these axioms, we are using the standard mathematical
technique for mkinﬁ & iartia.l fupection total: the output domain of
the funetion i exctended by one spesial, recognizable valne which will
be the result of the function in all cases where il was previously
undefined.
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Fig. 10. Algebraic apesification of the stack abatraction.

The algebraic specification technique is based on a gen-
eralization of the algebraic construction known as a pre-
seniaiton. A presentation of the stack abstraction is shown
in Fig. 10. Only four axioms are now needed (labeled with
primes to avoid confusion with the axioms in Fig. 9).
Axioms 1--3 are replaced by the definition of functionality;
this is suficient to deline the sctoflegal, finitely construet-
ible expressions in these operztions. In the usual algebraic
terminology, the legal expressions are called words. Next,
it is necessary to specify which of these expressions are to
vield equivalent results, through n set of defining axioms
referred to as reletions or relation schemata: this is done by
Axioms 14’ (which correspond to Axioms 6-9 in Fig. 9).
The construction which gives meaning to a presentation
automatically forces all expression pairs which cannot be
shown to be equivalent to be distinct, This simplifics the
expreszion of the specificalions and is why Axioms 4 and
3 are not needed.

Almost all the comments ahout how axiomatic defini-
tions satisfy the eriterig apply equelly well to algebraie
definitions. Algebraic and axiomatic definitions are equally
good with respeet to the eriteria of minimality, wide range
af applicability, and extensibility. {(Algebraic definitions
are shorter than axiomatic ones, but they are not more
minimal because they express the same information.) The
algebraic approach can be easily formalized by borrowing
from existing mathematics; most results carry over in a
straightforward manner, although some generalization is
needed to treat several existing domains simultaneously.
For algebraie specifications, proving the corractness of an
implementation means showing that it defines an isomeor-
phic image of the presented algebra. This isomorphism can
be established implicitly by showing that the defining
axioms haold in the implementation and that the mapping
is one—one (18], [34].

The algebraic approach is superior to the axiomatic ap-
proach with respect {o the eriteria of constructibility and
comprehensibility, because the approach is more struc-
tured. However, algebraic apecifications are still deficient
with respeet to these criteria. Although use of the algebraic
approach precludes the possibility of more than one set
of values satisfying the axioms, it ig still possible that the
set of values defined is not the one intended. We believe
this difficulty can be eased if a methodology is developed
which can be applied to constructing and understanding
such specifications. Some progress in this dircetion has been
made [18}, [35], but. more work is needed.
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Summuary of Analyses

The analyses given in this section indicate that there is
no single specification technigue that is universally better
than the nthers. One major difference among the tech-
niques is the extent to which they exhibit a representational
bins, that is, the extent to which the specifications suggest
a representation or implementation for the abstractions
being defined. The representational bias of & technique
determines, in large measure, its range of applieability.
Technigues having a representational bias will be limited
primarily to those abstractions which are naturally ex-
pressed in the representation; however, within the range,
specifications will he fairly easy to construet and compre-
hend, and reasonably minimal. Those techmiques which
make usc of an existing mathematical diseipline to specify
an ahstract model for the clags of defined objcets bave a
representational hias. Such techmiques will be preferred
for abstractions which fit nicely into the diseipline (for
example, where the objects of the abstraction are elementa
of an existing domain).

The techniques providing an implicit definition of the
class of objeets have no representationsl bias, and will
clearly be preferable for thosc abstractions not well
matched to an existing discipline. They may sometimes
be preferred even when one of the abstract model ap-
proaches could be used. The abstract mdadel approaches
tend to suggest an implementation for the abstraction,
and this may be undesirable, not because it precludes very
different implementations, but because it may be hard for
the implementor to find a different but better implemen-
tation.

All the implicit definition technigues, with their lack of
representational bias, have a wide range of applicability,
but they vary in the extent to which they satisfy the eri-
teria of minimality, constructibility, and comprehensi-
bility. The difficulty in the state-machine approach of cop-
ing with delayed effeets reduces the minimality and con-
structibility of the specifieations, though not necessarily
the comprehensibility. The introduction of hidden ¥-fune-
tions may impact the free choice of an implementation,
sinee the implementor may feel the nead to implement these
lidden funetions, which is not nceessary. Algebraic and
axiomatic specifications are more minimal than state-
model specifications, but they may be more difficult o
construet and understand.

The statc-machine technique appears to be least satis-
factory with respeet to the eriterion of extensibility, be-
cause introducing a new V-operation is likely to necessitate
changes to the definitions of many (-operations. However,
the eriterion of extensibility, based on the notion of a
“amall” change to the concept, is really quite vague, Ter-
haps a small change is one requiring only 2 minor modifica-
tion to the specification. Also, the different specification
techniques may tolerate different kinds of changes, and
this could be a factor in choosing a technigque.

The eriterion of formality is ot entiraly satisfied by any
of the techniques, although the state-machine model is the
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least formabized. There are two important aspects to
formaligation. First, the syntax and semantics of the lan-
guage in which the specifications are written must be fully
defined. Defining the semanties involves more than just
defining the meaning of each symbol; a constructicn (it
may be noneffective) of the defined class of abjects from
the specification must also be provided. This is only diffi-
cult in the implicit delnition approaches; in the abstract
mode! approaches the specification -describes the abjeets
explicitly. Sceond, & methodology for proving that an im-
plementation satisfies a specification must be provided.
Additional work on formalization would expand the use-
fulness of the techniques. Unless a technique is adequalely
formalized, it will be difficult, if not impossible, to train
people {0 use it correetly and coherently. '

We conclude by discussing one previously unmentioned
aspect of specification techniques: the extent to which they
capture all intercsting properties of a data abstraction.
For example, consider the treatment of errors in the various
specification techniques. In some techniques, errors are
completely ignored. In others, notably the axiomatic and
algebraic techniques, the presence of errors is acknowl-
edged, but not in a particularly illumingting way. The
solution of adding an extra errur element to the output
domain, while mathematically sound, does not. pruvide the
kind of information that a user of the abstraction requires.
A more realistic approach i3 taken by the state-machine
technique; here, error cascs arc prominenily displayed,
different errors ean be given meanmimgful names (although
this was not shown in the example), and even the order in
which errors will be recognized by a given operation can he
specified. It is noteworthy that this technique is based on
a model of the way errors will be handled in running pro-
grams; such a model may be necessary if errors are to be
specified in a realistic manner. The treatment of errors is
oot the only example whete the specification techniques
are deficient (e.g., performance requirements are also miss-
ing}. Much more work is needed to identify the interesting
properties of data abstractions, and to develop the speci-
fieation techniques to express those properties.

VI. CONCLUBTONS

A major premise of this paper has been that formal speci-
fications should come to play a fundamental role in the
construetion of reliable software. Two reasons were given
for this: 1) The growing economic pressure for reliable
programe indicates that inereased cffort in this direetion is
justified, and 2} the recognition of a new kind of modole—
the multiprocedure module—has led to the identifieation
of a specification unit for which speeifications are practi-
cal. This kind of module is helpful in the construction of
soflware, because il permits data abstractions to be used
in building programs. Since data are the fundamental con-
cern of programs, we can expeect the use of data abstrac-
tions to be widespread.

To indicate the form such specifications might take,
Section V discussed several specification techniques. The
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lechnigues discussed were promising in that they did
succeed in describing data abstractions at a reasonably
abstract level. However, none of the techniques are ready
to be applied to practical programs. Some teehniques have
not vet been put on a firm mathematical basis {slthough
we believe that all the techniques surveyed are capahle
of being adequately formealized). Other techniques ignore
a fundamental aspeet of data abstractions: how to cope
with errurs and exeeplions. Finally, none of the techniques
has heen applied widely enough that its expresstve pawer
con be evaluated. Ilecent uses of the state-machine tech-
nique of Parnas to specify operating svstems [7] or parts
thereof [6] may indicate that that technigque is suitable
for svstems of interesting size, but the complexity of at
least one of those specifications [6] indicates the specifi-
cation teehnique requires further refinement, 1t is reason-

able to expect deficiencies in the other specilication .

techniques to emerge when they are likewise applied to
large programs.

Some deficiencies in the techniques are already apparent.
The range of applicability of the various techniques is often
smaller than we would like; examples were discussed in
Bection V. Since the range of applicability iz different for
the different, technigues, we may expeet that using & com-
bination of techniques when deseribing a large program
would be a profitable approaeh. However, there are pro-
grams whose meaning cannot be eaptured by any of the
described techniques. For example, specifications using the
technicques eannot be given for programs involving parallel
activity. We chose not 1o survey work going on in develop-
ing spceification techniques to handle parallelism because
the work iz very recent and quite preliminary. However,
one promising approach uses data abstractions as the speci-
fieation units [36].

The specification techniques diseussed in this paper can
adequately deseribe modules the bloecks oul of which
systems are bullt—but it is not clear that they can de-
scribe the entire system. For example, Parnas has shown
how o KWIC sytem can be modularized [16], and each
module was deseribed using his specifications, but the speci-
fication of the system as a whole was given in English.
It seems unlikely that an entire system can be viewed as
a single, top-level module, so perhaps a different kind of
specification technique is desirable here.

Even if we are not able to deseribe an entire system using
the specification leehnigues, the ability to define most of
the modules used in construeting a system in a precise,
formal way would be a major advance in the construction
of reliable softwarc. The specification tcehniques dis-
cussed in this paper are all quite recent; much is being se-
complished by conecentrating on the data abstraction as a
specification unit. This general area appears to be a very
promising one for further study: work in applying cxisting
techniques to large programs, in extending and formalizing
existing tcchniques, and in proposing new technigues, for
hoth sequential and parallel programs, is of the utmost im-
portanee.
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